- 相关推荐
三年级下册《两位数乘两位数》教学反思范文(通用19篇)
身为一名人民老师,教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,教学反思我们应该怎么写呢?以下是小编为大家收集的三年级下册《两位数乘两位数》教学反思范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
三年级下册《两位数乘两位数》教学反思 篇1
本节“两位数乘两位数进位”为计算法则教学课,我按照传统的模式:导入,新授,巩固练习,课堂小结,布置作业设计的。
良好的导入能起到先声夺人的作用,教材为我们提供了下围棋这一情节,就是针对新课中的“围棋”我设置了“专心致志”的故事而过渡到新课。巧妙地将“棋盘上一共有多少个交叉点?”的问题融于故事情节之中,使单纯的数学教学变得情趣盎然。让学生知道数学来源于生活。但是复习的时间过长,导致后面的本节课的亮点部分生生互动环节“蜜蜂采蜜”没有实施。教学是一门遗憾的艺术,在新课练习过程中有部分同学做错。原因是两个数的和没有加反而也用乘法。针对错误指出错误让全班的同学引以为戒。避免这种错误再次发生。
精心设计的一节课并没有上出我理想中的效果。在实施过程中遇到了这样那样的失误。分析如下:
(1)导入过长。导入过长直接影响后面的.教学。
(2)复习注重梯度练习。学生的接受能力不一样,练习多设置些有梯度性的题便于不同层次的学生消化。
(3)时间分配上要调整。
(4)尽量避免口误,注重教学中的每一个细节。
虽然存在种种遗憾,但是我会一如既往的努力下去,争取上好每一堂课,少上遗憾的课。在遗憾中反思,在遗憾中完善,在遗憾中成长。让学生学到学好更多的知识!
三年级下册《两位数乘两位数》教学反思 篇2
这几天我教了《两位数乘两位数》,现作出如下反思:
一、优点:
(1)备课时把握住了知识的前后联系。两位数乘一位数是笔算乘法的开始,两位数乘两位数是笔算乘法的关键。
(2)教学中成功创设了问题情景。教学时,我充分的利用了学生的年龄特点,给他们创设生动的情境,在学生入迷的听讲中,顺势提出数学问题,教学效果非常好。
(3)有效的培养了学生认真书写乘法竖式的习惯。
A、教师的板书做到以身作则;
B、要求明确,包括数字间的间距、相同数位如何对齐以及横线的'画法;
C、严格要求,作业批改中要求学生按要求书写
D、效果明显。
二、不足:
(1)过高估计了学生对两位数乘两位数笔算的掌握,结果导致部分学生在书写第二步乘积时,数位对错。
(2)没有考虑到学生口算能力的薄弱。学生出错的另一个重要原因是口算出错,原因之一是乘法口诀背错;原因之二是100以内的进位加法出错。
三、今后改进方面
(1)教学中既要创设学生感兴趣的现实情景,唤起学生已有的生活经验,又要关注数学知识本身的逻辑联系,充分的利用已有知识学习新知。
(2)课堂上加强学生的口算练习。可以采取课前听算的形式,每天的题量可以少一些,但要细水长流,每天必练。
三年级下册《两位数乘两位数》教学反思 篇3
本节课是三年级数学下册第四单元第3课时的内容,学生在掌握了两位数乘整十数和两位数乘一位数的口算的基础上进行学习的。
优点:
1、复习铺垫起到了承上启下的作用。
本节课复习了两位数乘一位数和两位数乘整十数的口算乘法,为两位数乘两位数的算理的理解做好铺垫,两位数乘两位数可以转化为两位数乘一位数和两位数乘整十数。让学生在已有的生活经验上去学习,理解更容易接受。
2、小组合作效果好,学生对算理理解到位。
在小组合作探究的过程中,有些学生会想到把12看成10和2的和,先用14×10=140(本),再用14×2=28(本),然后把两次乘得的结果相加,140+28=168(本)或14×12=168(本)。有些学生可能由两位数乘一位数的竖式乘法,想到两位数乘两位数也可以用笔算。
不足之处:
1、列竖式计算中,有易错点没有突破。
在列竖式计算中,出现了个位和个位相乘,十位和十位乘的现象,说明对竖式的算理理解不够透彻,对计算方法的认识还存在误区。对于老师的提问与十位相乘的积的末位数字要与十位对齐,并且末尾的'0不用写的原因说不清楚,表达不出来。也说明对于本节课的难点没有突破。
2、时间把握前松后紧,导致后面的练习没有完成。
由于突发状况的发生,错误题的纠正,和学生说算理不清楚再加以练习等等,使得前面时间用的较多,导致后面练习没有跟上,学生对竖式计算没有形成熟练的技巧。
三年级下册《两位数乘两位数》教学反思 篇4
