《梯形的面积》教学反思(通用20篇)
在快速变化和不断变革的今天,我们要有很强的课堂教学能力,反思是思考过去的事情,从中总结经验教训。反思我们应该怎么写呢?以下是小编收集整理的《梯形的面积》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《梯形的面积》教学反思 1
本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。
成功之处:
多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的梯形通过拼摆,独立推导梯形的面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的推导呢?从而得出以下几种方法:
(1)把梯形剪成一个平行四边形和一个三角形,梯形的面积=平行四边形的面积+三角形的面积。
(2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。
在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的.面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。
不足之处:
由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。
再教设计:
突出基本方法的教学,注意其它方法的时间分配。
《梯形的面积》教学反思 2
《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学课件的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的'作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“来源于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
在课件设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。课件能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
《梯形的面积》教学反思 3
1、还给学生主动权,教师需做导航灯。
数学教学要努力创造有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,给学生一个广阔的活动空间,当好学生学习的引导者、组织者与合作者。纵观两个案例,我们不难发现,案例1的教学仍是传统教学,教师设定了浅显直白的问题,学生无需经历“头脑风暴”,表面上都在积极参与,其实是被老师“牵着鼻子走”,没有创造性地学习。在这样的学习活动里,学生难以同步形成探究能力,更别说开阔发散思维了。案例2中的老师从讲台上走下来,真正把学习的主动权还给学生,真正做了学生学习的导航灯,充分调动学生学习的积极性,在思维方法、学习方式等学习要素上引领学生。
2、大胆尝试,自主探究,亲历知识的获取过程。
“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点。教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
3、强化实践,为学生搭建创新的舞台。
著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的'舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。
《梯形的面积》教学反思 4
一、注重有关知识、方法的复习,为梯形面积公式的理解和运用做好充分的准备。
在复习引入环节,让学生会议平行四边形、三角形、梯形的面积公式的推导过程,感受梯形面积与它的上底、下底和高有关系,为学生计算梯形的面积做好认知准备,有利于他们利用已有知识推动新知学习。
二、充分发挥学生的主题作用,让学生自主运用梯形面积计算公式。
在学生运用梯形面积公式的活动中,充分发挥学生的主体性,让他们以小组为单位,通过学具的割补、拼摆,共同探索将梯形转化成会计算面积的平行四边形或三角形各种办法。在展示汇报中,一方面让学生进行全班**流,使学生感受到应用梯形面积计算公式的不同方法,另一方面,使学生从各种的方法中,发现相同的地方,从而熟练运用梯形面积的计算公式。
三、尝试运用与练习反馈相结合,促使学生对梯形面积计算的掌握和解决问题能力的培养。
在出示梯形面积公式后,为了让学生能更好地运用公式计算梯形的.面积,培养学生解决简单实际问题的能力,在教学中,先创设情境,让学生在情境中感受到梯形面积计算在现实生活的实用性,通过情境促使他们对问题的理解,最后才让学生独立进行计算。在反馈练习中,把教师的指导和学生的独立练习结合起来,既提高了练习的有效性,又培养了学生运用知识解决数学问题的能力。
不足之处:
在计算过程中,一些学生由于粗心,出现了一些错误。还有个别学生出现漏算、多算的现象。今后还应重点培养学生灵活运用知识的能力。
《梯形的面积》教学反思 5
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。
在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的特征:只有一组对边平行的四边形。然后让学生回忆已学过的平行四边形和三角形面积的推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的推导上,我让学生采用一个梯形和两个梯形来求。
用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的'计算方法,达成了教学目的。
学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。
《梯形的面积》教学反思 6
我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。
提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。
这节课存在的不足之处:
首先,对学生的关注还不够。几次学生的'板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。
第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。
第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。
反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:
一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。
二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。
三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。
《梯形的面积》教学反思 7
教学时我首先让学生回忆平行四边形和三角形的面积公式的推导过程,都用到了哪种解决问题的方法,然后提出问题:梯形是不是也可以像它们一样可以转化成已学过几何图形呢?在学生操作前,课件显示以下几个问题引导学生探究:
1、转化成的平面图形的面积与原来梯形的面积有什么联系?
