一次函数与二元一次方程组教学设计

教学设计 时间:2020-07-12 我要投稿

一次函数与二元一次方程组教学设计范文(精选3篇)

  作为一位不辞辛劳的人民教师,常常要写一份优秀的教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写呢?以下是小编整理的一次函数与二元一次方程(组)教学设计范文,欢迎阅读,希望大家能够喜欢。

一次函数与二元一次方程组教学设计范文(精选3篇)

  一次函数与二元一次方程组教学设计1

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  [设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  2、旅游问题

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  2、布置作业

  [设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

  四、教学设计反思

  1、贯穿一个原则——以学生为主体的原则

  2、突出一个思想——数形结合的思想

  3、体现一个价值——数学建模的价值

  4、渗透一个意识——应用数学的意识

  一次函数与二元一次方程组教学设计2

  教学目标

  1.知识与能力目标

  (1)二元一次方程和一次函数的关系。

  (2)二元一次方程组的图象解法。

  (3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

  2.情感态度价值观目标

  通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

  教材分析

  前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

  教学重点

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  教学难点

  方程和函数之间的对应关系即数形结合的意识和能力。

  教学方法

  学生操作——自主探索的方法

  一次函数与二元一次方程组教学设计3

  一、教材分析

  本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

  二、学情分析

  学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。

  三、目标分析

  1、教学目标

  知识与技能目标

  (1) 初步理解二元一次方程和一次函数的关系;

  (2) 掌握二元一次方程组和对应的两条直线之间的关系;

  (3) 掌握二元一次方程组的图像解法。

  过程与方法目标

  (1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

  (2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力。

  (3) 情感与态度目标

  (1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

  (2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

  2。教学重点

  (1)二元一次方程和一次函数的关系;

  (2)二元一次方程组和对应的两条直线的关系。

  3。教学难点

  数形结合和数学转化的思想意识。

  四、教法学法

  1、教法学法

  启发引导与自主探索相结合。

  2、课前准备

  教具:多媒体课件、三角板。

  学具:铅笔、直尺、练习本、坐标纸。

  五、教学过程

  本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置。

  第一环节: 设置问题情境,启发引导

  内容:1、方程x+y=5的解有多少个? 是这个方程的解吗?

  2、点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

  3、在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

  4、以方程x+y=5的解为坐标的`所有点组成的图像与一次函数y= 的图像相同吗?

  由此得到本节课的第一个知识点:

  二元一次方程和一次函数的图像有如下关系:

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程。

  意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

  效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

  第二环节 自主探索方程组的解与图像之间的关系

  内容:

  1、解方程组

  2、上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像。

  3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

  (1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

  (2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

  (3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

  注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

  意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。

  效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。

  第三环节 典型例题

  探究方程与函数的相互转化

  内容:例1 用作图像的方法解方程组

  例2 如图,直线 与 的交点坐标是 。

  意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。

  效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。

  第四环节 反馈练习

  内容:

  1、已知一次函数 与 的图像的交点为 ,则 。

  2、已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( )。

  (A)4 (B)5 (C)6 (D)7

  3、求两条直线 与 和 轴所围成的三角形面积。

  4、如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

  意图:4个练习,意在及时检测学生对本节知识的掌握情况。

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

  第五环节 课堂小结

  内容:以问题串的形式,要求学生自主总结有关知识、方法:

  1、二元一次方程和一次函数的图像的关系;

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程。

  2、方程组和对应的两条直线的关系:

  (1) 方程组的解是对应的两条直线的交点坐标;

  (2) 两条直线的交点坐标是对应的方程组的解;

  3、解二元一次方程组的方法有3种:

  (1)代入消元法;

  (2)加减消元法;

  (3)图像法。 要强调的是由于作图的不准确性,由图像法求得的解是近似解。

  意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。

  第六环节 作业布置

  习题7。7

  附: 板书设计

  六、教学反思

  本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。

【一次函数与二元一次方程组教学设计范文(精选3篇)】相关文章:

1.七年级数学下册《消元—解二元一次方程组》教学设计

2.人教版七年级数学下册《加减法解二元一次方程组》教学反思

3.八年级数学上册《再探实际问题与二元一次方程组教学反思

4.美术教学设计范文(精选5篇)

5.燕子教学设计范文(精选6篇)

6.《猫》教学设计范文(精选5篇)

7.《桥》教学设计精选

8.《一次比一次有进步》教学设计