对于本单元的学习内容,两位数乘两位数的笔算对于学生而言是较难理解的,我在新授教学后学生的练习中出现这样几种情况:第一种是把第二个因数的两个数字的乘积合并成一个数字的乘积,如“54×13”计算时变成54×3=162,再算54×10=5,最后54×13=5162。第二种是第二个因数十位上的1乘54得数的末尾与个位对齐。第三种是忘记在乘的过程中加上进位。针对这几种情况的学生,我是先集体讲评,再指名学生在黑板上板演,大家来找出问题所在的地方,再指导订正。
经过这样的辅导练习,到最后还剩两三个学困生不会用竖式计算,对于学困生我先让他们练习两位数乘一位数的竖式计算,再在这个基础上把两位数乘两位数中的第二个因数分解成两个一位数,也就是说让学生做了两个两位数乘一位数的竖式,再把这两个竖式乘得的积相加,在相加时注意把第二个竖式的积的末尾上的数与第一个竖式的积的十位对齐,再相加。这样经过几个竖式的练习,效果真的还可以,学困生全都会计算。在这种方法熟练的`基础上最后让学困生慢慢体会两位数乘两位数的竖式计算的方法。
对于初学的学生而言,一下子就全部学会是有一定的难度的,在大人看来很简单的两位数乘两位数的竖式计算,对于学生真的有难度,学生必须经过一段时间的练习反馈,才能完全掌握。
三年级下册《两位数乘两位数》教学反思 篇5
两位数乘两位数的笔算,是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。
设计原则之一:计算与应用结合,体验计算是有用。
因此整堂课的教学流程是创设情境提出问题探索尝试寻找方法巩固方法学以致用。让学生在解决实际问题中探讨计算方法,使学生深刻理解为什么要计算,切实体会计算的意义和作用。
设计原则之二:主动探索计算方法,并进行优化,渗透化归的数学思想。
解决买24本树需要多少元时,学生寻找了很多方法。有的用了拆数,有的用了连乘,有的用了课外学习的竖式。到底哪些方法是通用的?哪些方法是有局限性的?教师应当肯定学生正确的想法,更应当引导学生进行合理的优化,寻找解决问题的'一般方法。
设计原则之三:结合具体情境理解并掌握两位数乘两位数的计算方法。
学生掌握两位数乘两位数笔算方法的关键是:
①掌握乘的顺序;
②理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。
结合具体情境,既能沟通横式与竖式间的联系,又能有助于学生理解乘的顺序(每一步的由来),对位的问题。脱离具体情境说说怎么计算,从具体到抽象,帮助学生更好的掌握计算方法。
三年级下册《两位数乘两位数》教学反思 篇6
这部分的学习内容是在学习了两位数乘两位数的口算和估算以及笔算两、三位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排,先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理和掌握笔算的算法。两位数乘两位数的笔算(不进位)是下一课时进位乘的基础。
本节课从复习两位数乘一位数的笔算方法开始,为新课的'学习作好准备,让学生把旧知迁移到新知中。本节先让学生课前完成前置小研究,让学生自己尝试计算。上课让学生分小组,充分交流自己的想法,发挥学生的主动性。再进行全班交流多种算法,在此基础上重点交流用竖式怎样计算,在交流中掌握正确的书写。将两位数乘两位数的笔算和两位数乘一位数方法作比较,帮助学生理解算理。但是过高估计了学生对两位数乘两位数笔算的掌握,结果导致部分学生在书写第二步乘积时,数位对错。
新课结束后安排了多种题型的练习,基础的计算题帮助学生巩固对两位数乘两位数笔算方法的掌握,提高笔算的速度和正确率,同时明白验算的重要性,自觉养成验算的习惯。最后让学生将所学知识运用到解决实际问题中,了解数学与生活的紧密联系,提高学习数学的积极性。
在今后的教学中要充分发挥学生的主体性,锻炼学生独立探索的能力和语言表达能力。
三年级下册《两位数乘两位数》教学反思 篇7
本节课的学习内容是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的教学重点。第二部分积的对位问题,是本节课的'一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,我先让学生尝试计算24×12,在学生出现口算方法与竖式计算两种方法后,我先让学生交流口算方法与算理,为进一步理解竖式计算的算理奠定基础。为了突破重点和难点,在交流竖式计算方法时,我出示了个问题:
①48是怎样算出来的?
