《两位数乘两位数》教学反思

教学反思 时间:2020-04-25 我要投稿

《两位数乘两位数》教学反思

《两位数乘两位数》教学反思1

  今天继续用钉钉直播讲授数学课,本节课我讲的三年级下册第四单元的《两位数乘两位数的笔算》一课,它是在学生学习了多位数乘一位数的基础上进行教学的,也是整数乘法学习的重要阶段,需要让孩子对整数乘法的算理和算法进行更深层次的认识。

《两位数乘两位数》教学反思

  课上,我通过复习多位数乘一位数,让学生说说笔算方法,唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。接着从王老师买书的情境引出算式14×12,从而出示本节课的课题:两位数乘两位数。

  在探究两位数乘两位数的笔算方法时,我让学生通过点子图的形式,明确可以把其中第二个乘数分成(3×4)或(10+2),首先知道了计算结果是168;接着一起探究两位数乘两位数的笔算方法:我让学生先根据独立尝试解决列竖式计算,学生在尝试解题的过程中难免会出现错误;接着我一步一步出示正确的竖式书写方式,并通过点子图让学生明白每一步的意义时,特别强调14×2表示2套书的本数;14×10表示10套书的本数;28+140=168表示12套书的本数。同时明确了竖式书写要对齐数位,十位与第一个乘数相乘的积个位的“0”可以省略的道理。学生结合现实的情境,理解了两位数乘两位数的算理,使抽象的算理具体化,更便于理解和接受。

  接着我通过与多位数乘一位数的竖式计算的对比,让学生发现相同之处和不同的地方,从而总结出两位数乘两位数(不进位)的笔算方法。在巩固拓展环节,我先从笔算方法的掌握先着手,让学生通过计算、展示做一做的题目,让大家明确竖式中的每一步得数是怎么来的,进一步理解算理,掌握计算方法。最后让学生去所学的知识去判断纠错,解决生活中的实际问题,把所学的知识应用于生活,提高学生解决问题的能力。

  整节课我把计算教学与解决实际问题相结合,使课堂内容充满了情趣,有了色彩,既解决了计算问题,又提高了解决实际问题的能力,一举两得。但本节课也有一些不足之处:由于网络授课的原因,学生的列竖式计算的情况没有全员关注,上课时间只有30分钟,导致解决问题的练习比较草率。

《两位数乘两位数》教学反思2

  两位数乘两位数不进位笔算乘法是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的教学重点。十位部分积的对位问题,是本节课的一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。

  本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,都仅仅围绕乘法的意义来展开。20根灯柱,每根灯柱上有12盏灯,一共有多少盏灯?学生很快分析并解答了出来:20个12是多少?即24个十。

  第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点。在前面口算的基础上,我又提出如果是23根灯柱呢?学生很快说出求23个十是多少?有的说前面的20个12再加3个12,师顺势引导先用竖式计算20×12=,再用竖式计算一下3×12=,学生算出后,再让学生尝试用竖式计算23×12=,师巡视辅导,然后指名板演不同计算方法,让学生根据题意观察、比较、不同算法,辨析、交流分辨对错。因为有了前面的铺垫,学生掌握起来容易多了,能够理解1个十乘3得到3个十,故3应照齐十位,其它依此类推。效果良好。

  第三个层次,联系实际,强化练习

  这是一堂计算课,学生要从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。由于练习是一种有目的、有步骤、有指导的教学活动。所以教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题,计算是枯燥的,但也是有用的,因此引导学生能应用知识解决生活里相关的实际问题,既练习了所学知识,又体会数学的作用,逐步树立应用数学的意识,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法。

  在教学的过程中我也发现了自己的不足,如课堂提问的策略问题,面对学生的突发问题,有时不知道怎样去引导。出现了一些重复教学的情况,如:对学生估计过低,学生已经表达清楚地内容,总要自己再重述一遍。

  还有些孩子在计算的过程中,容易一部分按乘法计算,另一部分按加法计算;也有一些孩子把个位与第一个因数相乘的积,十位与第一个因数相乘的积,应该是相加,而写为相乘。计算不熟练。在以后的学习中要强化训练。

《两位数乘两位数》教学反思3

  《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。

  教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。

  教学的难点是解决乘的顺序和第二部分积的书写位置问题。

  片段一

  师:文具店新购进一批圆珠笔,一盒是24支.请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?

