《运算定律》教学反思

时间:2023-01-13 10:14:56 教学反思 我要投稿

《运算定律》教学反思(通用29篇)

  随着社会一步步向前发展,我们需要很强的课堂教学能力,反思过往之事,活在当下之时。那么优秀的反思是什么样的呢?下面是小编帮大家整理的《运算定律》教学反思,仅供参考,希望能够帮助到大家。

《运算定律》教学反思(通用29篇)

  《运算定律》教学反思 篇1

  复习课具有系统性、综合性、灵活性和发展性的特点,其目的在于帮助学生系统地整理学过的知识,形成知识网络。更重要的是在复习课中,应根据本班的实际情况,有针对性地插漏补缺,并注重调动学生积极性和主动性。这样,才能真正实现人人都有收获的复习效果。

  小学数学运算定律的复习教学不仅要重视学生知识和技能的获取和掌握,更要重视学生的能力培养。因此,在杨老师的引导下让学生自己去探索、总结、发现,甚至创造,充分发挥教师在教学中的主导作用与学生自主学习、探索的主体作用。为了使学生充分理解并牢固掌握这些运算定律,教学中杨老师引导学生深入探索、分析、概括,在获取知识的过程中发展自己的分析能力。杨老师在教学中巧设提问,启发学生观察、思考。本节课请了不同层次学生作答。其中,优等生请了15人次,占总提问人数的39%;中等生19人次,占总提问人数的50%;学困生4人次,占总提问人数的11%。关注学生层次比较均衡,体现出以下优点:

  1、由于采取请代表到黑板上做题,并说算理,避免了一人讲,大家听的枯燥乏味,有效地调动了学生积极性;

  2、小组合作较有成效,学生交流总结生成自然,思维活跃,出现了意想不到的精彩发言;

  3、学生计算正确率得到了提高,自觉分析错误,养成良好计算的意识得到增强。

  本节课通过多层次的练习,学生不仅掌握了所学知识,发展了能力,同时也照顾到全班不同层次学生的学习水平,使他们体验到成功的喜悦,情感得到满足。

  《运算定律》教学反思 篇2

  上课之前,我浏览了许多的案例,想寻找一种生活情境导入我的新课。目的当然也很明确:为了趣味。尽管我愁思冥想,结果还是设计不出一种有趣的生活情境。这一课设计生活情境不好创设,如果要创设生活情境,三个运算定律不是要创设三个生活情境吗?如果要创设三个生活情境不是显得杂乱而无序吗?后来思考:情境除了生活情境,数学本身也是一种情境。而且是一种很好的情境。于是我以一道尝试计算题导入,效果也不错。这一点所给我的启迪是:情境的创设不能只仅仅为了求“趣”而求“趣”,情境的创设一定要为数学主题的学习服务。一定要“量体裁衣”,不好创设生活情境的内容,可以从数学本身的问题入手,数学本身的情境也是一种情境,不必舍本求末,缘木求鱼。

  在这堂课的习题练习设计中,我安排了“填一填”、“练一练”、“议一议”、“我能行”几个环节,体现了一个由“运算定律的感知------正式运算定律的运用-------变式运算定律的运用”的过程,这种层次性的教学,更符合学生的实际。在以后的教学中,不论是概念课,还是计算课,我都将要注意运用。

  《运算定律》教学反思 篇3

  “动态生成”是新课程改革的核心理念之一,它要求从生命的高度用动态生成的观点看待课堂教学。正如叶澜教授在《让课堂焕发出生命活力》中说的:“课堂教学应被看作师生人生中的一段重要的生命经历……”因此,教师在课堂教学中不是机械的执行预设方案,而是注重学生的发展,突出学生在课堂上的能动性、创造性和差异性,尊重学生的独立人格,在课堂特定的生态环境中,根据师生、生生互动的情况,顺着学生的思路,因势利导地组织适合学生参与的、自主创新的教学活动。师生平等的对话,互相尊重,让学生的真实想法得以充分的暴露,最大程度的映出学生学习的意愿,擦出思维的火花。

  正如我在教学《加法结合律》一课时,不管是多数学生的想法,还是个别学生的“怪论”,我都加以重视,给学生们自主和张扬个性的机会,让真实的动态生成的课堂演绎着学生们的特别的精彩!

  当学生们已经掌握了加法结合律并能运用定律解决问题了,我开始让学生们看书质疑。这时,一名学生说:“老师,我觉得书上用字母表示的加法结合律:(a+b)+c=a+(b+c)等号左边(a+b)+c可以写成a+b+c,本来就先算a+b根本不用加括号的。”这一席话马上引起了全班的赞同:“对呀,自左到右算a+b就行了!”教了这些年学时时提醒学生记住定律的字母表达式,还从来没有一个学生对书上的运算定律的字母表达式提出异议的。新课改赋予了学生们更多挑战权威的勇气,给予学生们更多创造、思考的灵气。那么我一定要更加关注课堂的这种动态的形成,让学生占有主体学习地位,让我的课堂更富有生命的活力。所以我已经学会了灵活机智的调整自己的教学过程,把问题再抛给学生,尽量放手让学生们自己提出问题、共同探讨、再解决问题,真正使学生成为学习的主人。“那你们觉得该怎样表示加法结合律呢?”我赶紧反问到。生:“a+b+c=a+(b+c)还可以a+b+c=a+(b+c)=b+(a+c)。”我不禁佩服这个学生的精彩发言了。“这样一来,算式中还运用了什么定律?”“加法交换律!”同学异口同声。“怎样用文字表述呢?”“三个数相加,把其中任意两个数先相加,再加第三个数,和不变。”说的多好啊,不是象书上说的“前两个”,也不是“后两个”,而是不管先加哪两个都行。“我还觉得不止三个数,更多也可以,几个数相加,先把先把其中一些数相加,再和剩下的数相加,和不变。”“很好!大家很有发现的眼睛和思考的头脑。”我赶紧给学生们以鼓励,让他们沉浸在充满成就感的快乐之中……

