- 相关推荐
三元一次方程组的解法教学反思(精选11篇)
在现在的社会生活中,我们要有一流的教学能力,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。那么你有了解过反思吗?下面是小编帮大家整理的三元一次方程组的解法教学反思,欢迎阅读,希望大家能够喜欢。
三元一次方程组的解法教学反思 1
教学过程可以由指令性操作活动向自主性探索实践转化。”“动手实验、自主探索与合作交流是学生学习数学的重要方式。”课堂教学应当走过这样的过程:“学什么?为什么学?怎么学?用在哪?”学生要学习新事物,除了自身对新事物的兴趣外,还要体会到学习的必要性,学习的价值。如教学《三元一次方程组的解法》这一课时,教学时我安排了比较充实的实践、探究和交流的活动。首先提出了一个问题:如何解二元一次方程组?二元一次方程组的解法体现一个什么数学思想?再出示一个三元一次方程组,三元一次方程组又该如何解?问题提出后,鼓励学生通过观察、讨论、交流并尝试解答,从而逐步探索出方法—逐步“消元”。这个过程中,学生不仅学会了解三元一次方程组,同时体会了分析问题的'一种方法,及转化的数学思想积累了数学活动的经验,感受到学习的成功,体会了学习的功效。
三元一次方程组的解法教学反思 2
“8.4三元一次方程组解法举例”是选学内容,是学生具备二元一次方程组这一基础知识后的拓展内容。这节课是三元一次方程组的第一节新课,学生刚刚比较熟练二元一次方程组的解法,一下了来了三个未知数,很多都感觉比较晕,不知从何下手,很难找到解决问题的突破口,因此教师应在下一节课中适当再进行巩固才行。三元一次方程组作为刻画现实问题的数学模型之一,它含有三个未知数,如何消元,先消哪个元是需要认真思考的。如何正确、灵活求解三元一次方程组是值得探究的问题。
通过本节课的教学,使我感觉学生对类推能力的缺乏,对二元一次方程组的方法和算理的不理解,同时也说明学生对用所学的知识解决问题的能力的缺乏,以及学生对掌握所学知识,只满足基本会做而不花心思去认真思考,学生的小组合作能力的缺乏,学生不会用集团的力量解决问题,学生在小组合作过程中不会提出问题分析问题。总之学生的分析和解决问题的能力比较弱,以及应用所学知识解决问题的能力有待进一步加强。熟练地掌握方程组的解法,不是靠题海磨练,而是要善于观察,勤于思考,体会一般思路、题型特征和解题技巧之间的关系。
本节课主要内容是学习三元一次方程组的解法,由于三元一次方程组相关知识与二元一次方程组类似,所以先结合实例运用类比法学习三元一次方程组的有关概念,然后利用消元思想解三元一次方程组,尽管三元一次方程组与二元一次方程组的解法有许多类似之处,毕竟三元一次方程组复杂的多,所以在教学过程中,重点处理好与二元一次方程组解法中不同的环节,在比较的过程中学习新知识,使学生对消元思想有更深层次的`认识。
类比迁移,举一反三,类比二元一次方程组的知识学习三元一次方程组,并进一步应用于解其他多元一次方程组,同时根据方程组的特点灵活选择恰当的解法,在应用过程中形成技能技巧。
在教学中,解决方程组的基本指导思想就是“消元”。而消元时,教师应注意引导学生先考虑好消去哪个未知数,再具体使用加减法和代入法进行消元,即根据不同的方程组结构特点,采取相应的消元策略是至关重要的。以此逐步培养学生分析题目特点、选择合适方法的学习能力。
本文在教学的基础上,将三元一次方程组的解法通过题目的特点进行归类教学,使学生在学习的过程中注意对基础知识进行提炼、归纳、整理,对基本解法的清晰认识,通过必要的练习,达到掌握基础知识和提高基本技能的目的。
三元一次方程组的解法教学反思 3
意图之一是:以学生身边感兴趣的事情,创设“问题情境”,使学生感受到问题是“现实的,有意义的,富有挑战性的”,让学生在不自觉中走进自己的“最近的`发展区”,愉悦地投身“探索二元一次方程组的解法”教学活动。
意图之二是:让学充分体会消元的思想,化归的思想。逐层递进夯实基础,建立知识体系,打好知识框架。掌握解二元一次方程组的步骤和书写格式规范。
意图之三是:引导学生自主探索,给学生充分体验的时空。本节课要引导学生学会思考。注意研究的问题提法能够给予学生的启发,从而达到问题设置的目的只有学生思维上真正参与到教学中来,才会实现教学的师生互动、生生互动,促进教学方法、学习方法的改变。
一般在遇到重点、难点问题、有一定技能技巧的问题、确定解决问题的策略时提出想一想,要求学生认真动脑思考,拿出自己的思想和方法来。在教学中要坚持“先独立思考,再相互议论”。可以将不同程度的学生搭配分组,组织好小组的交流,促进共同提高。
三元一次方程组的解法教学反思 4
备这节课时,我就想到以前上这课很没有意思,学生觉得内容很简单很枯燥,因为昨天已经学过二元一次方程,今天二元一次方程组的概念就很容易接受了,而且根据简单的实际问题来列方程组对他们而言也不是难事。在备课时我就从学生的角度去看教材,既然内容简单那就让学生来讲。所以我今天上课的流程变成先复习昨天所学的二元一次方程以及二元一次方程的解的定义,然后直接给出本堂课的内容:二元一次方程组以及二元一次方程组的解的概念,请同学们根据名称思考什么是二元一次方程组以及二元一次方程组的解呢?请举例说明。给他们几分钟时间思考以后,就请学生来当小老师,上黑板来讲,也有同学觉得小老师讲的不够清楚,又上来重讲的,一共请了3名同学上来讲。下面的同学听过以后提出他们的问题,有同学提出的问题很简单,也有同学提出了一个引起大家争议的问题,就是x=3,x+y=4这样的方程组是不是二元一次方程组,在大家争论以后我给出了正确答案以及这个概念中的'注意点。后来我又请学生根据小老师在黑板上列出的二元一次方程组编应用题。最后在请学生来总结今天所学到的主要内容和注意点。
