《分数与除法》教学反思

时间:2022-02-17 09:09:11 教学反思 我要投稿

《分数与除法》教学反思(精选29篇)

  在办理事务和工作生活中,我们的工作之一就是课堂教学,反思是思考过去的事情,从中总结经验教训。如何把反思做到重点突出呢?下面是小编帮大家整理的《分数与除法》教学反思(精选28篇),仅供参考,大家一起来看看吧。

《分数与除法》教学反思(精选29篇)

  《分数与除法》教学反思 篇1

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1.以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2.分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

  《分数与除法》教学反思 篇2

  分数除法应用即用分数除法的知识解决问题是在学习了分数乘除法和用乘法解决问题的基础上进行教学的。课本例题以人体生理常识为内容载体,引导学生找出等量关系,列方程解答比较简单的分数除法实际问题。具体内容为

  例1:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。我体内有28千克的水分,可是我的体重才是爸爸的7/15。(1)小明的体重是多少千克?(2)小明的爸爸体重是多少千克?

  去年我也教学过这部分内容,当教师把这一部分知识全部呈现给学生时,学生要解题,要选择需要的信息,感觉很费劲。今年我改变的呈现的方式,分两部分来教学这些内容:

  第一部分:

  第一环节,教师说明人体内水分的含量,学生知道后,只出示“儿童的体内的水分约占体重的4/5”这一条信息,让学生观察,说明题目中包含了哪两个量,并用数量关系式表示出它们之间的关系。引导学生得出:体重×4/5=水分的重量。

  教师口头出示:一个儿童的体重为45千克,让学生计算出他体内的水分有多少千克?学生很容易就口答出了答案。之后我板书:小明体内的水分重20千克,小明的体重是多少千克?让学生尝试解决。结果有5名学生选择用除法直接计算,其他学生选择用方程解决。

  在教学后,我引导学生分析本节课所学的解决问题知识与以前学习的有何不同,引导学生找出这类问题的特点,总结出当单位1是未知时,可以直接用算术方法,也可以用方程解决。

  第二部分:

  在学生计算出小明的体重后,我再出示另一个条件“小明的体重占爸爸体重的7/15,爸爸的体重是多少千克?”学生独立解决,本来解决第一个问题我感觉还蛮顺利的,可是在此题计算中我尝到了失败的滋味,学生找数量之间的关系,选择用除法解决都很费力。列算式为25×7/15者有6个同学,列方程为25X=7/15的有2人。我很是失望,我甚至不知道怎么教学这些知识了,最终我以“下节课再说”来结束了这几课。

  下课后我在反思,也和平行班的教师谈论,她们也感觉有些困难,“已知一个数的几分之几是多少,求这个数”的问题,如果用算术方法解决,需要进行逆向思维,教材呈现的是顺向思考,让学生根据分数乘法的意义,找到等量关系列出方程解答。可是在教学中我感觉出来学生对于数量关系的理解个别同学很有困难,好像去年教学这部分知识时没有这么困难,我又在思索以前对这部分知识的教学。

  今天我又在另一个班教学这部分知识,基本思路还是和昨天一样。不过经过昨天的思考,我添加了一个课前预习环节:总结我们学习过的分数乘除法解决问题的类型:

  1、求一个数的几分之几是多少的问题。2、已知一个数的几分之几是多少,求这个数的问题。

  让学生举例,其他学生口答问题。在此基础上我才出示以上教学内容,进行教学。结果也还是不能令我满意。我还得继续反思我的这节课。

  《分数与除法》教学反思 篇3

  今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。

  自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的容量,那么遗憾也许会降到最低程度。

  通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。

  《分数与除法》教学反思 篇4

  “已知一个数的几分之几是多少,求这个数”的应用题。是由分数乘法意义扩展到除法意义而产生的应用题。这类应用题历来是教学中的难点。由于这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,为了使学生更好地理解题目的数量关系,我在引导学生分析数量关系时,仍然按照解答分数乘法应用题的思路去分析,从而发现作单位“1”的量是未知的,可以根据求“一个数的几分之几是多少”的关系,列方程解。同时注意引导学生思考如何用算术法解?思路是怎样的?通过分析让学生感悟到用除法解题思维是分数乘法解题的逆思路。从而让学生把两种类型的应用题有机的统一在一个知识点上。通过本节课教学,我感受到以下几点。