②24是怎样算出来的?为什么不与48的数为对齐?
③这里的24表示多少?
④24既然表示240,为什么个位的0不写?
⑤240个位的0省略不写是时,4的位置能变动吗?为什么?
⑥288又是怎样得到的?
通过讨论交流这5个问题,学生真正的理解了两位数乘两位数的算理。为了加深理解,我又对口算方法与竖式计算进行了沟通,找到他们的联系:方法一样,只是书写形式不同罢了!
在当堂课的测试中,学生的对位问题没有一人出现错误。错误大多是学生计算错误,个别学生乘的顺序不对,需要进一步强化!
三年级下册《两位数乘两位数》教学反思 篇8
疫情无情,人间有爱。停课不停教、线上教学已经持续有一月时间,为了减轻疫情对学校教学的影响,确保在家学习质量不打折,我们三数组制定了详细的线上教学计划,学生上午观看同桌100视频课,下午根据作业完成情况录制小视频进行答疑。
根据课程安排,这周我们学习了《两位数乘两位数(不进位)》的内容,它是在学生学习了多位数乘一位数、口算乘法的基础上进行教学的。为了提高学生的计算正确率,就得让学生真正理解算理,算理是算法的基础。
我认为本节课内容,如果还将算理的呈现停留在实物表征的呈现上,是对学生思维方式的倒退式引导。两位数乘两位数的关键在于让学生理解用一个因数的个位、十位分别去乘另一个因数的过程。在学习这节课前,我对班里的学习情况进行了一个预测,计算对学生来说不难,难就难在算理的理解上,还有一些细节问题,比如:抄错数字、横式忘写得数等等。通过学习同桌100视频课及家长的辅导,大部分学生已经会算两位数乘两位数不进位乘法,但对于为什么这样写,先怎么计算再怎么计算,还比较迷茫。本节课的`重点就是理解算理,如何很好的突破这一难点呢?在下午批改作业反馈中,我是这样处理的,录制小视频重点讲解14乘12的算理,让学生给家长说一说计算过程,并录制了小视频。为了达到举一反三的效果,晚饭后又让家长根据自己孩子的计算情况,自愿完成6道关于两位数乘两位数不进位乘法的竖式计算。
我在批改作业中体会到,对于计算类的教学,千万不能仅看学生计算的正确与否,而更应该注重学生对于计算算理的理解。
三年级下册《两位数乘两位数》教学反思 篇9
《新课程标准》中强调“利用情境、操作工具、图片、图表、符号等,理解运算的意义,探索算理和计算的规律”。这其中提到的“具体有趣的事物”、“操作工具”“图片”、“符号”等操作的材料应该是“计算模型”的一些具体形式。在对教材和学生的研读中,我发现虽然多数学生能够计算出结果,但是他们并不理解算法背后的真正算理,针对算法易学,算理难懂的情况,引发了我一个思考:能否有便于学生实际操作,并给予学生更大数学活动空间的直观模型呢?能否让学生享受到有营养又好吃的数学呢?在进一步研究中,我发现利用点子图的直观模型可以解决算法易学,算理难懂的情况,因此制定了借助模型支持两位数笔算乘法的教学主线。
一、借助模型获得多种算法。
二、借助模型理解算理。
三、借助模型沟通算法与算理之间的关系。
四、借助模型渗透神学文化。
在整个的教学过程中,学生不仅能够呈现出多种方法,同时在不断交流与探索中,逐步对两位数笔算乘法的算法与算理深入的`理解。在此过程中,教师不仅能够勇敢地退下来,让学生充分展示,又能够适时的进,促进学生思考问题不断深化。在借助模型支持两位数乘法的过程中,我感悟到当学生运用模型将新问题通过转化的数学思想变为已知问题时,学生不仅获得了一个计算结果,而且沟通了知识之间的联系,获得了一种解决问题的方法,丰富学生数学活动的经验。久而久之,学生运用模型的意识会不断增强,学生解决问题的途径会逐渐拓宽,它将成为了学生学习的“有力工具”。但也存在不少问题如:
1、学生在列竖式进行了两位数乘以两位数的计算过程中,对计算原理的理解有困难,要多给予解释说明和思考时间。
2、在计算过程中,由于不细心造成两部分积的错位,导致结果不正确,在练习讲解过程中,要给予指导,注意书写习惯的培养。
3、部分同学对乘法口诀不熟,导致计算错误,要在课前给予强调,并引导学生熟练掌握口诀。
三年级下册《两位数乘两位数》教学反思 篇10
今天继续用钉钉直播讲授数学课,本节课我讲的三年级下册第四单元的《两位数乘两位数的笔算》一课,它是在学生学习了多位数乘一位数的基础上进行教学的,也是整数乘法学习的重要阶段,需要让孩子对整数乘法的算理和算法进行更深层次的认识。
课上,我通过复习多位数乘一位数,让学生说说笔算方法,唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。接着从王老师买书的情境引出算式14×12,从而出示本节课的课题:两位数乘两位数。