  是啊,当我们把教学看作是师生双方共同探讨新知、课程内容持续生成的时候,一节课究竟是怎样的过程,已经不是我们教师能够在备课方案的预先设计中能够把握在手了。它需要教师在课程预先设计的基础上,循着学生思维的起伏、情感的波澜随时地调整教学环节,动态地生成学习内容,展示课堂教学真实性的精彩。随后,在乘法交换律和乘法分配的学习中,学生们都学会了安自己的意愿和思考总结自己的定律。象除了书上的(a+b)×c=a×c+b×c,还总结出(a-b)×c=a×c-b×c和a×c+b×c+c=(a+b+1)×c、a×c-b×c-c=(a-b-1)×c等等。由此看来,尊重学生的学习需求,尊重学生们的想法,放飞思维的翅膀,让学生在获取知识的同时,产生自己的学习经验,获得丰富的情感体验,那么我们将会欣赏到学生们演绎的缤纷精彩!

  《运算定律》教学反思 篇4

  《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:

  1、在解决问题的过程中探寻规律

  英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。” 在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。 接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  2、加法结合律的教学的看法

  在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。所以我们还在探索、反思是否有更好的题材与方法来教学加法结合律。 对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。

  教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。

  《运算定律》教学反思 篇5

  在教学时,根据教学目标,自己设计如下的教学过程:

  1、口算竞赛。

  目的:检查同学的计算情况,同时从中引出定律,为新课作铺垫。同学进行口算需要观察数目的特征,然后在心里以灵活简便的方式,迅速、准确的计算出来,这样心口合一,又快又准,日积月累计算的能力就不时的提高了。从而培养了同学对数学的兴趣,调动了同学学习数学的积极性、自觉性和主动性。

  2、创设情景,尝试自学。

  具体做法是:让同学先尝试探索,教师引导。心理学家布鲁纳指出:探索是数学教学的生命线。培养同学的探索能力,应贯串数学教学的全过程。新课标也明确指出:自主探索与合作交流是同学学习数学的重要方式。本课创设买文具的情景,把教学内容放到一个同学非常熟悉的情景中,同学通过尝试计算,自觉地将整数加法运算定律迁移到小数加法运算当中,从比较中得出简算方法。这样同学体会到数学来源于生活,又应用于生活。

  3、课堂练习。

  教师根据同学的实际生活背景,出示三组学具,分别有三件、四件、五件,让同学计算它们的总价。同学可以根据自身的实际水平,自主选择题目,进行相关的练习,达到满足不同层次同学的需要,教师从中了解同学的掌握情况。

  4.概括简算的步骤。

  当同学学完新知,让同学根据出简算的步骤,可以培养同学运用结构的学习方法,同时养成良好的学习习惯。

  5、拓展练习。

  (1)、判断能不能简算。主要强化同学学习习惯的养成,培养同学计算时能根据题目灵活应变,防止同学陷入思维定势,误以为学了简算,就什么题目都要用简算。

  (2)、开放题。为同学提供了思维的方法,有利于让各类同学都得到发展。

  《运算定律》教学反思 篇6

  四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:

  一、学会寻找题目的特点。

  (1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

  例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

  (2)把接近整数的写成整数和一个一位数相加减。

  例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

  (3)寻找能凑成整数的数,把它们相加减。

  例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

  例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

  二、巧妙运用简便计算。

  简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

  例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

  三、注重题目的对比。

  有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

  例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

  例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。

  总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

  《运算定律》教学反思 篇7

  本节课的新知识在以前的数学学习中都有相应的认知基础,只是没有形成知识体系,教师在充分备学生和教材的基础上为大家奉献了一节实效又实用的课堂。教师能根据旧知与新知的结合点深入认识原来学过的知识和方法。数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下面的探究呈现素材。

  教学中,两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。在充分感知个性创造的基础上,使学生体会到符号的简洁性,从而发展了学生的符号感。

  本节课的教学,学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,但并未将两者放在一起对比,抽象出异同。在学完两种运算定律后,应给学生一定的时间比较两种运算定律的区别,加深学生的理性认识,促进学生思维灵活性的发展。

  另外,为了培养学生的思维的创造性,教师在总结时不能简单说说收获,可以提一个思维拓展的问题。如:学了加法交换律和加法结合律你还会想到什么呢?学生猜测后思绪会飞扬起来,甚至会问老师,亲自动手实践。只有激发学生积极思考,才能使学生的思维由“表层”走向“深入”,促进学生的思维发展。

