分数教学设计集锦15篇
分数教学设计集锦15篇
作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,借助教学设计可以提高教学质量,收到预期的教学效果。一份好的教学设计是什么样子的呢?下面是小编为大家整理的分数教学设计,希望能够帮助到大家。
分数教学设计1
一、教学目标
(一)知识与技能
学生进一步认识几分之一和几分之几,较熟练地比较几分之一及同分母分数的大小。
(二)过程与方法
能较熟练地计算简单的同分母分数的加、减法。
(三)情感态度和价值观
在理解分数意义的基础上,解决简单的有关分数加减法的实际问题,培养解决问题的意识。
二、目标解析
通过对“分数墙”的解读,既能帮助学生回顾本册所学的分数的初步认识,又为学生进一步探索分数的性质提供了空间。用好“分数墙”让学生感悟数形结合的思想和方法,发展学生的数感。
三、教学重难点
教学重点:使学生进一步理解和掌握分数的基本知识,能解决简单的分数实际问题。
教学难点:培养学生发现问题、提出问题、解决问题的能力。
四、教学准备
课件
五、教学过程
(一)展示分数墙,直接点题
1.课件出示p111第3题分数墙
(1)提问:你能从“分数墙”中找到那些分数知识?“分数墙”中藏了哪些分数奥秘?你还能提出其他数学问题并解答吗?
(2)在交流中小结分数的相关知识点。
(3)复习知识点后,让学生独立解决书上的四个问题,再汇报交流。
【设计意图】通过一个“分数墙”的解读,既能帮助学生回顾本册所学的分数的初步认识,又为学生进一步探索分数的性质提供了空间。“分数墙”是按照“几个几分之一就是几分之几”的原理,对分数(真分数和1)进行分解而得到的模型,可以直观地两个分数的大小进行比较,同时可以直观的进行同分母分数的加减计算,还可以发现分数的基本性质。用好“分数墙”让学生感悟数形结合的思想和方法,发展学生的数感。
(二)综合练习,拓展提高
1.口算练习:课件出示p112的第10题,检验学生分数的`简单计算能力。
2.综合练习:课件出示p113的第13题
(1)回顾钟面的结构:钟面一共有12个大格,把钟面平均分成了12份;也可以把钟面看成平均分成了60份,每分钟表示其中的一份。
(2)再让学生根据复习的知识独立解决问题。
3.解决问题
(1)把一张纸平均分成5份,用这样的1份做幸运星,3份做花,做幸运星用了这张纸的几分之几?做花用了这张纸的几分之几?一共用了这张纸的几分之几?做幸运星比做花少用了这张纸的几分之几?
(2)小明倒了一杯水,第一次喝了这杯水的十分之二,第二次喝了这杯水的十分之五,还剩这杯水的几分之几没喝?
(3)爬山坡比赛
丁丁用了八分之一小时,东东用了八分之二小时,明明用了二分之一小时,谁跑得最快?
【设计意图】设计不同类型的题目,让学生进一步巩固所学的知识,培养学生的综合运用能力,拓展学生的思维。
(三)全课小结
这节课你学习了什么?说说你的收获。
分数教学设计2
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。
老师根据学生回答。(板书:1 ÷ 3 =块)
(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?
通过这样的练习,为下面的操作打下基础。
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。
( 3 )加深理解。(课件演示)
老师:块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。
②把3块饼叠在一块分,分了一次,每人分得3块,就是块。
现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?()
借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)
②1米的等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的 ( )
②1米的与3米的一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想
①把一个4平方米的'圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
教学反思:
教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。
设计意图:
1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。
2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。
3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
分数教学设计3
教学内容:教科书第4~6页,练习二第1~4题。
教学目的:
1、使学生理解一个数乘以分数的意义,学会分数乘以分数的计算方法。
2、通过操作、观察培养学生的推理能力,发展学生的思维。
教具准备:第4页例2的插图。长方形纸。
教学过程:
一、复习。
1.计算下列各题并说出计算方法。
2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。
二、新课。
引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)
1.理解一个数乘以分数的意义。
(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?
指名列式,板书:
问: 表示什么意思?指名回答,板书:求3个或求 的3倍。
(2)出示第二幅图:一瓶桔汁重 千克,半瓶重多少千克?怎样列式?怎样表示半瓶?
指名回答:半瓶用 表示;式子为: 。
说明: 是求 的一半是多少,也就是求 的 是多少。板书:求 的 。
(3)出示第三幅图:一瓶桔汁重 千克, 瓶重多少千克?怎样列式?
指名回答,板书: ,问: 表示什么意思?指名回答,板书:求 的 。
2.引导学生小结。
①.指出三个算式都是分数乘法,比较三个算式的不同点:
第一个算式与第二、三个算式中乘数有什么不同?
想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?
引导学生得出:分数乘以整数的意义和整数乘法的意义相同;而一个数乘以分数的意义是求这个数的几分之几是多少。
学生齐读课本的结语。
练习:
.课本的做一做1、2题。
.说一说下列算式的意义。
3.理解分数乘以分数的计算方法。
(1)出示例3(先出示第一个问题)。
问:你根据什么列出式子?