在探究两位数乘两位数的笔算方法时,我让学生通过点子图的形式,明确可以把其中第二个乘数分成(3×4)或(10+2),首先知道了计算结果是168;接着一起探究两位数乘两位数的笔算方法:我让学生先根据独立尝试解决列竖式计算,学生在尝试解题的过程中难免会出现错误;接着我一步一步出示正确的'竖式书写方式,并通过点子图让学生明白每一步的意义时,特别强调14×2表示2套书的本数;14×10表示10套书的本数;28+140=168表示12套书的本数。同时明确了竖式书写要对齐数位,十位与第一个乘数相乘的积个位的“0”可以省略的道理。学生结合现实的情境,理解了两位数乘两位数的算理,使抽象的算理具体化,更便于理解和接受。
接着我通过与多位数乘一位数的竖式计算的对比,让学生发现相同之处和不同的地方,从而总结出两位数乘两位数(不进位)的笔算方法。在巩固拓展环节,我先从笔算方法的掌握先着手,让学生通过计算、展示做一做的题目,让大家明确竖式中的每一步得数是怎么来的,进一步理解算理,掌握计算方法。最后让学生去所学的知识去判断纠错,解决生活中的实际问题,把所学的知识应用于生活,提高学生解决问题的能力。
整节课我把计算教学与解决实际问题相结合,使课堂内容充满了情趣,有了色彩,既解决了计算问题,又提高了解决实际问题的能力,一举两得。但本节课也有一些不足之处:由于网络授课的原因,学生的列竖式计算的情况没有全员关注,上课时间只有30分钟,导致解决问题的练习比较草率。
三年级下册《两位数乘两位数》教学反思 篇11
两位数乘两位数(进位)笔算乘法,是在学生掌握了两位数乘一位数的笔算方法以及两位数乘两位数(不进位)笔算方法的基础上进行教学的。虽然大部分学生在乘法笔算的顺序和数位的对齐方面已经有了一定的基础,但在两位数乘两位数进位笔算计算仍存在较大的困难。所以,我将两位数乘两位数的进位笔算方法定为教学重点,同时也把弄清两位数乘两位数算理定为教学难点。对于中低年级学生来说,计算算理是比较抽象的,加上部分学生没有很好地掌握数位的意义,这样一来要弄清楚算理更是难上加难了。对于本节课,我做了以下几点反思:
一、课堂中节奏太快,没有给足学生时间去思考。在提出问题“你是怎么想的”后,我迫不及待地想让学生来说算理,当然这样一来学生的思维没有跟上,更加给了他们“数学很难学”的错感。我想课堂中应该要给足学生时间与空间,让他们充分地去思考。
二、没有提倡算法优化,不仅仅只是算法多样化。算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的`基础。新课标指出:笔算教学不应仅限于竖式计算,应鼓励学生探索和运用不同的方法计算。学生的个性差异是客观存在的,对同一道计算问题,由于学生的生活经验、认知水平和认知风格存在着差异,常常会出现不同的计算方法和解题策略,这正是学生具有的不同个性的体现。在本节课中,我在看到学生只提出了口算方法和把因数拆分成两个一位数后,就马上提出了竖式计算的方法。在学生练习中应该加强算法优化。
三、课堂反馈环节做得不够到位。在练习中应让学生上来板演,充分利用课堂生成资源,解决“进位时没有数位对齐”的问题。从课后的练习中看得出这节课的反馈没有做到位,也明白了自己这节课失败在哪儿。
今后,我会努力改进自己的教学方法,促进学生学习方式的改变。要努力钻研教材,弄清学生的易错点,从而更好地突破教学难点。
三年级下册《两位数乘两位数》教学反思 篇12
本节课是在学习了两位数乘两位数口算乘法和不进位乘法竖式计算的基础上展开教学的。教材通过现实生活情境为素材,激起学生的学习兴趣。教学时,通过小组合作、讨论交流,引导学生自主探究方法,掌握算法,理解算理。教学过程中,给学生充分的自主探究时间,让学生理解算法的多样性。
对于本单元的学习内容,两位数乘两位数的笔算对于学生而言是较难理解的,我在新授教学后学生的练习中出现这样几种情况:第一种是把第二个因数的两个数字的乘积合并成一个数字的乘积,如“34×13”计算时变成34×3=102,再算34×10=3,最后34×13=3102。第二种是第二个因数十位上的1乘54得数的末尾与个位对齐。第三种是忘记在乘的过程中加上进位。针对这几种情况的学生,我是先集体讲评,再指名学生在黑板上板演,大家来找出问题所在的地方,再指导订正。经过这样的.辅导练习,到最后还剩两三个学困生不会用竖式计算,对于学困生我先让他们练习两位数乘一位数的竖式计算,再在这个基础上把两位数乘两位数中的第二个因数分解成两个一位数,也就是说让学生做了两个两位数乘一位数的竖式,再把这两个竖式乘得的积相加,在相加时注意把第二个竖式的积的末尾上的数与第一个竖式的积的十位对齐,再相加。这样经过几个竖式的练习,效果真的还可以,学困生基本都会计算。在这种方法熟练的基础上最后让学困生慢慢体会两位数乘两位数的竖式计算的方法。