  《运算定律》教学反思 篇8

  在本单元教学过程,我们主要采取利用讲学稿“先学后教,当堂训练”的教学模式进行教学,我们觉得有以下几点是比较成功的:

  1、简便计算不仅是一种知识技能,它更是一种优化思想,这种优化思想不是一节课就能完成的的事,它不能灌输,更不能速成,它需要一个长期感悟的过程。

  2、简便计算与学生的数感是密不可分的。因此,培养学生良好的数感,对于学生提高运算能力,大有益处。

  3、简便运算的思路会有很多,我们要注意培养学生算法多样化,培养学生灵活、合理选择算法的能力。

  4、在教学中,教师要把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。同时,加强变式、逆向的练习,提高学生举一反三、有效迁移的能力。

  5、简便计算的意识还要渗透于解决问题中,在没有“简便计算”这样的显性要求下,学生也能考虑简便计算。

  6、我们应该努力让学生在简便计算的过程中,逐渐提高简算的兴趣,逐渐掌握简算的依据,逐渐领会简算的技巧,真正具备简算的意识,让学生明白三个层次:

  ①、进行简算应该由一定的运算定律、性质作为依据;

  ②、必须正确、适当地运用运算定律、性质进行简算;

  ③、应该根据数据特征灵活选用运算定律、性质。

  《运算定律》教学反思 篇9

  本节课是新教材四年级第一学期的教学内容,研讨目的是12月份的“新基础”现场活动的前期随堂课的性质,虽说是随堂课的性质,但是上课前的准备工作不亚与平时的研讨课,因为本次听课的对象是华师大的吴亚萍教授。之前我好几次也洗耳恭听过她的几次评课,对我的启发和帮助是非常大的,因此对“新基础”有了个大概的了解。

  这次她能听我的随堂课,是一次很好的学习机会。正如学校领导所说的那样是对我的课堂教学的把脉与诊断。在《运算定律》这节课备课前拜读了吴教授的《小学数学新视野》,也试图想把新基础的教育理念能体现在这节课中,但是从课堂执行情况看,教学理念的更新不是搬家这样的概念,学习新基础理论也不是一种即兴状态,要想把新基础理念运用到实践上还要*平时的“练功”,那是一种主动的教学意识的转变。就目前每个教师已经形成的课堂习惯而言,这样的转变在起始阶段是艰难的。听了吴教授的评课我也了了解自己的上课状态。

  一、对“从容”的重新认识

  对“从容”一词的理解无非停留与遇到紧急的事情冷静、镇定不慌不忙。如果用在教学上,最多是在上课时遇到紧急的情况下也能泰然处之的一种状态。这样的状态要在刚踏上工作岗位时却是需要这样的“从容”,生怕慌乱情急之中乱了教学次序,然而已有近十年工作时间的我“从容”已不再是一向首要的教学指标了,把“拿什么来从容”应该是我的教学追求的目标。对这一词的理解已经不能停留在教师身体的层面,更应拓展到师生身心合一后的一种从容,是教师能处理各种教学意外后的一种从容,从容的背后反映了教师的综合素质的能力。

  二、对“激情”的再次认可

  “激情”原本在我眼里那应该是语文老师的上课状态,因为那是课文的需要,情感培养的需要,而在数学课上如果把“激情”放在首位的话,有些喧宾夺主的味道,所以几年来课堂教学中这样的做作情绪本人一直处于不屑一顾的鄙视,长期下来在造成上课“平”的现象。在听了吴教授的评点之后,我非常赞同她提出的关键时刻释放“激情”,能调动学生强烈的求知欲望。如这节课中,引导学生对规律的验证时,应对突出一些重点的关键词,能帮助学生对规律的验证有一定的指向。只有教师本身积极的投入到教学中,那么学生才有可能对你有一个“热情”的回应,这种回应主要体现的学生的思想意识上的回应。

  三、对“数学素养内涵”的拓展认识

  在《小学数学教师》第10期《教师应追回失落的数学素养》一文中谈到了有关数学教师的素养问题,这次吴教授也在评点中谈到了这个问题,看来面对当前的课程改革教师的数学素养是一个非常关注的问题。数学教师应当具有广泛的知识背景,不仅要明了小学数学知识的背景、地位与作用,精通小学数学的基础理论知识,熟悉小学数学内部的系统结构。其中包含四个方面:

  1、培养学生学习数学兴趣能力,以此激发学生的学习数学积极性。

  2、抓住课堂上动态生成的资源,作为活的教育资源,引发进一步的思考,这些亮点有助于学生数学学习的顿悟、灵感的萌发、瞬间的创造,促进学生对新知理解和掌握。

  3、合理运用数学知识迁移,利用学生已有的数学知识水平,进行合理的数学知识迁移,从而为新知的形成成为可能,变繁琐为简单数学知识学习,变枯燥为有趣数学知识学习。

  4、引导学生从数学角度去思考问题。义务教育阶段的数学教育给学生带的绝不仅仅是会解更多的数学题,而是非数学问题时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题。这是目前作为教师的我只注重提高数学教学质量时缺少思考的方面,数学学科质量不能仅仅停留于学生“做”的过程,忽视了自身“思与行”的反思。

  四、重新认识“数学学科育人价值”