  1、充分运用对比,让学生通过分数乘法应用题理解除法应用题。

  为让学生认识解答分数除法应用题的关键是什么,教学中,我抓住乘除法之间的内在联系,让学生从中发现与乘法应用题的区别,使学生了解这类分数应用题特征。接着放手让他们借助线段图,分析题中的数量关系,在学习过程中发现规律,得出这类应用题根据“已知一个数的几分之几是多少,求这个数用除法”能解决问题。

  2、鼓励方法多样,让学生拓宽解题思路。

  在解答应用题的时候,我改变以往过早抽象概括数量关系对应量÷对应分率=单位“1”的量,再让学生死记硬背,而是充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力。我鼓励学生对同一个问题采取多种不同的解法,引导学生学会多角度分析问题,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  《分数与除法》教学反思 篇5

  一个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。

  教学目标我是这样定位的:

  1、通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。

  2、在合作探究的过程中,提高迁移类推、分析比较的综合能力。

  3、获得成功的体验,认同数学在生活中应用的广泛性。

  在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。

  总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。

  对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。

  《分数与除法》教学反思 篇6

  教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。

  下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

  《分数与除法》教学反思 篇7

  本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把6米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1÷2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。

  接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只能用“相当”更恰当。

  对于假分数化带分数,我从上次作业的一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数=除数×商+余数,这样学生就很明朗。

  特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。

  本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。

  《分数与除法》教学反思 篇8

  分数除法是学生在学会一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,这是学习分数除法的重点也是一个难点,但由于教材的学习比较枯燥无味。因此我试图在教学初始把直接展示静态例题改变成小故事展现出来,形成一个有趣的课堂学习气氛。让学生经历从整数变化到分数,得到的运算法则由特殊到一般的快乐又严谨的数学学习过程。

  在教学备课时我先复习一个数除以整数的计算法则,然后通过小故事的形式展示例题,提出问题后,引导学生通过猜想、尝试、验证等多种方法证明了一个数除以分数和乘这个分数的倒数的结果都相等。但备课后我突然产生这个疑问“一个数除以分数为什么要乘这个分数的倒数呢?”引起了我的反思。教案的设计中没有算理的教学,只是通过猜想、尝试、验证、归纳出除以一个数等于乘这个数的倒数,相对忽视了算理的教学,这样学生只知其然而不知其所以然。参考一下其他教材,发现其他教材是通过画线段图让学生来明白算理,更注重算理的教学但又忽视了猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?

  经过仔细反思之后,我在修改备课后,调整了我的教学过程。教学中我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结,此时我再结合线段图对学生进行简单的算理教学。这是我发现大部分同学们能够听懂,然后恍然大悟,露出了灿烂的笑容,效果不错。

  在这节课的教学中,我既进行了归纳总结的数学思想方法的渗透,又进行了算理的教学。将新旧知识两者有机的结合在一起,效果较好。如何更好的让学生掌握知识是我在今后的教学中应该积极思考的一个问题

  《分数与除法》教学反思 篇9

  《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始我就结合学生的生活实际提出相关的数学问题,例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

  在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

  《分数与除法》教学反思 篇10

  本节课含两部分内容。第一部分内容是分数除法的意义。第二部分是分数除以整数的计算方法。

  在教学第二单元分数的乘法时,出现学生对分数乘法的意义理解不够,所以,在进行分数除法的意义教学时,没有匆匆带过,或直接告诉学生,而是由整数除法的意义引入,再引导学生通过改编成一组分数除法题,让学生观察、推理出分数除法的意义。我留给学生时间去做,但还是有部分学生不得其要领。

  第二部分内容通过例2引导学生用折纸的方法得出两种不同计算方法,再比较、归纳出分数除以整数(0除外)等于分数乘整数的倒数。这部分内容是教学的重点也是难点,所以动手操作是必要的。因为学生的动手操作能力较差,所以学生动手操作的时间花的比较多。大部分学生能理解为什么分数除以整数就是乘这个整数的倒数。但后面的练习就没有时间做了,所以,不值的学生掌握的怎么样,是否能熟练的计算分数除以整数。

