五年级数学教案通用15篇
作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。来参考自己需要的教案吧!下面是小编为大家整理的五年级数学教案,欢迎大家分享。
五年级数学教案1
教学目标
1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养中国学习联盟胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270÷(50+40).
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于“求相遇时间”应用题还有什么问题?
4.教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣.
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.
例如:观众想的'是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59.
活动过程
1.教师进行表演
2.学生探讨其中的奥妙
3.学生自己设计这样的几个游戏.
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.
六、板书设计
五年级数学教案2
教学内容:小数四则混合运算和简便算。
教学目标:
通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。
教学过程:
一、挂出小黑板视算。
4.8÷81.6÷0.412.12÷120.32÷0.4
4÷0.51÷250.25×400.13×5
2.5×4÷40.1×0.8÷1004.2÷0.6÷7
0.125×1.5×88.4÷8.4+61-0.25÷0.5
二、先说出运算顺序,再计算。
课本第34页的第7题,请4个学生板演后,师讲评。
比一比,看谁算得又对又快。把得数直接填在课本第35页的`第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。
三、简便计算。
引导学生看课本第34页的第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)
整数的运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。
四、幻灯演示课本第36页的第7题。
这是一张不完整的发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。
五、独立作业
第35--36页的第5、6题。
五年级数学教案3
教学目标:
1、使学生能根据要求正确地运用“四舍五入”法求一个小数的近似数。
2、能正确的按需要用“四舍五入”法保留一定的小数数位。
3、会把较大的整整改写成以“万”或“亿”作单位的小数,再求近似值。
教学重点:
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数。
教学难点:
使学生能够区别求近似数与改写求准确数的方法。
教具准备:
多媒体课件。
教学过程:
一、情境导入
师:我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它.的近似数就可以了。如在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元5角。平常不需要说得那么精确,只要知道它的近似数即可,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题川、数的近似数) 。
二、自主控究
1.求一个小数的近似数。
(课件出示豆豆测量身高的情景图)
师:读情景.图,你能找出已知信息和所求的问题吗? .
生1:要解决的问题是如何得出豆豆身高的近似数。
生2:已知信息是豆豆的身高是0.984m,亮亮说:“豆豆身高约是0.98m。”红红说:“豆豆身高约1m”。
师:对于上面的已知信息,你是怎样理解的?
生b“豆豆的身高是O.984m”,这里的0.984m,是测量时精确到毫米得到的。
生2:“豆豆高约0.98m”,这里的0.98是精确到厘米得到的。
生3:“豆豆高约1m”,这里的l是精确到米得到的。
师:为什么会出现上面不同韵结果呢?
生:0.98和1都是0.984按不同要求取的近似数。
师:取一个整数的近似数用到的方法是什么?
生:我们取一个整数的近似数时,用到的方法是“四舍五入”法。
师:对,“四舍五入”的方法同样适用于小数取近似数。
师:下面同学们以小组为单位,讨论一下,0.984m是如何得到0.98的?
(小组讨论,全班交流)
生:“豆豆高约是0.98m”,这里的0.98m是把豆豆身高0.984m保留两位小数得到酌结果。
师:它是如何取的两位小数?
生:按要求把一个小数保留两位小数时,一般要看到千分位,如果千分位上的数大于或等于5就要向百分位进1,如果千分位上的数小于5,就舍去。
0.984≈O.98(保留两位小数),因为千分位上的4小于5,所以舍去。
师:“豆豆高约lm”,这里的lm是把0.984m保留整数得到的结果。一个小数怎样才能保留整数呢?
生:一个小数,如果保留整数,就要看这个小数的十分位,然后按照“四舍五入”法取近似值,0.984m-≈lm。
师:如果0.984m保留一位小数,结果又是什么呢?
生:把0.984m保留一位小数,就要看到百分位,百分位上是8,大于5,就要向十分位进1,十分位上是9,9+1=10,接着向个位进1,个位上0+1=1,所以0.984m保留一位小数是1.0m。
0.984≈1.0(保留一位小数),百分位上8大于5,向前一位迸1。
师:后面的0可以省略不写吗? ,
生:不能,因为要是省略就变成精确到整数部分的个位了。
2、把较大的整数改写成以“万”或“亿”作单位的小数。
师:读图,你能读出什么信息?