  数学学科的育人价值在我眼中无非是培养严谨科学的学习态度,养成良好的思维品质就可以了。听了吴教授对数学学科育人价值的阐述后,我觉得“人人都是教育者”这句话的真正理解。作为无论你是哪门学科的教师,都应该充分挖掘育人资源,因为这是每个教师共同的责任。

  “新基础教育”数学教学的改革,从原来关注数学知识的层面向更深的层次开发。数学学科对于学生的发展价值,除了数学知识本身以外,至少还可以提供学生特有的运算符号和逻辑系统,使学生具有数学的语言系统;可以提供学生认识事物数量、数形关系及转换的不同路径和独特的视角,使学生具有数学的眼光;可以提供学生发现事物数量、数形关系及转换的方法和思维的策略,使学生具有数学的头脑;可以提供学生一种惟有在数学学科的学习中才有可能经历和体验并建立起来的独特的思维方式。

  “教书”是为了“育人”,“育人”就需要育人的资源,这样的资源来自:

  1、以数学知识的内在结构作为育人资源

  2、以数学知识创生和发展的过程作为育人资源

  3、以数学发明的人和历史作为育人资源

  4、以学生的学习基础和生活经验作为育人资源

  5、以开放的问题设计提升数学教学的育人质量。

  一堂短短的35分钟的课,在专家眼里可以发现许多问题,看来作为教师不应该停下学习的脚步,时代的需求远远超过你想象的速度。学习的态度也不能忙于求成,只注重形式而忽视对内容的本质的理解。

  《运算定律》教学反思 篇10

  在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

  首先我不仅注重了情境的导入,提高孩子们的参与热情。

  开启课时,我注重从孩子的.身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。

  同上我还鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。

  第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;

  第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!

  《运算定律》教学反思 篇11

  本单元运算定律是运算的基本性质,被誉为数学大厦的基石,学生在学习的过程会比较抽象化,概括化,在学习的过程中,帮助学生去理解每一个定律的内涵及运算意义。我在教学过程中,重视符合学生已有的认知特点和横向知识结构,以研究思想,发展学生的数学模型思想,培养学生合理选择算法的能力,发展思维的灵活性。

  对于本单元的复习课,我首先充分了解学生的掌握情况,进行学情分析,帮助学生建立知识体系,形成逻辑思维能力,有条理清晰的掌握运算定律及每个定律的用法。如何选择合适的方法,在课堂上,我们师生共同归纳总结回忆,梳理知识点。对重难点,我重点强调,查漏补缺,接着让孩子们画思维导图,培养他们建立知识体系,用自己的方式来总结知识点。学习真正学会了什么,其实是形成自己的知识体系,学会方法和思想。

  思考:这一单元的学习我不断思考,运算定律对于孩子来说比较抽象,为了寻找答案,孩子们为自己设计了一条丰富生动的探索之路。课上,我们师生成为学习伙伴,在探究的过程中相互扶持,相互促进,不仅寻找问题的答案,更重要的是摸索出的一条研究的路径。其实,我们常常在教学中很有很多担心,担心学生找不到学习的方向,于是我们在教学中不停的敲黑板:看这是重点,快快看过来;担心学生够不到目标,所以我们在学习过程中设一个又一个问题,铺成一级又一级的台阶,扶着他们前行。担心学生走弯路,我们为他设计了一条康庄大道,连路上的小石子也要细细的扫开。而把握好课堂生成的资源,碰撞出思维的火花,促进新的教学内容生成,实现教学动态灵活发展并没有达到。这是我需要不断反思以及努力改进的方向。

  《运算定律》教学反思 篇12

  本节课主要学习小数的简便计算,简便计算的依据是根据整数乘法运算定律推广得来的。本节课的内容对于优生来说,还是很容易掌握的,但对于学困生来说,有比较大的难度。

  本节课采用了小组合作学习的方法,让优秀的小组长担任小老师点对点的辅导学困生,这样既减轻了老师的工作量又提高了教学效果,同时也使优秀学生和学困生都有进步。这是非常好的。

  在学习过程中,乘法的分配律则明显是学生的难点,部分学生无法举一反三。如4.8×9.9,2.7×99+2.7这些稍有变化的简算题错误率较高。在以后的复习课中,要重点复习乘法分配律的灵活应用。

  在小结时,学生的表达能力比较有限,主要是因为平时训练不够,学生会用学过的知识解决一些数学问题,但却不能用语言概括这些数学活动,这需要以后的课堂中长期的引导。

  《运算定律》教学反思 篇13

  本单元是系统学习基础运算理论知识,学生在前面的学习中已经有了大量加法、乘法交换或结合性的经验,是学习本单元知识的认知基础,通过本节课的学习,学生可以加深对加法运算定律的理解,也为学生今后进一步学习奠定坚实基础。

  1、重视规律发现的过程

  本节课的学习就开启了学生对四则运算规律的探究,发现一条规律并不难,但掌握发现规律的方法十分重要。所以从学习加法交换律开始,就一直让学生亲身经历探究和发现的过程“观察发现--举例验证--归纳总结--字母表示”,不断强化具体步骤,就教给学生一把发现规律奥妙的金钥匙。