通过本节课的教学实践,我发现一些比较成功的地方:
利用知识联系实际的教学方法,激发学生的学习兴趣,提高学生学习效果。例如:在新课引入时,提出了上节课所留的问题,老牛背上的包裹数是多少,小马驮的是多少,很自然的引入本节课的内容:解二元一次方程组。你想知道x、y是多少吗?如何求出来呢?我们解过什么样的方程?是如何解的,能把这个二元一次方程组变成我们学过的一元一次方程组吗?提出了一连串的问题,激发了学生的好奇心、好胜心,学生们争先恐后的回答问题,增加了课堂的活跃氛围。这样的教学方法使学生对如何解二元一次方程组的印象更加深刻。
注重学生的合作精神与探究能力的培养,体现了新课改的精神。例如:在解决老牛与小马驮的包裹数时,我采用了分组讨论的方法,学生通过这个活动后,最好一致认为要想解决此类问题,关键是把其中的一个未知数用另一个未知数表示出来,从而达到了消元的目的。于是,我借机就把用一个未知数表示另一个未知数的形式复习了一遍,总结了解题的五个步骤。
注重知识的拓展与综合。比如:在做最后一个练习时,联系了完全平方与绝对值的综合性问题。求式子(x+y—2)2+|x—y—4|=0中x与y的值。
注重及时巩固练习,加深印象。本节课我采用了一对一的练习,每讲一种类型就让学生做三道相应的练习题,起到了很好的巩固效果。
同时,在本节课的教学过程中与出现了一些不足之处:
我觉得虽然课堂纪律不太好,但基本上所有学生都动了起来,注意力比较集中,对重点内容也都能掌握,感觉比以前所上的这节课效果要好。所以我想无论什么样的课只要在备课时能真正的将“备教材”“备学生”“用学生的眼光看教材”三者结合起来,那么我们就能将每一节课都上成学生不仅能学到知识,同时能主动参与其中的课,让数学课不再枯燥,不再死板,让学生在愉悦的心情中学到知识,成为学生喜爱的课
课堂上没有顾及到全体学生,虽然有大部分学生都参与到了教学过程当中,但有一部分学生的积极性还没有调动起来,他们还没有真正完全的参与到教学当中。我要学会因材施教,教学能容要以课本为依据,瞄准大多数学生,让学生们在低的起点下也能很好的完成知识的掌握。
忽视了二元一次方程组表示的规范化及一些细节问题,使得一部分学生只知道两个方程要括起来,但表示的并不规范。
没有强调可根据二元一次方程组的解的概念进行验根,致使有些学生解出来的解也不知道正误。
在进行讨论的时候没有组织好学生,中间出现了混乱,浪费了一定的时间。以后我应在课前做好充分的准备工作。
“二元一次方程组”概念教学是“二元一次方程组”一章中较重要的知识,它承接了二元一次方程,又是以后代数学习的基础。通过本节课的教学,使学生认识二元一次方程组;能够分清不同类型的方程。
教学后发现,绝大部分学生能掌握二元一次方程组的概念,对变式的、复杂一点的二元一次方程组,需要进一步强调。
三元一次方程组的解法教学反思 5
这节课主要复习用字母表示数的方法,以及方程的意义和解法。先组织学生讨论三个问题,首先要求学生举出有字母的式子可以表示公式、运算律和数量关系;然后要求学生说说方程与等式的联系和区别,在比较中进一步明确方程的含义;接着要求结合具体的'例子回忆并整理等式的有关性质,在整理中进一步理解解方程的依据和方法。如练习十五第1题,让学生体会用字母表示数量关系的应用价值,第2题,使学生加深对等式性质的认识,并自觉整理有关方程的解法。
从学生的学习情况来看,用字母表示数个别学生已经遗忘,如1和字母相乘,1是不用写的,数字和字母相乘,乘号要省略,数字要写在字母的前面,a的平方表示两个a相乘,而2a表示2乘a(2个a,相加)这一点要让学生区分。
关于方程和等式的一些基本知识,学生都能掌握,如果题目的难度有所增加,如x作为减数或者除数的方程,学生容易解错,如果再此基础上更稍复杂的方程,如nx作为减数或者除数,那错误的学生会更多。
三元一次方程组的解法教学反思 6
开学第一节数学课就学习《认识方程》,由数字到方程是认识上的一个飞跃,因此要让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程。
1、借助天平直观理解,建立等式模型
用天平创设情境直观形象,通过平衡或者不平衡判断出两个物体的质量是否相等,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,多种多样的式子,激发学生的探究欲望。
2、在分类比较中,建立方程模型
让学生通过观察比较,把写出的式子进行分类。经过探索和交流,认识方程的特征,归纳出方程的意义。
3、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的.思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生看图列方程这一练习题,让学生理解方程的意义。
尽管课堂上感觉学生理解了什么是方程,什么是等式,可是家庭作业中一道题是选出那些是等式,哪些是方程,结果好多同学选出的等式只包含数字等式,不包含方程。让学生区别比较等式和方程的含义,通过练习加以巩固。
三元一次方程组的解法教学反思 7
本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的.旧知识来解决,那你认为应该把这样的减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?