得出:根据 “工作效率×工作时间=工作总量”列出式子: 。
问:如果我们用一个长方形表示1公顷,那么 公顷怎样表示?
学生回答后,教师出示例3的图(1)
问: 公顷的 是什么意思?
出示例3图(2)
要求学生观察图(2),问:在图中 的 对于1公顷来说,是1公顷的几分之几?
引导得出:
观察这个式子有什么特点?
出示例3的`第二个问题。
学生列式,教师再出示例3图(3)
问:已经求 公顷的 是 公顷,那么 公顷的 应有这样的几份?就是多少公顷?
板书:
(公顷)
(2)引导学生小结分数乘以分数的计算方法。
观察分数乘以分数的计算过程,谁能说一说计算方法?
教师归纳,再看书上结语。
再说明,为了计算的简便,也可以先约分,再乘。
例:
(3)做一做。
三、巩固练习:练习二第1、2题。
四、小结。
1. 这节课我们学习了什么内容?
2. 一个数乘以分数的意义是什么?
3. 分数乘以分数的计算方法是什么?
五、作业。
练习二第3、4题。
分数教学设计4
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的`分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数教学设计5
课题:分数连乘本课初备课时共6课时,本课第 5课时个人复备栏
教学目标:
基础性目标:学会计算分数的连乘,知道分数连乘的简便算法和计算时约分的简便方法
发展性目标:培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。
重点难点:
能正确计算分数连乘的计算。
能用分数连乘的方法解决实际问题。
课前准备:
教学过程:
一、布置要求,引导预学
先说出每个条件的单位“1”量,再列出数量关系式
(1)男生人数是女生人数的
(2)五月份比四月份节约用水
二、预习反馈,诊断查学
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学
(一)、新课教学
1、出示例6
六年级同学为国庆晚会做绸花。一班做了135朵,二班做得朵数是一班的 ,三班做的`朵数是二班的 。三班做了多少朵?
2、学生读题,尝试画线段图。
3、问:要求三班做了多少朵,要先算什么?
4、学生列式。
分步135× =120(朵)
120× =90(朵)
综合
135× ×
5、这样的乘法算式你能算吗?
问:有没有不同的算法?比较不同算法。
问:两种算法各是怎样算的?你认为哪种算法比较简便?怎样计算比较简便?
6、归纳方法。
问:今天的分数乘法,和以前计算的分数乘法有什么不同?怎样算简便?
7、做“练一练”,做后全班订正,交流算法。
四、巩固练习,反馈练学
1、列式计算。
①37 与23 的积的21倍是多少?
②一个数是32 的19 ,这个数的45 是多少?
2、长方体的长是56 米,宽是25 米,高是38 米,它的体积是多少立方米?
3、练习九7
学生独立完成后,集体订正。
五、课堂总结,拓展思学
这节课学习了什么内容?分数连乘怎样算比较简便?
板书设计:
分数连乘
教后记:
分数教学设计6
教学目标
1、通过自主探究,学生经历异分母分数加、减法计算方法的探究过程,认识将新知转换成旧知是获得知识的重要途径。
2、学生能掌握异分母分数加、减法的计算方法,会正确地计算异分母分数加、减法。会对计算结果进行验算,并养成验算的良好习惯。
3、通过对生活垃圾情况的调查、分析,唤起学生的环保意识。
教学重点:探究并掌握异分母分数加、减法的计算方法。
教学难点:
异分母分数加、减法的计算方法的探究,以及正确计算异分母分数加、减法。
一、创设情境,明确内容
1、把下面每组中的两个分数通分
13和2534和720512和38
说一说你是怎样进行通分的?通分的目的是什么?
2、先说出同分母分数加减法的计算方法,再口算。
15+25=27+47=18+38=
47-17=215-215=712-512=
为什么上面这样的分数相加减,你能直接说出得数呢?
3、出示23+19=揭示课题
板书:异分母分数加减法
二、导学探究,建立模型
1、课件出示各种生活垃圾图片
2、课件出示生活垃圾分类和危害的资料
(一)导学探究,解决问题
出示生活垃圾扇形统计图
废金属等14
纸张危险垃圾
310320
食品残渣310
1、导学提示,明确方向
(1)根据统计图提供的信息,提出用加减法进行计算的数学问题
(2)异分母分数相加减,怎样计算?
(3)试着总结异分母分数加减法的计算方法。
2.自主学习,解决问题
下面就请同学们小组合作进行操作,并共同完成导学问题。
(二)展示交流,建立模型
1.展示汇报,重点解释
(1)各位小组代表汇报
废金属和纸张是垃圾回收的主要对象,他们在生活垃圾中共占几分之几?
危险垃圾多还是食品残渣多?它们的差占生活垃圾总量的'几分之几?