  (学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等.)

  师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?

  (有几个学生在下面嘀咕,算算不就知道了.)

  师:(老师马上接过话头)这几位同学说的很好,算算就知道了.下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。

  (老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)

  师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。

  (在老师的鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)

  (学生经过15分钟的独立思考后,教师回到讲台。)

  师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?

  (准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)

  通过交流,全班一共发现了近十种解法:

  1)24+24+……+24=288(12个24相加)

  2)12+12+……+12=288(24个12相加)

  3)24×2×6=288

  4)12×3×8=288

  5)24×3×4=288

  6)24×10+24×2=288

  7)竖式计算

  8)24×20-24×8=288

  片段二

  师:同学们已经探索出十几种算法,下面我们比较一下这些方法的优缺点。

  师生交流后,得出以下几种结论:

  1、用加法计算,容易理解,但计算麻烦,容易出错。

  2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)

  3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。

  二、归纳法则。

  在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。

  三、巩固练习。(略)

  [案例反思]

  如何搭建“脚手架”?

  所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。

  在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。

  我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。

  首先,搭建“脚手架”要引导学生自主提取信息。

  随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基.

  其次,搭建“脚手架”要蕴含数学思想方法。

  “如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。

  如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。

《两位数乘两位数》教学反思4

  学生已有了竖式书写和不进位计算方法的经验,但由于计算中产生了进位计算难度比不进位乘有所提高,错误率也会相应增加。

  这节课我采用两个层次进行教学。第一层次是根据情境对19×19的结果进行估算,旨在培养学生先估后算的习惯。我重点指导了以下的估计方法:19在哪两个整十数之间?把它看成20,一共有几多少格?实际的格数比20怎样?从而很显然地得出“19×19“的积的大约范围。第二层次是探索出进位乘的笔算方法。我先让学生借助实际围棋棋谱,直观理解个位乘后的进位情况,然后用竖式进行计算。这一环节我打破了教材的安排,使学生在不知不觉中进入新的知识领域。让他们自己去探索、比较、验证,体验成功的欢乐。

  教学中,我特别尊重学生的个性特征,允许学生从不同角度解决问题,鼓励学生发表与众不同的见解,让每个学生能够根据自己的认知水平和学习能力选择适合自己的认知方式与思维策略。学生说出了好几种的算法,更好地培养了学生的发散思维。这样既满足学生多样化的学习需要,又使不同层次的学生学习到不的数学,得到不同的发展。学生的答案多种多样,我没有立即把对的算法呈现,而是让所有不一样的答案和计算方法都呈现在黑板上,让学生来判断哪种方法才是正确的。这个过程取得了很好的效果,学生通过对错的对比得到了正确的计算方法,并且体会到了竖式计算的优点,对那些由于进位而产生的错误也有了了解,从而避免错误。

《两位数乘两位数》教学反思5

  疫情无情,人间有爱。停课不停教、线上教学已经持续有一月时间,为了减轻疫情对学校教学的影响,确保在家学习质量不打折,我们三数组制定了详细的线上教学计划,学生上午观看同桌100视频课,下午根据作业完成情况录制小视频进行答疑。

  根据课程安排,这周我们学习了《两位数乘两位数(不进位)》的内容,它是在学生学习了多位数乘一位数、口算乘法的基础上进行教学的。为了提高学生的计算正确率,就得让学生真正理解算理,算理是算法的基础。

  我认为本节课内容,如果还将算理的呈现停留在实物表征的呈现上,是对学生思维方式的倒退式引导。两位数乘两位数的关键在于让学生理解用一个因数的个位、十位分别去乘另一个因数的过程。在学习这节课前,我对班里的学习情况进行了一个预测,计算对学生来说不难,难就难在算理的理解上,还有一些细节问题,比如:抄错数字、横式忘写得数等等。通过学习同桌100视频课及家长的辅导,大部分学生已经会算两位数乘两位数不进位乘法,但对于为什么这样写,先怎么计算再怎么计算,还比较迷茫。本节课的重点就是理解算理,如何很好的突破这一难点呢?在下午批改作业反馈中,我是这样处理的,录制小视频重点讲解14乘12的算理,让学生给家长说一说计算过程,并录制了小视频。为了达到举一反三的效果,晚饭后又让家长根据自己孩子的计算情况,自愿完成6道关于两位数乘两位数不进位乘法的竖式计算。

