小学正比例和反比例的教学反思

教学反思 时间:2020-04-30 我要投稿

小学正比例和反比例的教学反思

  作为一位到岗不久的教师,我们的任务之一就是教学,对学到的教学技巧,我们可以记录在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编整理的小学正比例和反比例的教学反思,仅供参考,欢迎大家阅读。

小学正比例和反比例的教学反思

  小学正比例和反比例的教学反思篇1

  我执教的《正比例反比例》是北师大版六年级下册P63的内容,课前给学生下发“学案”让学生在充放预习的基础上以学案为载体,归纳、回顾和整理所学的知识,课堂以合作交流、展示为重点,本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。

  在学生对正比例和反比例的知识进行整理后,在小组内展开合作学习,让学生以小组为单位进行交流。小组长要做好组织协调工作,在小组交流的过程中,哪个同学有什么疑问可以提出来,自己小组的同学进行解答。如果解决不了,就将疑问记录下来,等全班交流时,再进行提问,在这个过程中,每个同学将自己整理的内容进行添加、补充、完善,小组整理的知识达成共识。经过这个过程,复习的重要知识基本上就形成了。

  在小组活动时,教师及时走下讲台巡视,参与到解决问题有困难的小组中去,积极地看,认真地听,及时了解信息,以便在全班展示时及时抓重点、难点给予点拨、引导。

  在小组交流的基础上,小组代表进行发言。其他同学认真倾听,在汇报的基础上再进行补充。在学生汇报交流中,学生及时补充正、反比例的相同与不同。老师根据学生交流的情况,点拨判断正、反比例量的判断方法。

  为了全面了解学生知识的掌握情况,在课堂结束阶段,设计适当的检测性练习题让学生独立练习,及时反馈矫正,引导学生自觉参与课堂评价,进而对本节课的表现、练习情况等进行自我总结与反思,体验快乐与成功,增强学生学习数学的信心,培养良好的反思习惯。

  在教学中也存在着以下几个问题:

  1、时间安排不够合理。在“合作交流”部分的小组交流中时间留的较多,再加上学生在预展部分板书较慢,学生的板演技能还不是很高,以致课堂预设流程没有能够进行完。

  2、学生的课堂语言有重复打结的现象,在学生的展示、补充、点评环节都有存在。对学生课堂发言、倾听习惯培养不到位,对学生课堂语言要进一步的引导养成良好的倾听习惯,以适应课改的需要。

  小学正比例和反比例的教学反思篇2

  由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。

  反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。

  在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的'相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。

  在正比例和反比例的教学中,我练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨,参与学生的探究不够。

  小学正比例和反比例的教学反思篇3

  我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。

  为什么加变化的量、画一画、探究与发现等内容?

  由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。

  其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。

  其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。

  小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。

  初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。

  高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。

  到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。

  这节课我谈谈个人的观点:

  本单元是在学生已学习了比和比例的知识以及积累了一些常用数量关系基础上进行教学的,正反比例这个知识对于学生来说是一个全新的知识,也正好是规律探究的知识,因此高老师尝试用整体进入的方式来进行教学。主要让学生结合实际情境认识成正比例和反比例的量。通过学习这部分知识,使学生从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。教材的安排是用例1、例2教学正比例的意义和正比例的图像,例3教学反比例的意义,而高老师第一课时并没有进行图像教学。而是对教材大胆地进行重组,第一课时进行正、反比例意义的教学,第二课时进行正反比例图像的教学。从意义和图像两方面进行对比,用结构的方式,加深学生对正反比例意义的理解。这节课高老师主要引导学生通过观察分类自主探索、合作交流,呈现出学生“分类方法”的多样化,在两次“分类”中不断激发学生探究两种相关联量变化规律。学生学的比较愉快。

  探讨的地方有:

  1.在出现表格的时候最好加上一个不是相关联的量的表格让学生进行分类。如人的身高与体重等。这样对比更明显,让学生知道不相关联的两个量要归类在不能成比例一类,

  2.可以让学生把一组组对应的数据写出来进行对比,教师也可以板书这样学生更能直观的发现他们的比值一样的.或乘积是一样的,以便发现规律.

  3.重心下移的力度不够,规律可以让多个学生尝试归纳,然后教师可以指导学生看书得出规范性的数学语言.

  4.教学中增加对比练习

  5.增加拓展练习,抽象实际事例中的数量变化规律,加深正比例的概念的理解。

  小学正比例和反比例的教学反思篇4

  我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。

  生活是数学知识的源泉,正反比例是来源于生活的。我在本课教学中,首先通过系列训练,将教材知识转换为学生喜闻乐见的形式,不仅使学生思路清晰地掌握知识体系,而且能在规律上点拨启发,所以学生主动性高,回答问题时能从不同角度、不同方位去思考,既开动了学生脑筋,又培养了学习兴趣。

  其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习,让学生亲自经历知识的发生、发展过程,注重培养探究、创新意识,以达到教师主导与学生主体的有机结合,使零散的知识得到有效整合和扩展延伸,形成学生自己固有的知识体系.

  课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。

  教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!

  小学正比例和反比例的教学反思篇5

  第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……

  成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:

  红花的朵数和鸡蛋的个数成正比例吗?为什么?

  (3)和一定,一个加数和另一个加数成正比例吗?为什么?

  像上面的两个例子,有时很难判断。

  给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。

  给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。

  但是上面的两例在特殊情况下又都像是成正比例的。

  给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?

  给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?

  此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的比值一定就行了。

  第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。

  下午第二节课的“实际测量”我大体是按照教材的思路组织学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!

【小学正比例和反比例的教学反思】相关文章:

1.《反比例》教学反思

2.六年级数学下册正比例和反比例单元测试

3.《倍数和因数》的教学反思

4.《正反比例练习》数学教学反思

5.《鸟语》的教学反思

6.《燕子》的教学反思

7.《伤仲永》的教学反思

8.《绝句》的教学反思