(2)课件演示,解题过程
2.归纳总结,建立模型
异分母分数加减法的计算方法:
异分母分数相加、减,先(通分),然后按照(同分母分数)加、减法的方法进行计算。
计算的结果,能约分的要约成最简分数,分子是分母的倍数的要化成整数。
三、练习检测,巩固应用
1、下面的计算对吗?把不对的改正过来。
(1)13+12=25
(2)815-13=815-515=315
2、你能计算以下各题吗?(后面两题验算)
23+19=35+37=512-18=
3、解决问题
春天到了,农民伯伯给果树浇水。第一天上午浇了所有果树的14,下午浇了38,第二天上午浇了310,一共浇了所有果树的几分之几?还有几分之几没浇?
四、整理回顾,反思提升
下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?
分数教学设计7
教学目标:
知识与技能:
1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2、探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数,解决简单的实际问题。
过程与方法:
让学生在独立思考与合作交流的过程中提高应用所学知识解决实际问题的能力。
情感态度与价值观:
让学生在观察、思考、探索中体验成功的喜悦。
教学重难点:
重点:探索并掌握分数除以整数的计算方法,并能正确计算。
难点:在涂一涂,算一算等活动中,探索并理解分数除法的意义。
教学具准备:
多媒体课件,投影仪。
教学过程:
一、复习导入,激发学习兴趣,明确学习主题。
1、口算
8×3/40=
21×2/7=
5/27×9=
5/6×12=
4/5×5/8=
3/7×7/10=
2、说出下列各数的倒数,你是如何求的?
1/5
6/7
3/4
3、列式计算
把4张长方形的纸平均分成2份,每份是多少?
把1张长方形的纸平均分成2份,每份是多少?
4、根据演示说一说。
假如这是一张纸,请根据演示(把一张纸的4/7平均分成2份)说一说把什么平均分成2份。(竖着分、横着分)
2、你能用算式表示吗?
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?你能列出算式吗?说说你是怎样想的。
这节课我们就共同探讨分数除法
(一)分数除以整数中相关知识。
出示课题:分数除法
(二)分数除以整数意义和计算方法
二、合作交流,共同解决问题。
1、探讨分数除以整数的`意义。
电脑演示把一张纸的4/7平均分成2份,每份是这张纸的2/7
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
你能用算式表示吗?说说你是怎样想的。
电脑直观演示,得出每份是这张纸的4/21
通过上面的学习,你知道了什么?
2、探讨分数除以整数的计算方法
教材第26页填一填、想一想:在()里填上得数,在○里填上“>”、“
如:1÷4=()等三组题
1×1/4=()
1÷4○1×1/4
观察等式左右两边,你发现了什么?
1÷4=1×1/4
10÷5=10×1/5
7÷3=7×1/3
根据除以一个整数(零除外)等于乘这个整数的倒数
我们来试一试:
8/9÷6
4/15÷12
三、深化练习,提高应用能力。
1、
3/8÷5
6/13÷9
5/8÷108/15÷6
2、一小瓶果酱有1/2千克,小明家5天吃完,平均每天吃多少千克?是多少克?
3、填一填
()×5=1/2
()×2=4/5
4×()=1/4
分数教学设计8
教学内容:
百分数的意义和读写法(第十一册P77~78)。
教学目标:
1、通过比较、交流、整理等学习活动,理解百分数的意义,学会正确地读写百分数,感受百分数与分数之间的联系与区别。
2、通过解释百分数的实际意义,体会百分数与社会的密切联系和在生活中的广泛应用。
3、经历信息收集、交流和表达的过程,促进个性化的数学理解和表达。
4、学会在学习过程中积累个人的学习成果,初步建立自我评价与反思的意识。
教学重点:
百分数的意义。
教学难点:
理解百分数的意义以及百分数与分数的联系和区别。
教学过程:
一、创设情境,感知意义。
1、谈话引入:下个月就要举行达标运动会了,同学们都在加紧锻炼、争取达标。体育老师对班上三个小组的同学进行了一次测试,采集了如下信息:
组别
全组人数
达标人数
第一小组
10
9
第二小组
25
23
第三小组
20
19
哪个组的达标情况更好呢?