  我在批改作业中体会到,对于计算类的教学,千万不能仅看学生计算的正确与否,而更应该注重学生对于计算算理的理解。

《两位数乘两位数》教学反思6

  两位数乘两位数笔算乘法是在学生能够较熟练的口算整十、整百数乘两位数,并且掌握了多位数乘一位数的笔算方法的基础上进行教学的。本课的重点是掌握两位数乘两位数的笔算算理。关键在于学生能掌握好乘的顺序以及两个积的数位。

  教学中,我从学校购新书入手,再现了学生熟悉的情景,激发了学生的学习兴趣,同时,把计算设置在学生熟悉的具体情景之中,激活了学生原有的知识与经验,使学生愿意去主动探索知识。例:24×12,让学生以探究、活跃、高昂的精神状态参与学习过程。

  从课堂反馈来看,效果较好。在探索计算方法时,我让学生独立尝试计算,有的孩子用口算的方法,有的孩子用竖式的方法。其中不少用竖式的孩子是直接写出得数而没有计算过程的,说明这些孩子还没能很好的理解算理。此时,我请了几位孩子上台书写自己的方法,先请口算的孩子说了自己的想法,再请笔算正确的孩子说他的计算过程,同时,我注意引导学生进行观察表达,让学生们理解笔算的计算过程。最后在比较台上错误的笔算存在的问题,让学生加深对算理的理解,明白算理的重要性和必要性。两位数乘两位数的笔算对于学生而言是较难理解的,计算时需要进行3层计算。学生还未能熟练掌握时,往往会出现运算第2层时把算乘几十当成算乘几,或者将因数弄混淆导致出错。为了避免这一问题,在学生书写竖式时,我要求孩子们将算理一并书写在算式的旁边,便于孩子记住自己该算哪一步,便于孩子们在思维混淆时能理清运算的顺序,在检查时便于发现错误。

  在教学中我体会到,对这一知识的教学千万不能急,不能光看学生计算出的结果正确与否,而应关注学生是否理解了算理。看似简单的计算,实际对初次学习的孩子来说是挺困难的事情。在教学中应多观察多思考学生出错的原因帮助其从对症下药。同时,加强对算理的理解是学生熟练掌握计算方法的关键。

《两位数乘两位数》教学反思7

  关注要点 把握关键

  两位数乘两位数的笔算乘法(不进位)是多位数乘法的基础,是笔算乘法的通法,是在多位数乘一位数的笔算基础上进行教学的。因为不需要进位,就一个例题,重点让学生明白乘的顺序和乘得的积书写位置两个问题就可以了。这部分内容看起来简单,可是对于三年级的学生而言,却是很难理解的。

  在备课时主要关注了以下几点:

  1.学生的起点。

  学习这部分内容,学生应该具备的必要技能有两位数乘一位数的笔算和两位数乘整十数的口算。在教学中要充分关注到这一起点,让学生能够在课伊始就能清楚地知道两位数乘一位数的笔算过程及方法,特别是通过“24×2”用竖式计算的过程,由学生自己说出需注意的问题,然后把这三条贴在黑板上,以求给学生留下深刻的、完整的笔算思路。为下面类推两位数乘两位数笔算方法也提供了方法基础。通过课堂的实际效果看,对学生的影响是比较大的。

  2.转化思想的渗透。

  从两位数乘整十数的口算练习开始,就让学生感受到是把它们转化成两位数乘一位数的计算,设计时想从这个地方开始就让转化在课堂中发挥作用,让孩子能够对转化思想有一个切身的体验;当把两位数乘两位数的例题用口算做出来时,再让学生感受到没学过的内容可以转化为学过的口算来解决;最后探究出用竖式计算时,总结算法,让学生再一次感受到原来笔算两位数乘两位数时,就是用第二个因数每个数位上的数去乘第一个因数,其实就是转化成了两次两位数乘一位数的笔算。设想的过程是这样一个环节接一个环节,让孩子从知道转化这个词,慢慢明白原来就是这么回事,简单易懂,不用非得描述出“转化”是什么,但是心中已经明白了“转化”是为了干什么。