  心有多大,舞台就有多大,所以不要拘束孩子,也不要拘束自己。

  《分数与除法》教学反思 篇11

  这部分内容是在前面教学分数除以整数、整数除以分数的基础上教学的,通过这一内容的学习可以为以后的学习打下坚实的基础。我在设计本课时主要突出让学生充分评价和反思。 如在本节教学中,,我先请学生独立计算,然后再四人小组合作交流自己的计算方法。 汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数的倒数。他们认为分数除以分数的计算方法也等于乘以这个数倒数。 通过交流讨论,最后得出分数除以分数的计算方法是一个数除以分数等于这个数乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。 很自然地复习了旧知识,再结合具体的算式强调转化的过程,特别是除号要变为乘号,除数变成了它的倒数,两个要同时变。由此推导出分数除以分数也是这样的,并且归纳其中的联系,发现其中不管是怎么样的分数除法都是一样的,这样就可以只用甲数和乙数来区别。 根据学生的分析,我及时把统一的计算法则板书在黑板上,并把变化的和不变的用不同的记号标出来。

  本节的教学中,学生始终以积极的态度投入到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。

  《分数与除法》教学反思 篇12

  分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。

  在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。

  其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。我让学生亲自动手分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。

  本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。

  在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。

  《分数与除法》教学反思 篇13

  分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。 新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动。”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。” 所以,在导入新课环节,我有意设计了两道除法计算题: 8÷9= 4÷7=

  学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。

  汇报后,我引发学生思考:8÷9= 0。88……和8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。 之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

  本节课,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

  《分数与除法》教学反思 篇14

  今天教学了“分数与除法”这一课,例题3——我备课时的一个重、难点,因此,在这部分我给了学生充分的探究时间,又组织学生分小组讨论,引导他们按着书上的提示去思考。我又从意义和算法两方面入手,分别详细地讲解了每种方法。一直讲了十多分钟,“明白了吗?”“明白了!”学生点头回答。我满意的笑了。

  接下来的“做一做”中就有类似的题,我让学生自己完成,并说说自己的想法。心里还不免有些担心,怕他们说不好。哪知学生一张口竟是“和以前学过的谁是谁的几倍做法一样。”我一愣,可不是嘛,如果联系以前所学的知识,这个例题十分简单且容易理解,可是竟被我弄的如此复杂。于是我大大表扬了这个同学一番,“你真会学习,能够联系以前所学的知识进行对比着学,真棒!”

  课后我反思,其实很多时候我们老师备课备的还远远不够。我们往往只备教材,却忘了备学生,忽略了学生已有的知识水平和能力。有时又只从本节课出发,却忘了应将旧知与新知联系起来进行系统的学习。如果我们每次备课都充分考虑到了这些,恐怕会少走很多弯路吧!

  《分数与除法》教学反思 篇15

  “分数与除法”这一教学内容,是人教版小学数学第十册,第四单元中第一小节的内容。在学生学习本课内容之前,已掌握了分数的意义,知道了分数的产生等知识,学完这节课的内容将为今后学习假分数以及假分数化为整数或带分数做好准备。所以让学生很好的掌握分数与除法之间的关系,十分重要。

  这节课的教学目标主要有两个,第一,让学生掌握分数与除法的关系,第二,要让学生了解两种分法。让学生体会两种分法的全过程。

  在本节课的教学中,我通过从解决简单的问题入手提出了这样几个问题:把6张饼平均分给3个人每人分得几张饼?把1张饼平均分给2个人每人分得几张饼?把1张饼平均分给3个人每人分得几张饼?学生分别口答每人分得2张、0。5张、1/3张。在此基础上引导学生观察三个算式和得数,学生很快得出一个结论:两数相除,商可能是整数、小数或是分数,以此作为本节课的切入点。

  让学生明白1张饼的3/4相当于3块饼的1/4是本节课的重点也是难点,我通过让学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个人可以有几种分法,学生通过动手操作,得出两种不同的分法,引申出两种含义,即1张饼的3/4以及3块饼的1/4,同时让学生明白1张饼的3/4相当于3块饼的1/4,也就是3/4张饼。通过这一过程,学生充分理解了3÷4=3/4的算理。

  以上这一系列的教学活动,目的是让学生通过动手操作,亲身体验,探究分数与除法的关系,从而激发学生的探究意识,引发学生的数学思考,使学生学会学习、学会思考。

  在本节课的教学当中,我认为存在以下几点不足:

  1、课堂上对于学生的兴趣培养、激励性的语言还有些欠缺,学生显得不够积极主动。性格内向的学生占绝大多数,部分学生害怕在众老师面前出错,而显得有些胆怯。由于多方面的原因,道致课堂气氛不够活跃。

  2、学生的语言表达能力太差。课堂上不能用较为准确的语言来表述分数与除法的关系,今后应予以加强。

  3、教学时间安排欠合理,课堂练习太少。

  针对以上存在的几点不足,提出自己今后应努力的方向:

  今后要多研读课标,熟读教材,多与学生沟通,了解他们已有的知识水平,认真备课。同时还要不断地学习,提高自己的业务水平和教育教学能力。

  《分数与除法》教学反思 篇16

  本节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运 用分数与除法的关系解决一些简单的问题。

  我首先让学生利用整除的方法来解决问题,从而复习了除法的意义,并且强调———————对于均分问题用除法算。接着,再引出几个用除法解决的问题(不能整 除),根据前边分饼的活动,结果可以用分数表示,从而把除法与分数联系了起来。

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习 方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的.、富有个性的过程,数学的教与学的方式, 应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操 作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。请同学们认真观察上面几个算式,有什么发现?同桌交流、讨论,然后找学生说 一说:被除数相当于分数的什么,除数相当于分数的什么,再找学生完整地说,我再补充,并强调分数与除法的关系且板书。

  整节课,学生的思维能力和观察力都有充分的展现,学生们想出了各种方法或者道理来 证明,语言表达得十分流畅,分析能力路较强。通过最后练习题的巩固,学习效果不错,大大的增加了他们学习数学的信心,体验到了成功的快乐。

  《分数与除法》教学反思 篇17

  怎样的小学数学课堂教学才是有效的?要想回答这个问题,首先要明确课堂教学的有效性是指什么。课堂 教学的有效性是指通过课堂教学使学生获得发展,促进学生知识与技能,过程与方法,情感、态度与价值观三者的协调发展。就是通过课堂教学活动,使学生在学业上有收获、有进步、有提高。具体而言也就是使学生在认知上,由不懂到懂,由不会到会,又知之甚少到知之较多;使学生在情感上,由不喜欢到喜欢,由不感兴趣 到感兴趣,由不热爱到热爱。总而言之,课堂教学的有效性的核心问题是:学生是否愿意学,会不会学,能否积极主动地学。

  本节课中通过让学生说一说情境图中的三角形,再让学生联系生活实际思考,并说一说“生活中哪些物体上有三角形?”激发了学生学习三角形特性的兴趣,引起学生对三角形及其在生活中的作用的思考。为让学生进一步研究 三角形的特征,了解三角形的作用做好准备。

  让学生在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。这样有利于学生借助直接经验,把抽象的概念和具体的图形联系起来。这里教师充分考虑到学生已有的生活经验和知识基础,恰当把握教学要求。三角形是生活中常见的图形,学生已初步认识过。此处重点 是引导学生发现三角形的特征,概括出三角形的定义。为此,还出示了一组含正、反例的图形让学生辨析,帮助学生建立正确的三角形概念。此处是本节课的教学重 点,通过边画边想、组织交流、引导概括三角形的特征,从而有效地落实了本节课重点的教学。

  由实例入手,让学生量出三角形的高度,引出底和高的概念进行教学。联系生活实例,引导学生解决日 常生活中遇到的实际问题,增加数学学习的趣味性。

  这里采用的是“情境、问题— 实验、解释— 特性应用”的探究教学方法。教师在教育教学实践中,选 择合理的教学方法是保证教学有效性的关键。

  学生通过对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图 形中分辨出三角形。本节课教学是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的特性的认识和理解。

  《分数与除法》教学反思 篇18

  蒲场镇儒溪小学:江娓 《分数与除法》这一节对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。本节课的教学设计,让学生在现实的情境中体验和理解数学,“学生是教学活动的主体”,而“动手实践、自主探索与合作交流是学生学习数学的重要方法”。

  开课前,,我利用用学生都了解的《西游记》作为切入点,以八戒找食物为主线提出三个难易不同的问题,让学生去帮助八戒解决怎样把8个桃、4个梨、1个西瓜平均分给4个人的数学问题,每人分到多少个这样的一个简单问题。探索一个物体平均分成若干份,求每份是多少,使学生比较容易建立分数意义与除法意义之间的联系,从而体会分数与除法之间的关系,并为下面的探究铺路搭桥。