单从全组人数或从达标人数上能不能判断哪个组的达标情况更好?引导学生思考达标人数与全组人数的关系,发现计算“达标人数占全组人数的百分之几”最合理。(将表格最后一栏补充完整)
2、教师指出,像90/100、92/100、95/100这样的数就是百分数。
让学生再说一说这几个百分数的含义,并小结:这几个百分数都是(达标人数)与(全组人数)相比较的结果,表示(达标人数)是(全组人数)的百分之几。
百分数是表示几个数之间的关系,怎样的关系?揭示百分数的意义并板书:百分数表示一个数是另一个数的百分之几。
3、教学百分数的读写。
上面几个数还有一种表示方法,你知道吗?“%”叫百分号,百分数通常不写成分数形式,而是在原来的分子后面加上百分号来表示。
会读这几个百分数吗?板书:90% 读作:百分之九十
[设计意图]“达标运动会”是学生熟悉的情境,“怎样判断哪个组的达标情况更好”也容易激发学生解决现实问题的探究欲望。学生在比较过程中发现单从全组人数或达标人数上不能判断哪个组的达标情况更好,进而萌发寻求这两个数量之间的关系的思路。通过教师适当点拨,学生发现计算达标人数是全组人数的几分之几不容易看出结果,算出百分之几才便于比较。这样,不仅揭示了百分数的实质,而且使学生强烈感受到引入百分数的必要性,对百分数的意义和作用有了更深刻的体验。
二、交流信息,加深理解。
1、读一读下面含有百分数的信息。
(1) 青岛啤酒厂七月份的啤酒产量是六月份的140%。
(2) 我国耕地面积仅占全世界耕地面积的7.1%。
(3) 一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国的森林覆盖率不到14%,却是一次性筷子的出口大国。
(4) 据了解,西欧某国家发射人造卫星的成功率为90%,我国发射人造卫星的成功率是100%。
(5) 学生的近视率应引起高度重视。据统计,某市学生的近视情况如下:小学生18%,初中生49%,高中生64.2%。(附条形统计图)
师:有些信息很容易看出是哪两个数进行比较,但有些信息中两数关系就不太明显了。你能具体解释一下(3)、(4)、(5)中百分数的含义吗?
2、练习:在规定的时间内自由写百分数。老师喊“停”后,以10个为标准,你完成了任务的百分之几?(两人板演)
3、观察上面的.信息,百分数的分母都是多少,它有什么优点?分子可以是什么样的数?(使学生明确:百分数的分母都是100,所以便于比较大小;百分数的分子可以是整数,也可以是小数,可以小于、等于或大于100。)
4、举例,你在生活中还见过哪些百分数?(根据学生回答出示实物,请学生说一说百分数的意义)
5、老师也找了几个数,出示:
(1)一堆煤97/100吨,运走了它的75/100。
(2)23/100米相当于46/100米的50/100。
哪几个分数可以改写成百分数的形式,哪几个不能?为什么?
说一说百分数与分数有怎样的联系和区别。
[设计意图]这几个环节都是紧密围绕百分数的意义让学生解释、表达、交流,同时不露痕迹地练习了百分数的读法和写法。学生不仅获得了丰富的信息量,体会到百分数在生活中的广泛应用;而且初步学会对信息进行整理和分析,进一步认识了百分数的特点,加深理解了分数与百分数的联系和区别,可谓一举多得。
三、巩固应用,拓展延伸。
1、我市将发行10亿元企业债券,用于城市基础设施建设,募集到的钱将分配在七大民生工程上(出示方格图)。你能从图中找出各项投资所占的百分比吗?
2、用百分数表示下面的成语。
百里挑一 十拿九稳 百发百中 一箭双雕
3、下面的说法对吗?
(1)分母是100的分数一定是百分数。
(2)百分数是分数的一种,所以3/4吨=75%吨。
(3)“小明的身高是89/100米”与“小华身高是小明的89/100”两个分数含义相同。
(4)一件衣服降价30%,意思是现价比原价少了百分之三十。
[设计意图]选取学生身边的素材和学生感兴趣的内容进行巩固练习,特别注意突出本节课的重点和难点,提高练习效率。
四、总结反思,升华提高。
这节课快结束了,同学们的学习情绪如何?写一写自己愉快、紧张、遗憾的各占百分之几?说一说如果有遗憾,遗憾在什么地方,怎样改进?
[设计意图]加强学生的情感体验,使学生灵活运用所学的知识进行自我评价和反思,激励学生努力学好数学。同时有利于教师了解学生的学习状态和心理变化,及时调整教学策略,促进教与学的和谐发展。
分数教学设计9
课题:分数的再认识
教学内容:
北师大版五年级上册P34—35。
教学目的:
1、通过多种活动帮助学生理解同一个分数,由于单位一的不同,所表示的含义、大小也分别不同。
2、通过一个分数单位,能理解并准确找到这个分数所在的整体。
3、理解并掌握一个整体和单位一之间的关系。
教学重点:
通过多种活动帮助学生理解同一个分数,由于单位一的不同,所表示的含义、大小也分别不同。
教学难点:
理解并掌握一个整体和单位一之间的关系。
教具准备:
铅笔、投影仪。
教学过程:
一、揭示课题。
同学们在三年级时已经学过了分数,掌握了一些简单的分数知识。这一节课,我们要进一步学习分数。
二、新课。
(一)活动一:
1、请你拿出你所有铅笔的二分之一。
(按要求操作)
2、拿出的铅笔为什么不一样多?
(说说你的想法。)
3、小结:因为每个人的铅笔总数不同,所以拿出的二分之一也不同。在这件事上,铅笔的总数
要看作单位一。
4、师拿厚薄两本书,说这两本书的三分之一的页数一样吗?为什么?
(小组内说明理由,全班交流想法。)
5、我一次能吃四分之一块蛋糕,看图,这两个四分之一一样吗?为什么?