生:地球与月球的距离是384400km。
师:384400km,数据比较大,书写起来也不方面,你能把它改成以“万”为单位的数吗?
(小组讨论,全班交流)
生:改写成“万”作单位的数,就是把这个数缩小到原数的1/10000,也就是把小数点向左移动四位,然后点上小数点。
师:你会表示吗?
生:384400km=38.44km
师:上面的改写方法正确吗?
生:不正确,因为384400和38.44根本就不相等。
师:那怎么办呢?谁有办法解决这个问题?
生:在38.44的后面加上一个“万”字即可,因为把384400变为38.44缩小到了原数的而1/10000。
师:好,上面的这一过程可以表示为384400千米=38.44万千米。
师生共同总结:小数点向左移动四位,在万位的右边点上小数点,在数的后面加上“万”字。
师:读情景图,你发现了哪些数学信息?
生1:已知木星距离太阳778330000km。
生2:所要解答的问题是木星离太阳的距离是多少亿千米?(保留一位小数)
师:这个问题和上面的问题有哪些相同和不同的地方?
生:上面是把一个数改写成用“万”作单位的数,这个问题是把一个数改写成用“亿”作单位的数,并且还要求保留一位小数。
师:把一个数改写成用“亿”作单位和改写成用“万”作单位有什么相同之处?
生:都是把大数改写成一个用小数表示的数,所以都应该是把小数点向左移动。
师:改成以“万”为单位的数,小数点向左移动四位,那么改成以“亿”为单位的数,小数点向左移动几位呢?
生:应该是八位,然后加“亿”字。
师:好!同学们真聪明,用自己的'思维,类推了把一个数改成用“亿”作单位的数。你能写出改写过程吗?
(学生独立尝试,全班投影展示)
778330000千米=7.7833亿千米
师生总结方法:小数点向左移动八位,在亿位的右边,点上小数点,在数的后面加上“亿”字。
师;如果保留一位小数,你会吗?
生:7.7833亿千米≈7.8亿千米
三、控究结果汇报
师:用“四舍五入”法,求一个数的近似数时,有哪些需要注意的地方?
(小组讨论,汇报交流).
生:用“四舍五入”法求一个小数的近似数时,保留整数,表示精确到个位,看到十分位;保留一位小数,表示精确到十分位,要看到百分位;保留两位小数,表示精确到百分位,要看到千分位……
师:表示近似数时,小数末尾的0怎么办呢?
生:表示近似数时,小数末尾的0是不能省略的。
师:如何把一个较大的数改成以“万”或者“亿”为单位的数?
(小组讨论,全班交流)
师生总结:把一个大数改写成以“万”为单位的数时小数点向左移动四位,加上“万”字。把一个大数改写成以“亿”为单位的数时小数点向左移动八位,加上“亿”字。
师:改写时,需要注意什么?
生:在改写的过程中,不要把单位“万”“亿”丢掉。
四、师生总结收获
师:同学们,通过本节课的学习,你有哪些收获?
生1:求小数的近似数的方法和求整数的近似数的方法类似,都是采用“四舍五入”法。
生2:把大数改写成用“万”或“亿”作单位的数,写起数来就简单多了,这体现了数学的简洁思想。
师:小数的近似数在我们的生活中应用非常广泛,我们的身边就有很多类似的数,你们课下去找一找,看看它们都存在于我们生活中的哪些地方。让我们在发现中学习数学,体会数学与我们的密切联系,做生活中的有心人!
【设计意图:在教学过程中,学生能够在知识、能力、数学思想方法以及学习方法上有所收获】
板字设计:
例1:0.984保留两位小数 0.984保留一位小数 0.984保留整数
0.984≈0.98 0.984≈1.0 0.984≈1
↑ ↑ ↑
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
例2 例3
142800千米=14.28万千米 778330000=7.7833亿千米≈7.8亿千米↑
五年级数学教案4
教学目标
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
教学重点
理解和掌握循环小数等概念.