对于初学的学生而言,一下子就全部学会是有一定的难度的,在大人看来很简单的两位数乘两位数的竖式计算,对于学生真的有难度,必须通过多种形式的举例,再经过一段时间的练习反馈,才能完全掌握.
三年级下册《两位数乘两位数》教学反思 篇13
《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。
教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。
教学的难点是解决乘的顺序和第二部分积的书写位置问题。
片段一
师:文具店新购进一批圆珠笔,一盒是24支.请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?
(学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等.)
师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?
(有几个学生在下面嘀咕,算算不就知道了.)
师:(老师马上接过话头)这几位同学说的很好,算算就知道了.下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。
(老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)
师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。
(在老师的鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)
(学生经过15分钟的.独立思考后,教师回到讲台。)
师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?
(准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)
通过交流,全班一共发现了近十种解法:
1)24+24+……+24=288(12个24相加)
2)12+12+……+12=288(24个12相加)
3)24×2×6=288
4)12×3×8=288
5)24×3×4=288
6)24×10+24×2=288
7)竖式计算
8)24×20-24×8=288
片段二
师:同学们已经探索出十几种算法,下面我们比较一下这些方法的优缺点。
师生交流后,得出以下几种结论:
1、用加法计算,容易理解,但计算麻烦,容易出错。
2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)
3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。
二、归纳法则。
在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。
三、巩固练习。(略)
[案例反思]
如何搭建“脚手架”?
所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。
在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。
我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。
首先,搭建“脚手架”要引导学生自主提取信息。
随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基.
其次,搭建“脚手架”要蕴含数学思想方法。
“如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。
如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。
三年级下册《两位数乘两位数》教学反思 篇14
核心提示:两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础。