2、梯形的底和高和转化后的图形的各部分又有什么联系?
学生操作后发现方法不止一种。我引导学生重点分析和课本上一致的推导方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。其它方法有的拼出的是特殊的平行四边形,有的推导的过程较复杂,在课堂上让选择这样的同学简单交流,没有展示推导过程。最后小结不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)×高÷2。
第一、在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深入。在以后的'教学中,教师应及时筛选有用的信息,并对其分类和引导,有序展示。
第二、其它方法没有展示推导过程,想到此方法的学生的个性没得到张扬,也没有给其它学生充分的思考余地,导致最后小结不管用哪种方法来推,都能推出一样的面积计算公式时,部分学生有疑惑。
第三、学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也是我们数学教师长期要培养学生的一种数学学习的品质。
第四、有的学生没有完成推导梯形面积的过程,在以后的合作探究中,应让小组内再分为一帮一,以帮助学困生。
《梯形的面积》教学反思 8
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。 由于所有学生已经有了推导三角形面积公式的经验,因此在推导梯形面积计算公式时,我想放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的`图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
反思整个课堂教学过程,还是存在着一些问题。如在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,在原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从教学的实际效果上看,学生最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我想还是得结合本班学生的实际,合理安排,及时调整课堂设计,多考虑学生的思维特点,这样效果肯定会更好。
《梯形的面积》教学反思 9
在梯形的面积计算一课中,我充分利用学生已掌握的平行四边形,三角形面积公式的推导方法,启发学生积极思考。
通过复习,让学生明白推导梯形面积公式的方法与推导三角形面积公式的方法相似,都是把不熟悉的平面图形转化为熟悉的平面图形来计算。让学生用两个完全一样的梯形,想办法把它们拼成一个平行四边形,引导学生观察,比较梯形的上底、下底和高与平行四边行的底和高有什么关系?梯形的面积与平行四边形的面积有什么关系?这环节我是让学生以小组讨论的'方式进行的,通过交流,学生很容易得出梯形上底和下底的和,同平行四边行的底相等,梯形的高与平行四边形的高相等,梯形的面积是拼成的平行四边性面积的一半。
最后是让学生尝试练习求出梯形的面积,并概括出梯形的面积公式。本节课主要是让学生自主去探索梯形的面积公式,这样有利于学生思维的发展。但也有一些不足,学生在探索中,对个别学生辅导不够,在今后的教学中,要注重让每一位学生都积极参加到探究的过程中,真正让学生在动中学。
《梯形的面积》教学反思 10
此次,我执教的是《梯形的面积》一课,这节课的教学目标是:
在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。
对于本节课,我觉得有以下几点值得思考:
1、尊重学生的认知规律,注重知识的前后联系
我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。
2、以学生的活动为主,实现生生互动。
本节课力求让学生自己去发现和概括梯形的面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。
3、学生自主探索的活动在时间上给以保证
本节课一系列活动的'设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。
4、贴近生活实际,让学生成为课堂的主人
新课程标准提倡课堂教学要把数学知识和生活相联系,将数学学习置于生活的背景之中。为了帮助学生更好的理解本节课的内容,教学本节课时,我的整个教学过程始终紧密联系了学生的生活实际,为学生创设了生活化的数学情境。如在导入新课时,我让学生求出生活中的篮球场3秒钟限制区的面积,练习中让学生动手量量梯形学具的数据,再求它的面积,又求出梯形菜地的面积等等,真正做到了数学知识从生活中来,回到生活中去,提高学生分析问题、解决问题的能力,让学生是成为课堂的主人。