  2、重视直观演示的操作

  很多教师在教学规律课的时候仅仅只是局限在规律发现的过程,而我在教学本节课时是把规律的发现建立在加法的本质上,通过线段图直观演示的操作,帮助学生发现和理解规律,丰富了学生的认知,形成了基本模型。

  3、充分激活已有经验

  在此之前学生已经系统地对加法进行了学习,今天就在具体的生活情境中展开研究。数学的学习是在活动中建立起来的,学生在老师的带领下从生活中的数学开始,逐步抽象到用字母来表示规律,让学生的思维循序渐进的进行了质的飞跃。

  《运算定律》教学反思 篇14

  备课时,我原本以为这是一节比较简单的内容,前面刚学习了整数的运用运算定律进行简便运算,而此节课只是将这些运算定律迁移到小数的加减运算当中。但是在今天课堂上却出现了很多波折。

  课始,我从复习整数的运算定律及应用入手的,想让学生能从复习中回忆旧知,为学生学习新知做好铺垫。我先出示三道题:25+36=36+25(17+28)+72=17+(28+72)请学生抢答,然后说出简算的依据。然后告诉学生:整数加法的交换律、结合律对小数加法同样适用。应用运算定律,可以是一些小数计算更简便。

  然后出示0.6+7.91+3.4+0.09让学生在对比中发现运算定律的简便性。加强合作探索,培养学生的参与意识,让学生在轻松、愉快的环境中经历知识的形成过程,体会数学与生活的联系及学习的乐趣。

  另外,虽然题目设计有层次,但出题样式可以更多。在现在的计算当中,不一定每一个题目都能进行简便运算,而且根据很多学生平时计算习惯来看,他们宁愿按部就班地计算也不去观察怎样计算可以更简便。所以,在平时的教学当中,多引导学生认真审题,能简算的就简算,这样逐步培养数感,提高计算速度及正确率。

  《运算定律》教学反思 篇15

  《加法运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我充分调动了学生的主观能动性,通过小组合作探究,让学生经过讨论,观察推断,发现规律,收到了良好的教学效果。

  1、把课堂还给学生,我一直在尝试让学生自己学自己讲,小组合作探究,应该说学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了一定的认识和自己的理解。两个运算定律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

  2、整个教学过程教师都是引导者,让学生自主合作,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  3、学生通过自己思考、小组讨论,理解和掌握了加法运算定律。学生用自己喜欢的方式表示出加法运算定律(字母表达式等),充分调动了学生的积极性,效果良好。

  4、因为学生的抽象理解能力还有些欠缺,对于加法的运算定律还需要老师加以引导,帮助学生更深入理解。课堂上因为学生展示、学生讨论,时间的分配和把握就显得不够合理,这也影响了学生对知识的巩固和理解。

  《运算定律》教学反思 篇16

  本单元是系统学习基础运算理论知识,学生在前面的学习中已经有了大量加法、乘法交换或结合性的经验,是学习本单元知识的认知基础,通过本节课的学习,学生可以加深对加法运算定律的理解,也为学生今后进一步学习奠定坚实基础。

  1、重视规律发现的过程

  本节课的学习就开启了学生对四则运算规律的探究,发现一条规律并不难,但掌握发现规律的方法十分重要。所以从学习加法交换律开始,就一直让学生亲身经历探究和发现的过程“观察发现--举例验证--归纳总结--字母表示”,不断强化具体步骤,就教给学生一把发现规律奥妙的金钥匙。

  2、重视直观演示的操作

  很多教师在教学规律课的时候仅仅只是局限在规律发现的过程,而我在教学本节课时是把规律的发现建立在加法的本质上,通过线段图直观演示的操作,帮助学生发现和理解规律,丰富了学生的认知,形成了基本模型。

  3、充分激活已有经验

  在此之前学生已经系统地对加法进行了学习,今天就在具体的生活情境中展开研究。数学的学习是在活动中建立起来的,学生在老师的带领下从生活中的数学开始,逐步抽象到用字母来表示规律,让学生的思维循序渐进的进行了质的飞跃。

  《运算定律》教学反思 篇17

  这节课主要讲的是综合运用加法结合律和加法交换律来解决实际问题。

  这是我讲的第一节课,课前虽然做了很多准备,但是到了课堂上还是觉得不够充分,做教案和课件时所想到的情况远远不足以应对同学们课上所做的反应,比如一道题的解法,我准备三种,但是学生就可能想出十种、二十种,甚至更多。这就需要我在课上随时注意捕捉同学们的想法并理解和解决引导。虽然上课时我并不紧张,但是在应对同学们的种种想法解题思路时还是很局促。在讲到这节课的重点:计算李叔叔骑行总路程时,需要运用加法交换律和加法结合律,在这里我只讲到了原式之后的第一步交换两个加数的位置,第二步四个加数两两结合,最后得出结果比按步骤计算要简便,却没有想到同学们早已经把四个数按原来顺序相加的原式省略掉了,直接就是交换位置之后两两结合的式子了。直接导致这样讲定律的运用时就不知如何下手,很是被动。

  在以后的课堂上,我一定会注意将课前的准备工作做的很细致才行,方方面面要想到。尤其注意跟随一些接受能力比较快的学生的方式用比较“方便”的方式来思考问题进而注意在课堂上应该怎样引导他们;还要注意不能忽视部分接受能力比较慢的同学,其实讲课大部分时间是要将给他们的,只要他们能接受,能听懂,那么这堂课就差不多达到目标了。