两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯。
本节课中,在学习探究两位数乘两位数的`计算方法时,首先让学生自主探索,然后通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
本节课的教学重、难点是乘的顺序和第二部分的书写位置问题,使学生掌握基本的乘法笔算方法。为了突出重点,突破难点,教学时每做一道题,都让学生在小组内交流算法,发挥小组长的作用,优秀生教后进生;设计层次性强、生活化的练习,即调动了学生学习的积极性,又让学生在生活中学习有用的数学。
三年级下册《两位数乘两位数》教学反思 篇15
最近,笔者参加县实验小学组织的数学优质课评比,听了三位教师同上的课——《两位数乘两位数口算》(人教版第六册上数学教材),颇有一番感触。评比采取的是教师抽签后定时备课,然后借班上课的方式。三位教师通过创设购物教学情景,引导学生提出一系列问题,并让学生列出30×10的算式,再让学生在比较算法中优化算法,最后让学生用“先算3×1=3,再算30×10=300”进行说理,完成教学任务。
在听课中,有两个班的两位学生对老师提出这样一个问题:“老师,为什么30×10=300?”执教老师想了一下解释说,因为30×1=30,所以30×10=300(即1个30是30,10个30就是300),这位学生对老师的解释似乎还不理解,满脸疑惑地坐下了。我们也感到老师的这一解释,好像是在解释一种算法,而没有从学生原有的认知水平去解释算理。
类似于这种算理教学,往往是教学的难点,教师在备课中应予认真考虑。教学中如何有效地面对学生的疑问。
领会学生的疑问,鼓励学生质疑
弄清题意,是解决问题的前提。有些教师在教学中由于没听明白学生提出的问题,对学生提出的问题采取不理不睬的态度,这样容易伤害学生的学习主动性和积极性,导致学生以后不愿意再提问题。这一节课在最后的练习中,有位学生提出这样的问题:“老师,为什么50×40=2000,计算结果得数后面是三个零。”老师因为听明白这一问题是针对30×10=300的反驳,就让学生说一说口算的顺序:先算5×4=20,再算50×40=2000(20后面的两个数用红粉笔标出)。这样一来,学生就明白了为什么结果是三个零,而不是两个零。总之,教师要多给学生思考问题时间,鼓励学生质疑问难。只要问题是围绕上课的主题,老师都应先予表扬、鼓励。要知道,学生的求知欲望是在老师的表扬激励下不断产生的。
对待疑难问题,教师要遵循学生的认知水平
“为什么30×10=300?”这是一个算理教学问题,学生原有的认知水平是已学过两位数乘一位数口算,如10×9,30×9。因此教师在复习导入时,应从解决这些问题入手,通过变式让学生得到算式:10×10和30×10,从而揭示课题——《两位数乘两位数口算》,再引导学生解决这一问题。当学生对于30×10=300就有一定的认知准备,他们会想到运用已有的知识和方法来解决这一新知识,就会说:因为30×9=270,而30×10可以表示成9个30再加上1个30,即270加上30一共是300,所以30×10=300。这一教学策略,充分考虑了学生已有的认知水平,通过“以旧迎新,促迁移”的方法来解决算理这一疑难问题。可惜我们很多教师把这一传统的教学策略忘掉了,以致不能正确回答学生提出的问题。
教师回答不了问题,要借助学生的思维来解决
上述问题教师若一时回答不了,可让全班学生思考一下:怎样来解释这一问题。我们在听课中发现,教师在鼓励学生算法多样化时,有很多学生想到“30×10”也可以用“30×5+30×5=300”得到结果,这也是一种解释算理的算法。教学中学生的思维往往出乎意料,并能有效解决问题。教师应树立一种观念,教学是平等的,学生是富有个性与创造力的个体。教师要相信学生,要充分利用学生已有的认知水平,引导学生自己获取新知识。这样,新课程倡导的主动、探究、合作交流的学习方式才能在教学中得到有效应用。教学相长,是永恒的教学原理,学会向学生学习的老师才是学生喜欢的老师。
师生无法解决的问题,教师应在课后求助专家
对待学生提出的.疑难问题,教师采用应付了事,不善反思的态度,绝不是一位好教师。当前的课改,对于教师的专业发展提出了许多有效的建议,教师的实践反思和专业引领是教师专业发展的重要途径。许多优秀教师的成长,也说明了不断进行教学实践反思对促进教师专业成长的意义。教师在教学中遇到疑难、挫折并不可怕,可怕的是教师采取一种逃避、马虎应对的态度。如在上这一节课中,有两位教师在课后还认为自己的算法解释是对的。固执己见,往往会误人子弟。敢于正视教学疑难问题,并进行深入的研究,是许多优秀教师的可贵品质。