  3.习题的'设计。

  像这样的计算课,除了让学生明白了算理,知道了算法,更多的功夫应该放在练习上,只有在大量的练习中,学生才能逐渐掌握计算的技能和技巧。因为是计算,如果只是一种形式的练习,很容易让学生感到枯燥乏味没有兴趣。所以在本课的习题设计上,采用了多种形式结合,体现由扶到放的层次性。

  第一道题就体现了三个层次,第一个层次对着画有方框的竖式填写计算的结果,然后再填写后面的横式结果,这是给学生固定出积的位置再填写,在填横式结果的过程中巩固对算理的理解;第二个层次给写好了竖式,直接计算;第三个层次只给横式,自己写竖式计算。

  第二道题,依然还是列竖式计算,但是要求同桌为一组,每人完成两个,然后互相检查,反馈后全部做对了,每人都可以给自己画一枚喜欢的标志,这样捆绑评价,可以调动起练习的积极性,忽略掉做计算题的枯燥感。

  第三道题,给出算式和竖式中关键位置的积,让学生根据竖式去判断对应算式,这道题以游戏的形式出现,里面蕴含着对两位数乘两位数算法的理解,只要理解了如何去算,就可以轻易根据关键的几个数找到对应的算式。想在趣味性十足的练习中加深对算理和算法的理解。

  在课堂上,主要把握了以下几个关键:

  1.知识基础。

  两位数乘两位数的笔算是在乘一位数的基础上进行的,所以让学生及时认真回顾两位数乘一位数的笔算方法很重要,所以在教学中踏实进行复习。

  2、乘的顺序。

  这是两位数乘两位数笔算的关键,让学生深刻理解两位数乘的顺序很重要。所以在全班交流的环节不厌其烦地让学生说自己怎样计算的过程,就成了重头戏。可惜在这个过程中,课堂上我处理地并不好。对学生的引领不够科学有序,问题缺乏清晰的条理性,所以没能达到我预想的效果。

  3.积的书写位置。

  在计算第一层积时属于原来的知识基础,学生不会有问题。当计算第二层积时,学生就遇到了困难,解决的关键是让学生理解如何用第二个因数十位上的数去乘的过程,把握了这一点,学生自然就明白结果是几个十就该写在十位上。这一点容易理解但需要强化训练才能熟练掌握,所以在探究交流完后的师生梳理时还要进行“重笔涂墨”,我启动了一个问题“像说用个位上的2乘24那样,说说用1乘24的过程好吗?”这样就给学生一个清晰的认识“用24乘十位上的1,过程跟用24乘个位上的2笔算顺序和方法完全一样”,只是跟个位上的4乘后的积应该写在十位上,其他的道理都相同。不知是因为强化了这一点还是学生感悟能力强,从最后做的练习上看,正确率比我想像的要高。

  我的感受:

  忐忑。

  在接到任务时因为是作为骨干教师,同联小教师同上这节课,很怕自己会有愧于这“骨干引领”的任务,希望自己能够呈现给大家一堂有自己风格的课,最好是能有所创新。但是这样的课型平时评优课很少有人触及,因为它不好创新,只能踏踏实实地去上,花哨不得。于是忐忑不安地进入了备课、思考的过程。时间很短,从接到正式通知到最后一共8天的时间,其中有周六、周日两天学校组织去蒙山进行了拓展训练。备课、研讨、修改、试讲,每天晚上都对着教参、教材和教学设计就这么静静地坐在电脑旁,即使什么都不干,也哪都不去,就这么静静地坐着,大脑却一刻不停地思考:如何才能让整个过程显得更清晰、更有实效呢?忐忑不安中,最后决定既然创不了什么新,那就把它上踏实,这才能体现课的高效和内涵。

  迷茫。

  课前的复习环节,进行了好几次改动。最初设计了一组口算训练,二是笔算训练。作为这节课前的热身,但是在做完这些题的时候我还想抽出要点分别总结概况它们的算法,以便为后来的学习奠定基础,于是就显得头大了,修改。