教学难点
理解和掌握循环小数等概念.
教学过程
一、铺垫孕伏
(一)口算
0.8times;0.5= 4times;0.25= 1.6+0.38=
0.15divide;0.5= 1-0.75= 0.48+0.03=
(二)计算
21divide;3= 15divide;3= 12divide;3= 10divide;3=
教师提问:通过计算,你发现了什么?
二、探究新知
(一)教学例7
例7 10divide;3
1.列竖式计算
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……
(二)教学例 8
例8 计算58.6divide;11
1.学生独立计算
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……
3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法
3.33……可以写作 ;
5.32727……可以写作
6.练习
把下面各数中的循环小数用括起来
1.5353…… 0.19292…… 8.4666……
(三)教学例9
例9 一辆汽车的'油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)
1.学生独立列式计算
130divide;6=21.666……
asymp;21.67(十克)
答:小汽车大约装21.67千克汽油.
2.集体订正
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.
28divide;18 2.29divide;1.1 153divide;7.2
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
三、课堂练习
(一)计算下面各题,哪些商是循环小数?
5.7divide;9 14.2divide;11 5divide;8 10divide;7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090…… 0.0183838……
0.4444…… 7.275275……
四、布置作业
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)
五年级数学教案5
教学目标:
1、初步体会整数乘法的运算定律在小数乘法中仍然适用。
2、能运用这些运算定律使计算简便。
3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。
教学重点:
学生通过观察能找出正确的简便算法。
教学难点:
学生通过观察能找出正确的简便算法。
教学准备:
媒体等
教学过程:
一、复习准备:
1、口算: 5× = × = 125×= ×= ×= ×80= ×20= 250×= ×=
2、简便计算:
32×25×125 79×21+21×21
二、探究新知:
1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?
2、出示:观察并计算,下面每组中的两个算式有什么关系:
×○× (×)×○×(×)
×+×○(+)× 3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。
4、揭题:整数乘法运算定律推广到小数 5、你能用这些运算定律来巧算吗? ×× ×+× (+)×4
a. 让学生独立思考完成
b. 让学生汇报:你应用哪条乘法运算定律进行简便计算的。
三、分层练习:
1、将一个数分解成两个数的`积或两个数的差:
=8× ( ) =0.8× ( ) =× ( ) =10- ( ) =100- ( ) =1- ( )
2、下面各题怎样计算比较简便? ×25×125 ×99+ 64× 3、判断下面各题是否正确,并说说理由。(书P17—练一练)
4、你认为怎样算简便?×
四、课堂总结:
整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。
五、思考题: 判断是否正确(机动)
× + ×38 = ×( + ) = ×10 = 83
六、板书:
整数乘法运算定律推广到小数 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c
五年级数学教案6
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题?
1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?
2.学生根据查询的资料和咨询科学教师得到的知识进行交流。
3.根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?