这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但鉴于我还年轻,对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。
《梯形的面积》教学反思 11
我上了《梯形面积计算》一课,下面结合自己上课的感受以及学生作业的反馈情况,谈谈对这节课的认识。
在这节课中我主要运用了合作探究、自主学习的学习方法,让学生运用已有的知识和学习经验来探索、研究新知识,并让学生进一步感受数学魅力。
第一、注重知识间的紧密联系
在学习《梯形面积》之前,学生已经系统地学习了《平行四边形面积》和《三角形面积》两节课的内容,并掌握了平行四边形、三角形面积公式的推导过程。因此,梯形面积的学习虽然是一个新的内容,但是在方法上是有法可依的,在教学时我们可以据此为学生搭建学习的脚手架,密切联系之前的学习内容;而在研究过程中,又可以放手让学生自己开展研究,表述结论,从而经历比较完整的研究过程。
为了更好地让学生自主探索,在本节课上也设计了相应的复习,主要是对平行四边形、三角形面积计算公式的复习。但是如果我们能够在复习公式的同时,将推导的有关过程进行一些整理,那么对学生研究梯形的面积计算无疑具有较强的正确迁移。
第二、强化对知识形成过程的体验
从这部分内容的.教材编排来看,突出体现了重研究过程的特点,但这并不意味着结论不重要。在上课前,我让每个学生准备好两个完全一样的梯形。在研究过程中,我有意引导学生由三角形面积计算公式的推导过程去探索梯形面积公式,学生很容易想到这一点。
当学生把两个完全一样的梯形拼成一个平行四边形时,再进一步启发学生观察拼成的平行四边形的底和高与梯形的底、高有什么关系,面积有什么关系,为了更好的让学生观察,我对教材上提供的实验素材和内容进行了处理和利用,让学生以小组为单位进行合作探究。
在学生自主学习的基础上出示了教材中的讨论题,帮助学生进一步分析实验数据,并进行实验结论的总结性概括。最后在探索平行四边形和梯形关系的基础上,再进行公式的推导和相关计算练习。
第三、从练习反馈中全面反思本节课的有效性
从练习题反馈上看,学生对本节课知识的掌握比较扎实,能够运用梯形面积公式计算面积。但是在练习第2题时,同学们读题后都是通过计算出面积判断哪些梯形的面积是相等的,从表面上看这道题的作用仅限于此。
但是如果我能进一步引导观察,学生还会发现这些梯形的高都是相等的,得出了在高相等的情况下,如果梯形的上下底的和也相等,那面积也是相等的结论。另外通过这道题学生还领悟到了面积相等的两个梯形,形状是不一定相同的。
《梯形的面积》教学反思 12
《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。
一、复习旧知,引入新知
本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。
二、推导梯形的面积公式
梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。
三、在练习中巩固提高
本节课的练习既有直接运用公式计算的.简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。
《梯形的面积》教学反思 13
今天这节课是在学习了平行四边形和三角形面积的基础上进行教学的,课前让学生回顾了这两天学习这些图形的面积的计算的方法,了解是用了“转化”的思想得到的。重难点都在梯形面积的公式推导过程上。本节课为了让学生能够顺利的解决问题,在开始的时候先让学生回顾了梯形的各部分名称以及他们的特征。并且让学生再一次学习了画梯形的高,目的是想让学生在后面推导公式的过程中无阻碍。
首先,我提问学生,如果今天我们要来研究梯形的面积,你有没有什么好方法?动手画一画,把你的想法说给你的同桌听一听:此时学生开始畅所欲言,好多学生都想到了要把梯形分成一个平行四边形和一个三角形,然后把这两个图形的面积相加就得到了梯形的面积,此时如果我能赶紧及时的给学生一个高度评价的`话,孩子们会真的感受到自己的成功,如果我能看到此时会思考的孩子们的美,才是这节课最大的收获不是吗?而我却没有那样做,还是因为担心教学进度的问题,只是稍作提示后就给赶紧追问,还有没有别的方法。
之后,在学生一筹莫展的时候,我提示道:“想一想我们在探索三角形的面积的时候是怎么做的,有没有什么可以借鉴的地方?”聪明的学生立刻想到了要再拿一个完全一样的梯形,然后把他两拼起来就是一个大大的平行四边形,这样我们就把这个梯形的面积转化成了先求平行四边形的面积。由于引导到位,学生很快能将梯形的面积抽象出来,回答老师的问题也能够严谨且无懈可击。此时,如果我能够再一次给予学生真诚的欣赏,相信孩子们对数学的畏惧之感会消失殆尽。但吝啬的我依然是忙着赶进度,生怕因为一句表扬会耽误好多练习的时间。哎!