通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。
三元一次方程组的解法教学反思 8
在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。 用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。
教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的.方程是二元一次方程,而y = kx + b只是直线方程的一种形式。作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的。而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。
对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。
直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。
借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。
三元一次方程组的解法教学反思 9
在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。
出示例题2,小组合作学习,讨论:①你是怎样理解图意的?②你是如何列方程的?③你是根据什么解方程的?④怎样检验方程的.解是否正确?然后班交流讨论,展示学生的练习。指名回答,说说自己的分析。你对他的分析有什么要问的吗?教师总结解题关键。
教学例3时,让学生观察、分析,这道题与前面的练习题比较有什么区别?这道题可以怎样解?(先小组交流后个人解答)学生找出解题关键,培养一题多解的习惯与能力。
最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?
充分练习,进行思维训练,设计有趣的习题“帮小兔找家”:4x-12=203x=15x+7=152x+3×2=16
18-2x=215÷3+4x=25
巩固知识,激发兴趣。
三元一次方程组的解法教学反思 10
本课所体现的教育理念是要让学生在广泛的探究时空中,在民主平等、轻松愉悦的氛围里,应用已有知识经验,通过观察比较、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程之间的关系,并能进行辨析。使学生学会用方程表示具体甚或情境中的等量关系,进一步感受数学与生活之间的密切联系。同时提高学生的观察能力、分析能力和解决实际问题的能力。初步建立分类的思想。
这节课改变了传统的教法,从天平的平衡与不平衡引出等式,通过教师的引导,让学生去动脑筋思考,展示了学习的过程。学习的整个过程符合儿童认知发展的一般规律。从生活实际引进学生已有生活的经验,很自然地想到两种不同情况,并用式子表示,引出等式;其中有含有未知数、不含未知数的.两种形式。体现“生活中有数学,数学可以展现生活”这一大众数学观,也体现了科学的本质是“来源于生活,运用于生活”。通过观察,探寻式子特点,再把这些式子进行两次分类,在分类中得出方程的意义,也看出了构成方程的两个条件,反映了认识事物从具体到抽象的一般过程。其中的观察、比较、分类,也是人类学习的基本手段、方法。
信任学生,充分发挥主体积极性。在教学过程中,放手让学生把各自的想法用式子表示出来,展示学生的学习成果;学习小组互相交流、检查,体现了学习的自主性;学习的过程、结果也由学生自己来体验、评价,大大激发了学生学习的积极性。
创新是永恒的,数学教学需要不断的革新,这样的课堂教学体现了当前小学数学课程改革和课堂教学改革的精神,注重从学生的生活实际出发引导学生大量收集反映现实生活的“式子”,初步建立式子的观念;再组织学生对这些式子进行比较、分类,逐步了解等式的意义;最后在对等式的去粗取精,对选定的素材通过观察、比较,明确方程的所有本质属性。本课注重了概念教学的一般要求,对方程这一概念的本质属性的探索全部由学生主动进行,注重呈现形式,从细微之处显示出教学的风格。
三元一次方程组的解法教学反思 11
教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的.关系混乱容易出错,而初中的教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的关系讲解一遍。然后让学生根据自己实际情况灵活运用。
可是跟设想的不一样,利用等式的性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。
1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。
2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。
所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。
【三元一次方程组的解法教学反思】相关文章:
方程组的解法教学设计06-19
二元一次方程组教学反思05-23
二元一次方程组教学反思05-23
《二元一次方程组》教学反思06-25
二元一次方程组教学反思12-04
二元一次方程组的教学反思07-16
一元一次方程的解法教学反思05-06
二元一次方程组解法检测试题及答案09-24
解二元一次方程组教学反思10-28