结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2.学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1.教师演示发豆芽的过程。
2.教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3.各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的'指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1.观察豆芽的生长情况。(大约6天时间)
2.记录豆芽的生长情况。(每天进行记录)
3.把豆芽的生长情况制成统计图表。
4.分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
注:五、六两个教学过程在课外进行。
[简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]
五年级数学教案7
一、教学目标
1、知识目标:使学生在具体情境中理解与掌握方程的意义,认识方程和等式之间的关系,使学生初步理解等式的基本性质。
2、能力目标:使学生在观察、思考、分析、抽象、概括的过程中,经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展学生思维的灵活性。
3、情感态度与价值观:使学生在积极参与数学活动的过程中,加强数学知识与现实世界的联系,培养学生认真观察、善于思考的学习习惯与数学应用意识,渗透转化的数学思想。
二、学情分析
学生对于利用天平解决实际问题较感兴趣,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
三、重点难点
教学重点: 让学生理解并掌握等式与方程的意义,体会方程与等式之间的关系。
教学难点: 体会方程与等式之间的关系。
四、教学过程
活动1【导入】谈话导入 出示,讨论天平的作用及用途,平衡状态和倾斜状态各说明什么情况。平衡状态说明托盘两边质量相等,倾斜状态说明托盘两边质量不相等。
活动2【讲授】探究授新
一、 认识等式与方程。
1、出示(一),天平的两边放上砝码左边20克和30克,右边50克。提问:你看到天平怎样?天平平衡,说明什么?(生:说明两边质量相等。) 你能用式子表示两边物体之间的质量关系吗?(20+30=50)为什么中间用等号? 指出:像这样表示相等关系的式子就是等式。
2、出示(二),把左边的其中一个20克砝码换成x克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x+30=50)
3、出示(三),把左边托盘中的一个x克的砝码拿走,右边的50克砝码换成30克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x>30, 30<x)
4、出示(四)天平图 你能用式子表示两边物体之间的质量关系吗? (X+X =100或 2X=100 )
5、出示(五)天平图 你能用式子表示两边物体之间的质量关系吗? (10+ X<80或80>10+ X )
6、出示刚才5道不同的式子。让学生分组讨论对5道式子进行分类。(提示:要按一定的标准进行分类。)指名分类,要求说出分类标准。
7、对“是等式的”与“含有字母的”式子进行再次分类。 “是等式的”分为“不含有字母的等式”、“含有字母的'等式”。 “含有字母的”分为“含有字母的等式”、“ 含有字母的不等式” 观察“是等式的”中“含有字母的等式”与“含有字母的” 中“含有字母的等式”发现了什么?这些式子有什么共同的特征?
8、师小结:像这样含有未知数的等式是方程。 你能举出一些方程吗?(先指名说,后同桌互说。)
9、揭示课题:认识方程。
二、认识等式与方程关系
1、认真观察刚才的(1)20+30=50 (2) x+30=50(5) 2X=100,问:(1)是等式吗?是方程吗啊?(2)(5)是方程吗?是等式吗?
2、小结:是方程一定是等式,是等式不一定是方程。
3、你能不能用图形表示方程和等式之间的关系吗?
引入集合圈表示它们之间的关系。
三、巩固新知
1、哪些是等式?哪些是方程?为什么?
① 35- =12 ( ) ⑥ 0.49÷ =7 ( )
② +24 ( ) ⑦35+65=100 ( )
③ 5 +32=47 ( ) ⑧-14> 72 ( )
④ 28<16+14 ( ) ⑨ 9b-3=60 ( )
⑤ 6(a+2)=42 ( ) ⑩+=70 ( )
2、请同学们自己写出方程与等式各3个。
3、张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?
4、判断。(正确的打“√”,错误的打“×”。)
(1)含有未知数的等式是方程( )
(2)含有未知数的式子是方程( )
(3)方程是等式,等式也是方程( )
(4)3=0是方程( )
(5)4+20含有未知数,所以它是方程( )
5、列出方程
(1)x加上42等于56。
(2)9.6除以x等于8。
(3)x的5倍减去21,差是14。
(4)x的6倍加上10,和是20.8。
6、看图列出方程。
列方程时,一般不把未知数单独写在等号的一边
7、先读一读,再列出方程
(1)一辆汽车的载重是5吨,用这辆汽车运x次,可以运40吨货物?
(2)一瓶矿泉水的价格是2.5元,一个面包的价格是x元,买2个面包和1瓶矿泉水一共花了11.9元。
四、 课外小知识,介绍方程的历史,让孩子们体会学习方程的用途。小结,通过今天的学习你有什么收获?你还想学习方程的那些知识?