  课堂上学生的表现很出乎我的意料,本以为用口算的方式分解成三步是很自然的事情,但是课堂上孩子们并不是这样的思维,他们多是上来就用笔算,不管对不对全是列竖式的形式。于是就把情境进行了分解,改成了台阶式。利用情境第一步先解决笔算的基础问题,第二步口算,但即便这样,经过调查,学生使用口算来解决的依然不多,利用竖式的很多,但多数都不对,其中有用竖式的样子,但结果其实是口算出来的却说不出笔算的过程。当遇到这样情况的时候,让学生表达说不出来,学生自己又提不出什么问题,只能由老师来讲,对此我真是迷茫了一阵。还是能力不够,不能准确把握课堂,处理问题的随机性不强,这些应该都源于自身业务水平还不高,还有待更进一步地去学习、去实践,让自己的能力再提高,争取做一个真正优秀的数学老师。

  遗憾。

  那天上完课,我觉得特别遗憾。

  在学生汇报交流环节,我的问题引领不科学,其实应该清晰地以两个问题呈现:分了几步算出来结果的?说出每一步是怎么算出来的。当学生有240的0省略写法时,提问:怎么不写0你也认为是240?这样就可以了,至于24是怎么按照乘的顺序得出来的,可以放在师生梳理时强化,这样效果可能比我当时的处理要好。

  在处理学生错例上,学生已经明确知道算法后,应该给一个纠错的机会,不仅是对展台上展示的错题,开始尝试的错误都要有机会进行修正,这个环节漏掉了很遗憾。

  在对估算结果的使用,准确结果算完后,没有及时回头看,使估算的结果仅停留在开头的分析上,这里需要一个验证分析的过程,如果能有,会使课堂更有数学的理性美。

  总之,还需要多学习、多锻炼,人如果不逼自己,真不知道自己能干什么。这样的课原来我从没想过可以上公开课,多数数学老师也不愿意涉足这样的课题,一个字“难”。但是经过这番尝试,我竟然有点喜欢这样的课了,这种课可以不上的华丽,但是可以上得很有味道,至少以后看到这样的课型,我也可以对自己有信心了,因为我经历了整个思考的过程……

《两位数乘两位数》教学反思8

  4月8日,只是一个很平常的日子,但对于我而言却是意义非凡的。一堂普普通通的课,却给予了我们太多太多的“教育”和思索。

  昨天下班前夕,被告知明天数学教研员姜老师要来听课。急急忙忙弄出了一份教案,又根据教案做了一份简单的PPT课件。晚上回家之后,只是简单地将教学思路理了一遍,随后的时间便是对着教案发呆了,并非是自己胸有成竹,而实在是自己看不进去了。今天上午进行了一次试教,试教之后,前辈们给予了我许多的帮助。

  我是以围棋棋盘图导入新课的,让孩子们讲讲从棋盘上你发现了哪些数学信息,进而引出了“棋盘上一共有多少个交叉点”,从而列出式子“19×19”。在试教时,我的目的只是让孩子列出式子。而在前辈们的讲评中却发现:围棋棋盘在这节课上是可以大做文章的。比如在孩子列出“20×19=380”时,可以再添加一条在原来的棋盘上,之后的“380—19=361”时又可将添加上去的删除,这样图形与算式相结合的方式可以让孩子理解起来更为简单,也让题目变得更为形象。此外在试教时,我对学生似乎扶得过牢了,课堂的提问也似乎过于简单,在说算理时,我也只是选取个别孩子,并未完全顾及所有的孩子。还有一些细节方面的问题,有待在课堂中加强。

  下午的课堂似乎比上午是有进步的,上午遇到的问题我也都能很好的解决。比如“19×19”不再只是一个简单的式子,而是让孩子们结合围棋棋盘来说明原因;而在说笔算过程时从个人说到同桌互说,再到最后的全班齐说。

  第二次之后,新的问题也出现了。

  1、自己的数学素养有限,对于课堂的评价和激励的语言太过于贫乏,课堂一直处于平淡中。在以后的课堂中尽量丰富自己的语言,以此达到活跃课堂气氛的目的。

  2、对于课堂中的反馈还有待加强,反馈策略是一门深奥的学问。

  3、本堂课中的练习安排并不是特别合理,缺少了一些思维的拓展。我可以在最后时利用一道难度稍大的题目,将孩子们的思维拔高,让他们将所学的知识运用于解决实际问题。

  4、在试教时,我并未用到估算,而在正式上课时我将估算运用其中。而我也只是简单的运用估算,只是为了“估算而估算”。在之后的讲评中,姜老师的话让我知道了估算的用处远没有那么小。通过估算可以让孩子们的思维更为活跃,让他们渐渐知道自己的估算结果是可以一步步靠近准确值的。