教学要创设拓展性问题,鼓励学生大胆探索
在这节课教学进入最后阶段时,有位教师让学生口算一道题“340×50=?”很多学生口算不出来。这时,教师引导学生先算34×5,再在得数后面补上两个零,学生学得非常主动而且有兴趣。最后老师强调,今后一定要学会较复杂的两位数乘以一位数的口算方法,而且这一方法仍是我们今后深入学习经常要运用到的一种重要运算技能。适当渗透今后即将学习的新内容,有利于鼓励学生大胆探索,是新课程教学的一种很好教学策略。总之,在教学过程中,为学生创设出拓展性教学问题,有利于激发学生学习兴趣,发展学生思维能力。
三年级下册《两位数乘两位数》教学反思 篇16
学生已有了竖式书写和不进位计算方法的经验,但由于计算中产生了进位计算难度比不进位乘有所提高,错误率也会相应增加。
这节课我采用两个层次进行教学。第一层次是根据情境对19×19的结果进行估算,旨在培养学生先估后算的习惯。我重点指导了以下的估计方法:19在哪两个整十数之间?把它看成20,一共有几多少格?实际的格数比20怎样?从而很显然地得出“19×19“的积的大约范围。第二层次是探索出进位乘的笔算方法。我先让学生借助实际围棋棋谱,直观理解个位乘后的进位情况,然后用竖式进行计算。这一环节我打破了教材的安排,使学生在不知不觉中进入新的知识领域。让他们自己去探索、比较、验证,体验成功的欢乐。
教学中,我特别尊重学生的个性特征,允许学生从不同角度解决问题,鼓励学生发表与众不同的.见解,让每个学生能够根据自己的认知水平和学习能力选择适合自己的认知方式与思维策略。学生说出了好几种的算法,更好地培养了学生的发散思维。这样既满足学生多样化的学习需要,又使不同层次的学生学习到不的数学,得到不同的发展。学生的答案多种多样,我没有立即把对的算法呈现,而是让所有不一样的答案和计算方法都呈现在黑板上,让学生来判断哪种方法才是正确的。这个过程取得了很好的效果,学生通过对错的对比得到了正确的计算方法,并且体会到了竖式计算的优点,对那些由于进位而产生的错误也有了了解,从而避免错误。
三年级下册《两位数乘两位数》教学反思 篇17
今天上了一节计算课,这节课是整个单元的核心——教学两位数乘两位数的笔算方法,而这个方法的学习又为今后进一步学习多位数的乘法作铺垫。课前对本课的定位是:在两位数乘一位数的基础上,通过学生的自主探索和小组交流,为竖式计算做好算理的铺垫,然后水到渠成地引出竖式计算的方法。可能是课前对学生的估计过高,课堂中教学重点突出不够,这节课的教学效果较差,一节课下来,正确率大约只有70%左右。
反思今天的这节课,将一些问题应呈现出来,以避免同样的错误再次发生。
一、在学生的自主探索后,应安排一定的交流和反思的时间。
在这节课上,虽然我给予了学生自主探索的机会,但时间有限。有些学生经过课前预习和家长指导,能比较顺利地进行计算,但还有很多学生比较迷茫,先怎么算、再怎么算,中间很容易卡壳。在这种时刻,如果安排学生进行小组交流,大家交流各自的`方法,可能有争论,但争论正是学生学习和反思最佳的方式,争论为学生进一步的学习指明了方向——困惑在哪里,难点在哪里,怎么攻克?例如这节课,学生在竖式计算中,一定会对第二次乘积的定位产生争论,应和谁对齐?为什么?而这就是本节课的难点。今天的课堂没有给予学生交流和反思的时间,也就导致了一部分同学始终将困惑留到了课后。
二、要敢于呈现学生错误的算法。
课堂的顺畅有时很可怕,因为它很容易掩盖掉很多学生真实的思维、奇特的想法。今天的数学课,我指名板演的是一位基础较好的学生,而她的算法完全正确,集体评议时,让这位学生说出计算过程,并突出了第二次乘积的定位,我以为这样应该可以了,没想到接下来的练习很差。其实,我在巡视时,就发现了一些学生错误的竖式计算方法,因为没有将这些同学的做法呈现出来,课堂教学表面上看上去很顺畅,其实暗藏危机。
三、一定要鼓励学生,树立学生的自信心。
信心是做好一件事的保障。在这节课上,我过高地估计了学生的能力和水平,因而在学生发生错误时,觉得很恼火、不可容忍,言辞过激,缺乏耐心。课后想一想,这节课对于学生学习乘法而言,是一次质的飞跃,因为乘数由一位数变成了两位数。扪心自问,如果我是学生,一节课下来能保证练习全对吗?不一定。那如此苛刻地要求学生,很明显不符合教育的规律。当学生发生错误时,有没有给予学生反思的时间,有没有耐心细致地进行指导,有没有加以适当地肯定和鼓励,因为这不仅关乎知识的习得,更是学生成长的基石。