6、小结:两本书的三分之一中,因为两本书的厚薄不同,因此结果不同。在这里,要把书看作单位一。
在蛋糕的问题上,也是由于蛋糕本身的'大小不同,因此它们的四分之一也不同。要把蛋糕看作单位一。
由此可以看出,单位一不同,所表示的分数的大小和实际含义也不同。
7、你还能举出这样的例子吗?
(二)活动二:画一画。
一个图形的四分之一是正方形,画出这个图形。
(三)活动三:练一练。
1、用分数表示下面各图中的涂色部分
(试举例说明,自己试独立画,看谁的画法多)
2、在图中用颜色表示各个分数。
(展示大家的画法。)
3、分别画出下列各个图形的二分之一,它们的大小一样吗?
(自己独立完成,说说一样吗?为什么?)
4、芳捐的钱一定比小明多吗?请说明理由。
分析:小明捐献了零花钱的四分之三。谁是单位一?
小芳捐献了零花钱的四分之三。谁是单位一?
虽然都是四分之三,它们表示的多少一样吗?为什么?
(说说你的想法。我们应从哪个角度来考虑?)
5、选一选。
6、在正方形里填上适当的数,并回答下面的问题。
(独立完成,说说你的理由。)
2个二分之一是()。()个四分之一是1,5个八分之一是(),七分之三里面有()个七分之一。
越往下分,单位一越小,1中所包含的单位一也越多。
你还能继续往下分吗?
7、下列哪些分数更接近0,哪些分数更接近1?分别填入圈内。
三、总结:
分子越小的分数越接近0。分子越大的分数越接近1。
板书设计:
分数的再认识
分子越小的分数越接近0。分子越大的分数越接近1。
分数教学设计10
教学内容:义务教育课程标准实验教科书数学六年级上册94-96页例1、例2
教学目标:
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点:
理解并掌握用分数表示可能性的大小。
教学难点:
在认识事件发生的不确定现象中感受统计概率的数学思想。
教学准备:演示课件、乒乓球、布袋、棋子、纸盒等。
教学过程:
一、情境与问题
1、课前谈话,狄青百钱定军心
2、问题引入
师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)
师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)
师:可能性有大有小。(板书:可能性的大小)
二、探究与交流
1、教学例1
出示例1场景图
问:裁判在做什么?(猜球。场景再现)
问:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1/2?
2、同步体验
教师拿出一个口袋,向里面放入一个黄球,问:从中任意摸出一个球,摸到黄球的可能性是几分之几?
学生提问:其中有几个球?其中几个黄球?
动手摸一摸,边摸边问:这时可以得出结论了吗?
(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)
试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?
学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,
摸到黄球的可能性又是几分之几?
问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。
问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?
小结:放5个球,其中黄球1个。
三、迁移与提升
1、教学例2
出示例2中的实物图(逐一出示,学生说出各是什么牌)
问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃A的.可能性是几分之几?
讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1/6。
一共有6张牌,摸到每张牌的可能性都是1/6。
问:你还想到什么问题?
小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)
汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?
(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。
汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?
(对比练习:红桃A红桃2红桃3黑桃A黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)
2、同步练习
看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?
(自由说一说)
3、阅读拓展
阅读教材94、95页,还有什么问题吗?
出示“你知道吗?”
四、实践和应用
1、成语里的数学(用分数表示成语里某个事件的可能性的大小)
十拿九稳百发百中智者千虑必有一失
2、操作和推测
口袋里装着白色和黑色的棋子共4个。如果不打开袋子看,你们有办法知道哪种颜色的棋子有几个吗?
根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?
组织操作,搜集摸球结果,汇总发现。
指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。
可能性的大小离不开统计。
练习:如果指针转动80次,可能有多少次停在红色区域,可能有多少次停在黄色或蓝色区域?
3、活动里的数学
现场设奖现场抽奖
学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。
4、故事释疑
分数教学设计11
内容:
本册教科书第28页例2和练习八第1~4题。
教学目的:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。
教学过程:
一、复习
1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。
1/5、3/4、7/16、9/9
2、口算下面各题。
1/6÷3、4/5÷2、3/8÷6、6/7÷2
提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)
3、解答应用题。
一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)
提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)
指定一名学生列式解答。
二、新课
揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。
1、出示例题。
一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?
指名列出算式,教师板书:18÷。
2、教学整数除以分数的计算方法。
教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。
提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。
提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)
提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)
提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)
提问:18÷2也就是求18的`几分之几?可以怎样写?(学生回答后教师写出“18”。)
提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。
提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。
提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:
18÷==45(千米)
写出答案“答:汽车1小时行驶45千米。”
3、引导学生小结。
“整数除以分数,等于整数乘上除数的倒数。”
三、看教科书中新课内容后试算
全体学生独立计算“做一做”中的练习题:
12÷ 24÷
集体订正计算过程及结果,并提问一个数除以分数的法则。
四、课堂练习
在练习本上计算练习八第1、2题,然后订正计算结果。
五、总结
今天学习了什么新知识?