板书设计:
认识方程
20+30 = 50
x +30 = 50 含有未知数的等式,叫做方程。
x > 30 方程一定是等式;
2 X = 100 等式不一定是方程。
10 + X < 80
五年级数学教案8
教学内容:
书第54——55页,有趣的测量及试一试第1、2题。
教学目标:
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
教学重点:
用多种方法解决实际问题。
教学难点:
探索不规则物体体积的测量方法。
教学准备:
不规则石头、长方体或正方体透明容器、水。
教学过程:
一、导入新课
师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的'水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
作业设计:
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学教案9
课题:研究长方体课型:新知探究课时:1课时
学习目标:
1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。
2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。
3、我有信心学会本节所学内容,我一定能够获得成功。
重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。
难点:形成长方体的.概念,发展学生的空间观念。
学习过程
☆创设情景揭示课题
1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。
2、孩子们,你能找出长方体吗?
☆学海探秘探究一:火眼金睛
1、长方体有()个面,每个面是()形。指一指哪些面是相同的?
2、长方体有()条棱,指一指哪些棱长度相等?
3、长方体有()个顶点。
4、你还能发现什么?
探究二:制作长方体框架图我发现
1、长方体的12条棱可以分为几组?
2、相交于同一顶点的三条棱长度相等吗?
探究三:借助“产品”我能认
1、相交于一个顶点的三条棱的长度分别叫做()、()和()。
2、我能指出长方体的长、宽、高。
☆走进知识大本营填一填
1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的面积()。
2、长方体有()条棱,相对的棱长度()。
3、长方体有()顶点。
4、相交于长方体一个顶点的三条棱的长度分别叫()、()和()
辨一辨
1、长方体的6个面不可能有正方形。()
2、长方体的12条棱中长宽高各有4条。()
3、一张长方形的纸是一个长方体。()
4决定长方体的大小是长、宽、高。()
☆拓展延伸:我能自己制作一个美观的长方体玩具箱。
☆谈收获、写反思(梳理成数学日记)
通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?
五年级数学教案10
设计说明
本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:
1、把新知融入到有趣的情境中,激发学生的学习兴趣。
在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的.目的。
2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。
在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。
设计意图:
在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。
课前准备
教师准备PPT课件长方形纸
教学过程
(1)复习巩固,情境导入,激发兴趣
1、求下面每组数的公因数。
42和50 15和5 8和21 18和12
2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。
(2)认识约分
1、尝试“变分数”。
课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。
让学生了解“变化”的要求:
①这个分数要与的大小相等。
②这个分数的分子、分母要比的分子、分母小。
2、了解约分的概念。
①所变出的分数与原分数有什么关系?
②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
③请学生说一说所变的分数是怎样得来的。
观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。
3、认识最简分数。
①约分后的分子、分母能否再变小了?为什么?
②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。
4、说出几个最简分数,强化最简分数的概念。
(3)合作交流,总结方法
1、讨论:你能根据我们化简的过程找到约分的方法吗?
2、小结。
教师板书约分时一般采用的两种方法:
①逐步约分法。
如约分时,依次用12,18的公因数2和3去除,最后约分成。
②一次约分法。
如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。
3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。
五年级数学教案11
教学目标:
1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:
理解分数与除法的关系
教学难点:
会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题
教具准备:
课件
教学过程:
一、导入
1.出示情境图:把4块饼平均分给4个小朋友。
2.提问:你能提出哪些问题?
二、新课
1.教学例6
把刚才呈现的题目改为:把3块饼平均分给4个小朋友。
提问:你能提出什么问题?怎样列式?
引导:把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
结合学生的回答,指出:每人分得的不满1块,结果可以用分数表示。
提出要求:那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的`圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
学生操作,了解学生是怎样分和怎样想的。
组织交流,你是怎么分的?
小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。
把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块?学生口述算式
提问:3除以5,商是多少?怎样用分数表示?小组交流。
2.总结归纳
谈话:请大家观察上面两个等式,你发现分数与除法有什么关系?
板书课题被除数÷除数=被除数/除数
提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
板书a÷b=a/b
讨论:b可以是0吗?
3.教学试一试。
出示试一试,学生尝试填空。
小组交流:你是怎样想的?
口答:把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?
指出:两个数相除,得不到整数商时,可以用分数表示。
4.做练一练的第1题学生填写后,引导比较:上下两行题目有什么不同?