三年级下册《两位数乘两位数》教学反思 篇18
估算是日常生活中常用的重要手段和方法,例2教学用估算解决问题,目的是使学生在掌握两位数乘两位数估算的基础上,进一步应用所学乘法知识通过估算的手段解决具体问题。在设计和教学本节内容的过程中,我始终是围绕生活中的具体问题,让学生经历用估算解决问题的过程,从而进一步培养学生灵活的估算能力,形成积极、主动的估算意识。
一、围绕具体问题的解决开展估算活动。
估算不是抽象的乘法估算,而是在解决问题的生动情境中因需求而应运而生的。为了让学生更深刻地体会到这一点,我从一开始的创设情境就开始进行着辅垫。课件演示的是会场座位的分配。我引导着:全校有350名学生能坐下吗?这一个引入,一方面可以帮助学生复习以前学过的.有关估算的知识,另一方面也是为了让学生意识到,数学的估算就在我们的身边。从而对估算产生一种亲切感,为学习新知识作好心理上的准备。
在例2的教学中,我也是充分利用课本中所提供的问题背景,引导学生围绕“一共有多少个座位?”的这个实际问题进行估算的。使学生体会到“22╳18≈”是为了解决我们实际问题而产生的,是我们生活中的一种需要。把数学与生活更好联系在一起,是我们的新课标的重要思想,也是让更多学生更爱学数学的一种途径。
二、为学生提供了自主探索、互相交流的广阔空间。
对于例2中“22╳18≈”的估算,学生中肯定存在着多种不同的估算方法、会有多种不同的估算结果。在教学中,我为学生精心设计了既能体现自主探索又能体现合作交流的估算活动。
具体操作如下:
①独立估算。在引出算式后,我请每个学生应用已有的估算经验独自估算“22╳18≈”,并写出估算的过程。
②小组交流。在独立估算的基础上,小组内交流各自的估算方法和结果,并说明理由。然后总结出本组认为比较合适的一种或几种估算方法。
③全班交流。在小组交流的基础上,让部分小组派代表汇报本组的估算情况。最后组织学生对交流出来的三种不同的估算方法和估算结果进行评价,使多数学生形成共识,并找出符合问题实际、接近准确结果、计算方便可行的估算方法。
三年级下册《两位数乘两位数》教学反思 篇19
从数学知识、方法的角度看,“两位数乘两位数”这一教学内容应该再学生已经学习了两位数乘一位数和两位数乘整十数的基础上进行的教学。从学生思维特点的角度看,三年级学生仍以具体形象思维为主,但他们的逻辑思维能力有了初步的发展,这一年级的教学应多组织学生开展探索性的思维活动,注重知识的发现和探索的过程,使学生从中获得数学学习的积极性,感受数学的力量,培养学生解决数学问题的能力。
1、复习引入,明确学习任务
教师先出示了一组口算题,让学生进行会议旧知,然后在进行改编题目,明确本节课的主要解决问题,同时与旧知联系起来,使新知识与旧知能沟通好,从而为下面的学习任务做好铺垫。
2、独立思考尝试解决问题
让学生通过独立思考尝试解决问题,运用的多种方法解决问题,经历了解决两位数乘两位数这一问题的过程,体验解决数学问题的喜悦或失败的情感。
3、梳理思路,小组交流,取长补短
学生通过整理已有的解决问题的方法和思路,培养他们的归纳能力,通过观察他人的解题思路,培养他们的分析能力,为数学的交流做准备,并通过交流书学生学会倾听,学会换位思考。
4、整理成果,全班交流,教师归纳
让学生一小组为单位,向全班同学展示本小组的探究成果。能培养学生的归纳整理能力,和合作的意识。,明白了要解决两位数呈两位数只要通过正确的`分拆就可以把它转化为以前的知识,从而可以解决问题。然后在通过教师的层层引导,明确只有在正确的分拆方法基础上,还要根据数字的特点进行合理的分拆,才能有助于计算,才能使计算更方便、更灵活。
5、随堂小考,巩固新知
通过随堂小考的形式,让学生自己检测学习情况,明确下课后的任务。根据自己的成绩来选择相应的练习。
6、回顾过程,总结学习方法
师生共同回顾,通过这一节课的学习我们知道了:解决两位数乘两位数的问题可以有很多种方法,但我们要根据题目的特点合理的分拆,选择一个能有助于解决问题的方法。
【三年级下册《两位数乘两位数》教学反思】相关文章:
《两位数乘两位数》教学反思08-03
两位数乘两位数教学反思05-24
《两位数乘两位数》的教学反思05-24
两位数乘两位数教学反思04-15
《两位数乘两位数》教学反思04-22
两位数乘两位数的笔算教学反思09-03
两位数乘两位数教学反思(精选12篇)11-21
《两位数乘两位数》教学反思(精选6篇)03-08
《两位数乘两位数》教学反思(通用18篇)04-18