  一次匆忙的课堂,又让自己成长了不少。

《两位数乘两位数》教学反思9

  两位数乘两位数的笔算是第四单元的教学重点。这部分内容是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的乘数是更多位数的乘法问题,奠定了基础。两位数乘两位数,是在学生学习了笔算多位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排,先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。接着,编排进位的,让学生经历两位数乘两位数需要进位的笔算过程,帮助学生掌握笔算乘法的方法。

  教学第一课时是不进位的,课堂上我结合例题引导学生去理解算理。当时的例题是没套书有14本,老师买了12套,一共买了多少本?当时这道题是先用口算方法想,先求10套多少本,用14×10=140(本),在求2套多少本,用14×2=28(本),然后140+28=168(本),学生对口算方法都能明白,所以这道题改成竖式时,学生对于算理都能明白,没有疑问,只是有个别学生习惯写上竖式中140的那个0,这个慢慢可以改掉。有了一定的情景辅助学生理解算理上略微有些吃力。课上再通过纯竖式计算,明确先算什么,再算什么,而且一开始我要求学生写清楚你每一步是谁和谁相乘得来的,学生能写清楚,必然是能理解的。练习的过程中适时请学生上台板演,再结合错题进行分析,加深理解,通过两课时的教学发现针对不进位的都能很好的掌握。

  两位数乘两位数的笔算乘法,必须让学生明白算理。再通过大量的练习题让学生巩固,学生才能彻底学会。

《两位数乘两位数》教学反思10

  估算是日常生活中常用的重要手段和方法,例2教学用估算解决问题,目的是使学生在掌握两位数乘两位数估算的基础上,进一步应用所学乘法知识通过估算的手段解决具体问题。在设计和教学本节内容的过程中,我始终是围绕生活中的具体问题,让学生经历用估算解决问题的过程,从而进一步培养学生灵活的估算能力,形成积极、主动的估算意识。

  一、围绕具体问题的解决开展估算活动。

  估算不是抽象的乘法估算,而是在解决问题的生动情境中因需求而应运而生的。为了让学生更深刻地体会到这一点,我从一开始的创设情境就开始进行着辅垫。课件演示的是会场座位的分配。我引导着:全校有350名学生能坐下吗?这一个引入,一方面可以帮助学生复习以前学过的有关估算的知识,另一方面也是为了让学生意识到,数学的估算就在我们的身边。从而对估算产生一种亲切感,为学习新知识作好心理上的准备。

  在例2的教学中,我也是充分利用课本中所提供的问题背景,引导学生围绕“一共有多少个座位?”的这个实际问题进行估算的。使学生体会到“22╳18≈”是为了解决我们实际问题而产生的,是我们生活中的一种需要。把数学与生活更好联系在一起,是我们的新课标的重要思想,也是让更多学生更爱学数学的一种途径。

  二、为学生提供了自主探索、互相交流的广阔空间。

  对于例2中“22╳18≈”的估算,学生中肯定存在着多种不同的估算方法、会有多种不同的估算结果。在教学中,我为学生精心设计了既能体现自主探索又能体现合作交流的估算活动。

  具体操作如下:

  ①独立估算。在引出算式后,我请每个学生应用已有的估算经验独自估算“22╳18≈”,并写出估算的过程。

  ②小组交流。在独立估算的基础上,小组内交流各自的估算方法和结果,并说明理由。然后总结出本组认为比较合适的一种或几种估算方法。

  ③全班交流。在小组交流的基础上,让部分小组派代表汇报本组的估算情况。最后组织学生对交流出来的三种不同的估算方法和估算结果进行评价,使多数学生形成共识,并找出符合问题实际、接近准确结果、计算方便可行的估算方法。

【《两位数乘两位数》教学反思】相关文章:

1.两位数乘两位数数学老师教学反思

2.关于两位数加两位数的教学反思3篇

3.三位数乘两位数教学反思

4.《两位数乘两位数进位笔算乘法》说课稿

5.三年级数学《两位数乘两位数》教学计划

6.二年级下册《两位数加减两位数》教学反思

7.两位数加两位数进位说课稿

8.《除数是两位数的笔算除法》的教学反思