5.练一练第2题学生独立填写,要求说说填写时是怎样想的。
三、练习
1.练习八第1题
2.第2题
3.第3题学生看图填写后,可让学生说一说是怎样想的。
4.第4题
学生填写后,提问:这道题中的两个问题有什么不同?
5.第5题
让学生联系分数的意义填空,再引导学生根据分数与除法的关系列算式,并写出得数。
四、总结
提问:今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
五年级数学教案12
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的`方法;
3.培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/54/5×2
二、扶放结合探究新知
1.画图引导学生理解1/21/2的算例。
2.出示3/41/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/31/5,5/62/3写出计算过程,
小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书
意义:
求一个数的几分之几是多少?
计算法则:
分子乘分子作分子,分母乘分母作分母。
五年级数学教案13
一教学内容
和复习
教材第101页的内容。
二教学目标
1.通过复习,帮助学生梳理本单元的知识要点及知识间的联系。
2.培养学生归纳、知识的能力,掌握和复习知识的方法。
3.培养学生自觉复习的习惯。
三重点难点
归纳、本单元的知识点。
四教具准备
投影。
五教学过程
(一)导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
(二)教学实施
1.引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。
老师随着学生的汇报,进行板书。
板书如下
2.应用知识练习。
(1)完成教材第101页的第1题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
(2)完成教材第101页的第2题。
让学生先将这7个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。
(3)完成教材第101页的.第3题。
学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
(4)完成教材第101页的第4题。
先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。
提问:互化时要注意什么?
(四)思维训练
1.分数是真分数,而且可以化成有限小数,x最大是几?
2.一个分数,分子和分母的和是43,如果分母加上17,这个分数就可以化简成言,这个分数是()o
3.一个最简分数,把它的分子扩大2倍,而分母缩小到原来的后,正好等于,这个分数原来是()。
(五)课堂
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
五年级数学教案14
一、教学目标
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
二、重点难点
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
三、教学过程
(一)直接揭示课题
1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、小组讨论。
3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、小组内交流、讨论。
4、全班汇报。
a)直接一个一个地数,为了不重复,在图上编号。(数方格法)
b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)
c)用总正方形面积减去白色部分的面积。(大减小法)
d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、师总结求蓝色部分面积的方法。
(三)巩固练习
1、第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的'当作半格数”。
2、第二题。独立解决后班内反馈。
3、第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数。
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
四、板书设计
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4。(化整为零法)
总面积减去白色面积。(大减小法)
五、教学反思
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
五年级数学教案15
教学目标:
1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。
2,学会找出生活问题中相等的数量关系,正确列出方程。
3,培养学生根据具体情况,灵活选择算法的意识与能力。
4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。
教学重点:
用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。
教学难点:
分析问题中的等量关系,并会列出方程解答。
教学准备:
多媒体课件。
教学过程:
一,知识回顾:
1,解下列方程。
X+2x=147 y-34=71
2,根据下面叙述说说相等关系,并写出方程。
①公鸡x只,母鸡30只,是公鸡只数的2倍。
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。
3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的'2倍少4块,共有多少块白色皮)
让学生独立做,集体订正时,(板书线段图)。
二,合作探究:
1,教学例1(媒体出示教材情景图)。
"足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"
(1)审题,寻找解决问题的有用信息。
提问:"例题与复习题有什么相同的地方" "有什么不同的地方"
教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果。
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程。
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。
板书学生的方程并选择2x-4=20讨论它的解法。
学生小组讨论解法。
汇报交流板书:
解:设共有x块黑色皮。
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答。
2,变式练习。
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析,找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答案。
三,巩固应用
1,只列式不计算。(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。
④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒
3,拓展提高。
①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四,全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
【五年级数学教案】相关文章:
五年级数学教案01-06
折纸数学教案五年级06-12
五年级数学教案06-23
小学数学教案五年级12-13
五年级数学教案08-10
五年级教案数学教案12-27
五年级数学教案01-06
小学五年级数学教案11-06
五年级上册数学教案01-14
五年级的总复习数学教案06-23