  课堂刚开始同学们非常积极,可能因为本身加法结合律和加法交换律对于同学们来说都不是很困难,掌握的比较好,所以会很乐意来展示自己的学习成果;也可能大家对于我这个新来的老师比较好奇,课上想表现自己,所以还比较活跃。但是毕竟小孩子的注意力集中的时间有限,在课堂进行一段时间后就不再像开始那样气氛活跃了,仅仅是一部分平时一贯活跃的同学继续对我提出的问题积极回应做答,其他同学不再积极,甚至可能开小差了。对于集中同学们注意力这个问题,以后应该及时注意同学们的反应,适时调动他们的积极性,比如强调一下注意听讲,比一比谁坐的好,谁反应快哪一个小组领先等等方法来吸引同学注意力;也可以通过表扬做的好的同学来激励其他同学,多鼓励少批评。

  经验还需慢慢摸索,逐步积累,每堂课都可能暴露出问题。我一定会在以后的课堂上注意这些问题,争取讲好每一节课,让每个学生都学会。

  我觉得王春风第一次讲课还是不错的,能分析自己的不足和自己以后注意的问题,老师能不能根据学生的回答及时扑捉信息引导,甚至纠正或利用学生的错误来完成重难点的教学是非常重要的,对于一个实习老师开始不可能做得很好,这也是在情理之中的事情。

  《运算定律》教学反思 篇18

  学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算。基本能够灵活运用。

  然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很生很多是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

  综上所述,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律。

  《运算定律》教学反思 篇19

  本节课的新知识在以前的数学学习中都有相应的认知基础,反过来,学了本节的新知识又可以促进学生,更深入认识原来学过的知识和方法。教学时,充分利用了主题图的故事性,逐步形成连贯的情境、后续的问题,使本节的教学形成一个连贯的整体。

  1、在情境中初步感知规律

  数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材。

  2、在例举中验证规律

  教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。

  整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。这里主要通过学生讨论、交流、汇报等环节,给学生一个自主的空间。由于“运算律”属于理性的总结和

  《运算定律》教学反思 篇20

  学完加法交换律后,我感觉内容比较简单,学生也容易理解。做了几个简单练习后,我准备结束这个内容。按照惯例,我问了一句:学了这个定律,你还有什么问题吗?这时马上有学生提出:加法中有交换律,那么减法、乘法、除法中有没有这个定律呢?

  我一阵欣喜,学生已经学会了接受新知识时把知识延伸开来。虽然打乱了我这节课的教学计划,我马上引导学生一起来总结刚才是如何学习得到加法交换律的方法,在此基础上提出能不能根据刚才举例—观察—归纳—验证的方法来想一想解决这个问题呢?学生们马上进行小组合作探讨验证。在经过短暂的讨论交流后,同学们一致认为乘法也有交换律,并能举例应用。但说到减法和除法时,有了分歧,开始争论起来。

  生1:我认为减法中没有交换律,例如8-5=3,交换被减数和减数的位置5-8就不能减了。

  生2:可以减得-3(学生已经从课外学到了负数的知识)

  生3:差不一样,所以没有交换律。

  这时又有一个同学反驳到8-8=0交换位置后还是8-8=0,我认为减法中有交换律。这时很多同学露出了困惑的神情,到底谁的对呢?短暂的沉默后,马上又有一个同学站起来说:减法中必须被减数和减数相同时,才能出现交换位置差相等的情况,这是很特殊的情况。但加法交换律和乘法交换律是任何数都可以的,所以减法和除法都没有交换律。我带头为这位同学的发言而鼓掌,更为他们的勇气和智慧而高兴。学生们在争论中解决了问题,从中体验到了学习过程中的成功与失败,更加深了知识的理解,培养了学习的能力。

  《运算定律》教学反思 篇21

  加法运算定律是四年级下册第三单元内容,是在加法及验算、四则混合运算的基础上进行教学的。本节课的新知识在以前的数学学习中都有相应的认知基础,学习本节知识又可以促进学生,更深入认识原来学过的知识和方法。在教学加法运算律的过程中,我依据学生的年龄特点,把握学生的认知规律,取得了较好的教学效果。下面谈谈我在课后的反思:

  一、通过回顾验算的方法来完成学生新旧知识的迁移,验算就是交换;通过摘苹果来暗示学生凑整可以使运算简便,为学习结合律以及简便运算打下基础。结合成语故事朝三暮四导入新课,寓教于乐,可以更直观的让学生感受加法交换律,并加深学生的印象,并让学生由特定的两个加数延伸到任意两个加数,从而引出加法的交换律。

  二、引导学生在已有的基础上发现和归纳出运算定律。学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,为新知的学习奠定了良好的基础。但本节课毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握。因此,利用已掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过学生自己的举例发现规律,概括出相应的运算律。

  三、教学中,运算定律是让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。再让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样实现了运算律的抽象内化,一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。同时,使学生体会到符号的简洁性,从而发展了学生的符号感。