  教学中,我组织学生动手操作探究解决例题2(类比题)“把3个饼平均分给4个人,每个人分得多少个?”先让学生试着猜一猜,培养学生的数感,让学生做到心中有数,渗透数学研究的思想方法。然后利用手里的学具分分看,课前,我给每组都准备了3个同样大小的圆形卡片。课中,让学生通过看一看、剪一剪、分一分,探究知识的同时,培养学生的动手能力。开放的让学生用自己喜欢的方式来验证自己的想法,并为学生提供充分交流与

  展示的空间与时间,尊重学生的个性发展。当得出结论:“无论用那种方法,我们都能得到把3张饼平均分给4人,每人得到的就是3/4张饼。”探究归纳分数与除法的关系。所以在这个教学环节,我大胆地放手让学生同桌讨论,小组合作学习。开放的情景和问题,学生往往会有更宽广的视野和活跃的思维。

  这样的问题情境激发学生积极思考,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与人交流,动手操作。整个教学过程注重学生参与的主动性,在互相启发的学习活动中,使学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

  本节课基本完成了目标,数学课堂有着千变万化的因素,要上好一堂优秀的数学课却非易事。虽然学生对分数与除法的联系学生理解了,但是它们之间的区别学生好像还很朦胧。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。学生的学习兴趣还没有完全调动起来等,总之这节课的不足之处还有很多,让我认识到自己的不足,并及时改正。

  《分数与除法》教学反思 篇19

  本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。 在这节课的教学中,做得比较好的方面是:

  1、教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。

  2、在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。

  3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。 我觉得有以下几方面值得我去思考:

  一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

  《分数与除法》教学反思 篇20

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商, 在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

  《分数与除法》教学反思 篇21

  今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

  1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

  2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?

  针对上述两个问题,我在教学中主要采取了以下一些策略:

  1、复习环节巧铺垫。

  在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

  2、审题过程藏玄机。

  在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

  通过上述改进措施,学生理解3/4相对容易一些。

  《分数与除法》教学反思 篇22

  本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把4个饼平均分给四人,每人可以分得几块?再把三个饼平均分给四人,每人分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面可以感受数学来源于生活,又应用于生活。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  《分数与除法》教学反思 篇23

  分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。

  这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

  1、通过实际操作感悟新知识

  在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。

  2、使学生清楚为什么要用分数来表示除法算式的结果

  在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  3、借机引申,为后续学习做好铺垫

  第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② "把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 "③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)

  此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。

  4、让学生自主建构新知识

  当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。

  本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。

  《分数与除法》教学反思 篇24

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。

  这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。

  在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。

  生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。

  生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。

  让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。

  在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

  《分数与除法》教学反思 篇25

  在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

  成功之处:

  1、读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的结果说出所表示的意义。

  2、留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

  (1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

  (2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

  (3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

  (4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

  不足之处:

  对于除法算式的两层含义,个别学生还是有些混淆。

  再教设计:

  让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

  《分数与除法》教学反思 篇26

  分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到教学目标,突破了重点和难点。

  我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。

  学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间可以训练学生的用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。

  《分数与除法》教学反思 篇27

  分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

  1.通过实际操作感悟新知识、

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

  2、在问题不断地解决与生成中探索新知识

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

  《分数与除法》教学反思 篇28

  教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

  一、通过操作,感悟算理。

  我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

  二、再次说理,悟出关系。

  在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

  三、对比练习,深化知识。

  出示:

  把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

  把三块饼平均分给7个小朋友,每人分得几分之几块。

  让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

  在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!

  《分数与除法》教学反思 篇29

  理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

【《分数与除法》教学反思(精选29篇)】相关文章:

《分数与除法》教学反思12-27

分数与除法说课稿11-09

《分数除法》单元教学反思(通用5篇)12-25

分数除法解决问题说课设计与反思11-11

分数与除法的关系说课稿11-04

分数乘法教学反思02-09

分数的意义教学反思11-29

分数的意义教学反思01-25

分数的大小教学反思10-10

北师大版五年级数学下册《分数除法》教学反思12-27