整数除以分数的计算法则是什么?
计算整数除以分数应注意什么?
六、布置作业
1、阅读教科书第28~29页的内容。
2、在练习本上做练习八第3、4题。
分数教学设计12
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的`不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数教学设计13
教学内容:人教版小学数学教材六年级上册第113至114页第2、3、5题及相关练习。
教学目标:
1.通过复习,让学生在经历对比中建立知识间联系的过程,掌握比和百分数的相关概念。
2.在分析思考交流的过程中,使学生进一步掌握有关百分数、比的实际问题,能熟练地解决单位“1”已知或未知情况下的分数应用题。
3.在解决问题的过程中,感受数学的应用价值,获得成功的体验,培养学生学习数学的积极情感。
教学重点:理清比、分数、除法、百分数之间的关系,并加以区分和应用。
教学难点:正确分析数量关系,能根据实际灵活运用所学知识解决相关问题。
教学准备:课件、练习纸。
教学过程:
一、设计练习,导入复习
1.习题引入
教师:上课之前,我们先来完成几个填空,你会做吗?(课件出示题目)
(1)甲的体重是乙的,甲的体重:乙的体重=( ):( );
(2)请用百分数表示下列成语:
百战百胜( )%; 百里挑一( )%;
十拿九稳( )%; 一举两得( )%。
2.点明课题
教师:同学们真厉害!这节课我们一起来复习比和百分数的有关知识。今天复习的内容要比上节课的更复杂一点,你们对今天的学习有信心吗?
【设计意图】在授课开始进行简单的梳理与复习,并且通过教师语言的激励,激发学生学习的兴趣与需求。
二、回顾整理,建构网络
1.复习比的相关知识
(1)课件出示教材第113页第2题。
2:5 0.6:0.3
教师:先请同学说说比的意义。
预设:两个数的比表示两个数相除。
教师:上述三个比你会读吗?请指出每个比的前项与后项。
预设:2比5,2是比的前项,5是比的后项……
教师:你能求出它们的比值吗?
教师追问:你是怎么求的?
教师小结:只要把比的前项除以比的.后项所得的商就是比值,比值是一个数(整数、小数、分数),不能写成比的一般形式。
教师提问:你能根据我们刚才所讲的知识独立完成这张表格吗?
(2)课件出示教材第115页练习二十三中第3题。
教师:比值大家都会求了,那化简比呢?我们赶紧来试试(课件出示题目),你们会化简吗?
8:12 0.25:0.45 :
提问:化简比的依据是什么?
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
教师小结:也就是根据比的基本性质来化简比。接下来我们一起来回顾化简各类比的方法,一同完成下面这张表格:
【设计意图】教师重在让学生经历对比中建立知识间联系的过程,通过复习比的概念和求比值的方法引导学生联系和区别比、除法、分数三者之间的关系,理清相关概念,体会数学知识间的内在联系。
2.复习百分数的有关知识
(1)回顾百分数的意义
教师:关于比的知识我们复习了这么多,那对于百分数你又了解多少呢?先请同学来说一说你对这些百分数的理解:
①今天全校的出勤率是98%;
②某工厂去年产量为1200台,今年的产量增加了20%;
③某商场购买落地式电扇比吊扇少50%。
预设:出勤人数占总人数的98%,今年的产量比去年增加了20%……
教师小结:同学们解释得非常棒!正确地理解百分数的含义,能帮助我们顺利地解决百分数的相关问题。
(2)解决实际问题
王师傅计划4天加工零件640个,实际工作效率提高了10%,实际每天加工多少个零件?
教师:10%是什么意思?单位“1”是什么?
预设:实际工作效率比计划工作效率提高了10%。
教师:计划每天加工多少个零件咱们知道吗?不知道怎么求?
学生:640÷4=160(个)。
教师:你是根据什么来列式的?
学生:工作总量÷工作时间=工作效率,因为王师傅4天加工640个零件,640是工作总量,4天是工作时间。
教师:现在可以求出实际每天加工多少个零件了吗?(引导学生完成作答)
(3)对比练习(课件出示教材第113页第3题)
教师:在解决有关分数、比和百分数的实际问题时,最关键的是找出单位“1”,分析数量关系,并列式计算。
①一件衬衣原价125元,现在降价。现在售价是多少元?
(再把分数改写成百分数,引出第3小题)
②一件衬衣原价125元,现在降价20%。现在售价是多少元?
教师:单位“1”是什么?存在怎样的等量关系?
(4)分别把以上两个小题的条件和问题对换,引出第113页第3题的第2、4小题。
③一件衬衣降价后,售价为100元。这件衬衣原价是多少元?
④一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?
教师:找出单位“1”,说说等量关系。
(5)学生独立完成第113页第3题的第5小题和第6小题。
⑤一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?
⑥一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是3:2。这条长裤售价是多少元?