  《运算定律》教学反思 篇22

  加法运算定律是四年级下册第三单元内容,是在加法及验算、四则混合运算的基础上进行教学的。本节课的新知识在以前的数学学习中都有相应的认知基础,学了本节的新知识又可以促进学生更深入认识原来学过的知识和方法。在之前的教学中,运算定律都是让学生通过观察、比较和分析,然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。我认为这样做学生固然能够掌握运算规律,但并没有从本质上真正理解规律。因此,我在教学时,重点让学生从加法的意义上去理解并掌握规律,主要做到以下三个方面:

  一、唤起学生的认知经验,初步感知规律。

  教学中,结合情境引导学生列式解答问题,并抓住两个不同加法算式的计算结果相等,且都能解决问题为切入口,引导学生得到等式。

  二、组织举出相关例子,充分展开讨论,初步提炼规律。

  请学生以上一等式为参照,再举一些有着同样现象的例子,讨论交流具有此类特征的算式的特点。在此基础上,引导学生用数学语言表达这种规律,初步提炼规律。

  三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。

  教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和一年级学的凑十法以及加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律加法结合律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。

  本节课的教学,应该说学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。在教学的过程中仍存在着诸多的不足之处:学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题。课堂语言不够精炼,重复啰嗦;关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,在学完两种运算定律后,应给学生足够的时间练习巩固,在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,加深学生的理性认识,促进学生思维灵活性的发展。

  《运算定律》教学反思 篇23

  本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。

  简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

  上了这节练习课后,学生不仅能解决问题,而且简便计算的方法也掌握得比较好,所以我认为“简便计算”的教学必须遵循“以生活实际为出发点,展示知识的发生过程,让学生知其所以然。”

  《运算定律》教学反思 篇24

  这节课,我通过对简便计算方法的整理和复习,使学生进一步理解运算定律和运算性质,灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等进行简便计算,提高计算能力。学好《复习四则运算的定律和性质》对学生今后的计算起至关重要的效果,下面我就这节课谈谈自己的做法。

  首先我在课前布置学生预先对简便计算方法的做一次归纳整理。在四则混合运算的简便方法教学中,学生都觉得课堂教学,都是与数字和符号打交道,不具有挑战性,虽然对优等生有学习的趣味,但是学困生学习没有积极性。这些原因直接影响的课堂的教学效果,那么如何提高学生的学习积极性呢?

  我在平时的教学中经常进行计时计算训练,把每次完成计算的时间写在卷面上,学生们都有一种好胜的心理,学习的积极性较高。所以,一上课,我首先来一个口算计时计算比赛,挑起学生学习的热情。

  接着提问:你们在计算的过程中使用了哪些运算定律和运算性质?口算题比较简单,学生在尝试了胜利的喜悦后,激情澎湃,很快进入学习状态。接着,通过填空、判断、口答题的练习,进一步加深学生对运算定律和运算性质的理解,再结合例题,让学生说说容易出错的地方,引起学生注意知识的联系。然后进行综合、提高练习,练习由浅入深,并进行计时,学生饶有兴趣。

  在练习中,我要求需要帮助的同学举手,并给予适当的提示,每完成一道就同桌交换批改,然后说出有错的地方。在课堂教学中,既有教师对知识的预设,但更多是学生在学习过程中知识的动态生成。

  学生知识生成过程中,既有效的,也有的是无效的和费效的。因此如让学生知识生成过程中拔乱反正,也是一个值得我们教师去研究的课题。练习简便运算时,可以让学生先观察每道题的特点,思考能否应用运算律或其他已经学过的规律使计算简便,然后计算,并在小组里交流各自的方法,相互促进,共同提高。

  我们常遇到一种简便的方法和一种原始的方法学生往往是喜欢原始的繁杂的方法去完成练习,而简便的方法却不用。有些教师在教学过程中,为了体现学生的自主性,会对学生说“你觉得那种方法好你就用那种算”。这样造成了很多学生都认为老办法好,更适应自己去练习。而对新的、简便的方法弃之不用。从而造成了这类学生对新知识不接受。有些人常以新课标的道理说“学生喜欢用什么方法去完成就用什么方法,在他心目中这种方法是最简便的,无需去干预。”我觉得这样做是不对的,明明有直道,为什么要去走弯道呢。为了让学生能掌握并使用这种简便的方法了,我安排了一场比赛,在计算能力相当的两组学生中,一组用老方法计算,一组用新方法计算。看谁计算的又对又快。结果是很明显,用新方法做的同学早就计算好了,且正确率很高。而用老方法做的同学还有一半以上没完成。孰优孰劣一比便知,学生都看到了其中的优越性。

  本节课通过多层次的练习,学生不仅掌握了所学知识,发展了能力,同时也照顾到全班不同层次学生的学习水平,使他们体验到成功的喜悦,情感得到满足。但这节复习课却使我明白今后应充分尊重学生,应跳出思维定势,换个角度考虑问题。具有以生为本的理念,课堂才有生命,才不会留有遗憾!