【设计意图】结合具体问题情境复习百分数的实际含义,通过改变原题的问题顺序,加强对比,有利于学生看到它们在结构、解题思路上的一致性,通过这样的方式,使学生明确解决有关分数、比和百分数等实际问题的关键,更加清楚它们的内在联系。
三、重点复习,强化提高
1.应用方法,设计问题(课件出示教材第114页第5题主题图)
教师:小组合作,根据图中信息,你能提出什么问题?
预设:四个人分别花了多少钱?陈丽比刘玲多花了多少钱?……
教师:假设没有方方买书的相关信息,能否知道陈丽花的钱是刘玲的几分之几?
2.利用所学,解决问题(课件出示练习二十三第11题第1小题)
用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2:1。这个长方形的长与宽分别是多少厘米?
学生独立完成,说说按比分配问题的解题方法。归纳总结:
方法一:①先求出总份数;②求出一份是多少;③分别求出几份是多少。
方法二:①先求出总份数;②求出各部分占总份数的几分之几;③最后按照“求一个数的几分之几是多少”的方法,求出各部分的量。
【设计意图】因为第5题是一道开放性很强的题目,具有一定的复杂性与综合性,所以采取合作学习的形式,让每个学生都能充分参与到学习当中去,补充问题的设计更是帮助学生打开了思路。
四、自主检评,完善提高
教师:最后同学们赶紧来动动笔,看是否能顺利完成这几个练习。
1.基本练习
(1)8÷16=4:( )= ( )%=( )(小数);
(2)比90多20%的数是( );90比( )多20%。
2.提高练习
(1)一堆沙子重240吨,一堆石子质量的与沙子质量的60%相等。这堆石子重多少吨?
(2)修路队修一段公路,已修的米数与未修的米数的比是4:5。如果再修60米,就正好修了一半。这段公路长多少米?
全班交流评价,让学生说说自己的解题思路与方法。
【设计意图】通过多层次的习题练习,让学生自主地对本课复习内容进行简单的梳理,加深对比和百分数相关知识的认识、理解和应用,提升学生的观察能力、概括能力以及数学语言的表达能力。
五、全课总结
教师:自己理一理,这节课我们巩固了哪些知识?
分数教学设计14
教材分析
百分数在日常生活中运用非常广泛,它源于分数,又有别于一般分数。教材在安排教学百分数意义时,从实例出发,创设情境,把学生带入生活中去学习百分数。通过比较得出百分数的概念,即“表示一个数是另一个数的百分之几的数叫做百分数”。要特别注意的是百分数只表示两个数相比的一种关系,不表示一个数值。百分数的后面不能带单位表示一个具体的量。这就是百分数与分数之间的区别,所以百分数也叫做百分比或百分率。教学中,要注意孕含百分数应用题的基本思想,通过让学生分析一些百分数表示谁与谁比,为进一步学习打好基础。并抓住一些有说服力的数据和统计资料,对学生进行爱祖国、爱社会主义的思想教育。
学情分析
学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的.含义尤为重要。
教学目标
1、知识与技能:使学生初步认识百分数,感知和理解百分数的意义;能正确读写百分数;理解百分数与分数在意义上的区别;培养学生的分析、比较、概括等思维能力。
2、过程与方法:组织与引导学生经历学习过程,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生的问题意识及合作、交流能力和自学能力。
3、情感、态度与价值观:感受数学在现实生活中的价值,体会百分数与日常生活的密切联系及在实践中的广泛应用。激发数学学习的乐趣,培养学生热爱生活,热爱数学的情感。
教学重点和难点
教学重点:让学生充分体验,理解百分数的意义。
教学难点:让学生理解百分数和分数在意义上的区别和联系。
分数教学设计15
一、教材分析
“认识简单的分数”是数学三年级上册第10单元第一课时的教学内容。这部分内容是联系实际生活的需要,先从学生们熟悉的平均分食物的情境出发,联系平均分蛋糕的结果,初步认识简单的分数,然后让学生自己用不同的方法折纸,并涂出它的1/2,进一步体会意义,接着又在操作活动中教学几分之一的大小比较。这是学生对数的认识的一次重要扩展。这部分知识的掌握不仅可以使理解并建立分数的初步概念,也可为今后进一步深入学习分数和小数打下基础。
小学生从认识整数发展到认识分数,是一次飞跃,学生在生活中听说过二分之一,三分之一,但是他们并不理解。分数的产生是从等分某个不可分的单位开始的,儿童生活里有这样的经验,但不会以分数来表述。教学中要注意让学生从实际生活经验出发,在丰富的操作活动中主动地反思并获取知识。
二、教学策略
对于三年级的学生来说,分数的概念要通过大量的操作实践,在学生的头脑中建立起比较丰富的表象。
动手实践、自主探索、合作交流是学生学习数学的重要学习方式。本课教学从教师的教来看,要做到设情引趣,为学生创设情境,引导学生想学、乐学;要创造主动参与,积极探究的氛围,让学生会学、善学。从学生的学来看,要注重动手操作,动眼观察、动脑思考;注重同桌互学,小组研讨,集体交流。
三、教学目标:
1、使学生结合具体情境初步认识几分之一,能用实际操作的结果表示几分之一,能用实际操作的结果表示几分之一,并学会运用直观的比较这类分数的大小。
2、使学生认识分数各部分的名称,能正确读、写几分之一这样简单的分数。
3、结合观察、操作、比较等数学活动,引导学生学会和同伴交流数学思考的结果,获得积极的情感体验。
4、使学生体会数学来自生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
四、教学重点、难点
结合具体的.操作活动,丰富对“几分之一”内涵的认识。
五、课前准备:
课件、各种图形、彩笔
六、教学过程:
(一)创设情境,导入新课:
1、创设情境:秋高气爽,我们一起去秋游吧!