  《运算定律》教学反思 篇25

  小学阶段的数学总复习,我本着每天复习内容少而精的原则,把所要复习的内容理解透掌握好。

  本课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,我改变以往的做法,老师出题学生做,而是让学生自己自编或搜集简便运算的题目。这样学生积极性更高了,看我编的题目能不能选上。学生在编题和选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:

  (1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。

  (2)关注了学生易错的题目。

  (3)关注了一些生僻的解法。我们要相信学生,给学生一个舞台学生会还你一片精彩。

  最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,让学生以竞赛、限时做题看谁做得又多又对等多种形式进行训练,计算题枯燥无味,学生在测试中,如果做的好,采取一些鼓励机制,如加分或加星等。

  整堂课下来学生的精力高度集中,教学效果也很好。

  《运算定律》教学反思 篇26

  本节课,我通过观察、比较和分析、推理等途径引导学生找到实际问题不同解法之间的异同系,自主发现并验证、归纳这两个运算律,初步感受运算规律作用,有意识地让学生应用已有经验,经历运算律的发现过程。

  一、在导入新课这一环节,我让学生回顾学过的运算,得出课题,让学生由课题思考本节课所学的知识,这样设计使教学活动的探究性更浓一些,同时也为接下来的学习留下了创新的空间 。

  二、新授环节,我通过创设学生熟悉的生活情境,引导学生获取信息,让学生结合相关信息,提出用加法计算的问题。学生都能准确提出问题,这为接下来探索规律奠定了基础。在这个环节,我进行了创新处理,让学生开放思维,尽情提出问题,并将本节课探究活动必要的三个问题同步呈现出来,同步引导学生用不同的方法列式解答,同步通过口算揭示等式,为下面的探究运算律做好有效的铺垫,促进后面探究活动更加紧凑流畅。在首次探索运算律,学生还不懂得运用科学的探究方法,我在此环节探索加法交换律的设计中,加强了教师的引导作用,启发学生按照“猜想——验证——总结”的模式深入探究规律,为今后探索数学规律,起到方法上的导向作用

  三、在自主探索加法结合律这一环节,我在初步引导学生观察等式特点之后,放手让学生在合作组中自主探索第二个规律,真正做到让学生成为学习的主人,自主探索规律,学以致用。

  四、最后,我让学生说一说上完这节课的心里感受。学生对哦能用自己的语言表达这两个定律,也会运用,效果还可以。

  《运算定律》教学反思 篇27

  《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。

  1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。

  2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。

  还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!

  3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。

  4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。

  《运算定律》教学反思 篇28

  小学阶段的数学总复习,我本着每天复习内容少而精的原则,把所要复习的内容理解透掌握好。

  本课设计了两个环节:

  (1)复习运算定律,

  (2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,改变以往的做法,老师出题学生做,而是让学生自己自编或搜集简便运算的题目。这样学生积极性更高了,学生在编题和选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:

  (1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。

  (2)关注了学生易错的题目。

  (3)关注了一些生僻的解法。我们要相信学生,给学生一个舞台学生会还你一片精彩。

  最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,让学生以竞赛、限时做题看谁做得又多又对等多种形式进行训练,计算题枯燥无味,学生在测试中,如果做的好,采取一些鼓励机制,如加分或加星等。

  整堂课下来学生的精力高度集中,教学效果也很好。

  《运算定律》教学反思 篇29

  在备课时,我原本以为这是一节比较简单的内容,四年级时学生就学习了整数以及小数的运用运算定律进行简便运算,而此节课只是将这些运算定律迁移到分数的加减运算当中。但是在今天课堂上却出现了很多波折。

  课始,我从复习整数及小数加减法的运算定律及应用入手的,想让学生能从复习中回忆旧知,为学生学习新知做好铺垫。我先出示三道题:

  ①25+36=36+25

  ②(17+28)+72=17+(28+72)

  ③(0.5+1.6)+8.4=0.5+(1.6+8.4)

  请学生抢答,然后说出简算的依据。但我发现,很多同学能用字母把运算定律表示出来,就是用语言表达不了。我想,可能是平时的语言训练不够,在教学过程当中,尽量让学生多说,鼓励说,提示说。开放性的教学对开发学生的聪明才智和创造潜能,切实有效地调动学生的积极性,使学生正真成曾学习的主人并获得全面发展有着重要意义。本公式复习完后,我给学生抛出了一个问题:如果这些字母是表示分数,这些定律还适合吗?接下来由学生自主举例证明。学生积极性很高,但我发现很多同学都是直接从左边等于右边再计算。她们完全不知道怎样是证明。最后,我只好引导大家一起证明加法交换律在分数的计算中适合,并说明证明的方法,然后再放手让学生去做。曾记得这样一句话“今天的教是为了明天的不教”,只有基础牢固了,学习方法到位了,才能更大地培养学生的学习能力,促进学生更好地发展。

  另外,虽然题目设计有层次,但出题样式可以更多。在现在的计算当中,不一定每一个题目都能进行简便运算,而且根据很多学生平时计算习惯来看,他们宁愿按部就班地计算也不去观察怎样计算可以更简便。所以,在平时的教学当中,多引导学生认真审题,能简算的就简算,这样逐步培养数感,提高计算速度及正确率。

【《运算定律》教学反思】相关文章:

运算定律与简便运算教学反思04-19

《运算定律》的教学反思06-18

运算定律教学反思06-13

运算定律教学反思03-03

《运算定律》教学反思范本06-14

《加法运算定律》教学反思06-14

《加法运算定律》教学反思06-25

《运算定律》的教学反思范文07-06

《运算定律》教学反思范文11-25