(出示食品图片):你们看,老师已经准备好了一些郊游的物品,我要和我的好朋友分享,你认为怎样分我们两个才会都满意?
2、引导学生说出“平均分”。(板书:平均分)
3、叙述:怎样平均分呢?
引导学生回答:
(1)两瓶矿水:平均每人分一瓶;
教师追问:每人分一瓶,可以用哪个数字表示?(1)
(2)四个苹果:平均每人分二个;
教师追问:每人分两个,可以用哪个数字表示?(2)
(3)一个蛋糕:平均每人分“一半”
教师追问:“一半”是怎么来的吗?你认为“一半”该用哪个数表示
小朋友真聪明,在我们数学里面,半个就是二分之一个,(出示1/2)知道像1/2这样的数叫什么数吗?它就是我们今天要认识的新朋友——分数
(板书:认识分数)
(二)指导认识1/2
1、认识蛋糕的1/2
提问:谁能试着说说这个1/2表示什么意思吗?
课件演示:把一个蛋糕平均分成2分
引导说出:把一个蛋糕平均分成2份,每份就是它的二分之一。
2、认识其他物体的1/2
师叙述:你已经认识了一个蛋糕的二分之一,那么你认识其他物体的二分之一吗?
课件演示:一个苹果平均分成2分
一张树叶平均分成2分
一朵花平均分成2分
学生交流1/2的意义。
3、进一步认识1/2。
教师叙述:你能画出一个图形的1/2吗?
学生活动。
①拿出不同的图形,试着折出它的1/2,并用涂上颜色。
②交流讨论:拿的是什么图形?是怎样得到这个图形的1/2的?哪部分是这个图形的1/2?
③汇报成果。
你知道了什么?发现了什么?小结:无论是哪种图形,你们都是怎样得到它的1/2的?(对折)为什么要对折?,对折的目的是什么?(平均分)
4、了解分数中各部分的名称
师叙述:我们已经知道了分数1/2的意义,你想了解我们这位新朋友——分数的哪些方面呢?
学生独立阅读书本。
集体交流分数各部分的名称:分数线表示平均分;
分母表示平均分成几份;
分子表示其中的几份
教师重点说明分数的读法、写法。
(三)认识其他的分数
1、教师叙述:我们已经认识了1/2,那么是不是我们的分数里面就只有1/2呢?你还能找出其他这样的分数吗?请大家拿出一张正方形的纸,试着画出其他的几份之一。
学生操作
交流汇报
师小结:像1/2、1/3、1/4、1/5……这些都是分数!
2、刚才我们认识了这么多的分数朋友。现在老师要考考你,看你能不能运用你的火眼金睛,正确地把它们辨认出来。
完成“想想做做”第1、2、3题
(四)学习比较两个分子是1的分数的大小
1、提问:你会折出一个圆纸片的几分之一吗
学生自由折
交流
根据学生交流,相机把表示1/2和1/4的两个圆片贴到黑板上
2、教师引导比较:
你认为哪个分数大呢?你是怎么知道的?和你同学说一说。
3、学生讨论
集体交流
4、提问:老师折出了这个圆片的1/8(出示),你认为这个分数应该排在哪里呢?
5、提问:如果折出圆纸片的1/10,应该排在哪里?为什么?
学生回答。(让学生体会:分得份数越多,每一份就越少;分的份数越少,每一份就越多)
6、完成“想想做做”第5题
(五)生活中的分数
1、讲述:在生活中,我们经常可以见到分数
学生回答:“科学天地”大约占黑板报版面的几分之一?"艺术园地"大约占黑板报版面的几份之一?哪一部分大一些?
2、(出示德国的国旗:黑、红、黄颜色各一份)
你能提出什么关于分数的问题?
学生提问并解答
(出示秘鲁的国旗:红色两份,白色一份)
你能提出什么问题?
相机出示问题:红色部分占整个国旗的几份之几?
小结:这个问题大家可以先想一想,下一节课我们就会学习这个知识了。
(六)全课总结
生活中到处都有数学,我们要善于用数学的眼光来看事物,这样我们学的数学才是有用的数学。
板书:认识分数
1 ……分子
……分数线读作:二分之一
2 ……分母