还有,本节课在课前我仍然是准备了两个完全相同的梯形,在学生想到方法之后让孩子们自己动手上来拼拼看,然后找出拼出的平行四边形与梯形的关系,进而有平行四边形的面积=2个梯形的面积,则1个梯形的面积=(上底+下底)×高÷2。看样子,让学生亲自动手实践或者是用直观演示法更能够让学生明白“公式”的来龙去脉,记忆和运用起来也必定是得心应手。根据平行四边形的面积公式,从而导出梯形的面积公式,给人一种水到渠成的感觉。归纳出公式后给学生三个梯形(有两个把梯形的各边都写上,另一个没有给高的条件。)进行公式运用练习,最后再让学生在实际生活动感觉梯形面积公式的作用,即计算梯形木堆的面积。
但由于我课前准备做的不充分,在课堂上出现的问题何止一二,还有:
1.在整个教学中又过于偏向推导过程和注重学生多种不同推导方法,时间占用了很多,导致后面的练习时间不够充足。
2.由于推导出公式以后,学生在练习的时间很少,应该画出几个梯形图形,让学生应用公式求它们的面积,以巩固本节课的重点。
3.以后的教学要在新授部分多下功夫、下大工夫,但是不能把一节课大部分的时间都放在了研究新知的过程中,尽量浓缩自己的教学语言,让我们的课堂更有效。
可喜的是,发现学生有所收获,看到学生有了进步,看到学生探究学生的成果,在今后的教学中我会继续运用“探究性学习法”设计和组织课堂教学。希望探究式课堂之路在我们今后的教学中能够越走路越宽。
《梯形的面积》教学反思 14
本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:
一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;
二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的'达成之所以很理想,是因为本节课中我努力做到了以下两点。
一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
《梯形的面积》教学反思 15
梯形面积公式的推导教学是在平行四边形、三角形面积的计算基础上进行的。由于有前两种图形面积公式的推导过程的基础,我想如果今天的课堂上采用学生独立学习的方式来自主推导梯形面积计算公式,不会有太大的问题。
授课伊始引导学生回顾前两种图形面积的推导过程,为学生下一步独立学习做好准备。接着交代本节课的学习任务:研究梯形的面积的计算方法。这时我发给学生每组两张完全相同的两个梯形,让学生自己运用学习过的方法探讨研究梯形面积的计算方法。学生在探讨的过程中我深入学生的各小组,观察学生的研究情况。学生没用五分钟已经将梯形面积的计算公式推导出来了,并能比较熟练地叙述出来。反思以上的教学,能够相信学生,给学生独立学习的机会,让学生在合作交流中,自主探究,体会学习的快乐,从而增强了学习自信心。同时学生的参与度高,积极性强,学生理解的更深入。
从另一个角度分析,教师对学生还是不能充分信任,教学前的铺设,实际上就是给学生搭好了桥,修好了路。给学生准备了两个完全一样的梯形,看似教师为学生着想,殊不知这样剥夺了学生尝试失败的.权利。这样的设计能让我感到一丝丝的欣慰,毕竟我放手了,毕竟学生主动了,毕竟学生参与了。这种欣慰只是表层的愉悦,对学生来说,是不够的。有人说:教学是师生共享人类的崇高,这种崇高,对于知识来说,应当有更多的智慧活动,我这样想。
《梯形的面积》教学反思 16
五年级上册数学第六单元是图形的面积,这一单元主要学习平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的'空间观念,提高空间推理和解决问题的能力。
在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。
然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。
其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。
这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。
《梯形的面积》教学反思 17
《梯形的面积》这节课的内容是在学生学习平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式,因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
一、动手操作,感知梯形面积公式的推导过程
在教学中,我让学生动手操作,分别将两个完全一样的梯形拼成一个平行四边形;一个梯形分割成两个三角形和一个梯形沿高的中线分割成两个梯形三种方法,并比较每个梯形与所拼成的图形各部分间的关系,然后学生同时在操作中向学生渗透切割、平移的方法,让学生体验和感知梯形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨梯形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,这样既培养学生的'合作精神,又活跃课堂气氛。学生对公式记得也牢固。
三、应用公式解决实际问题
新课程非常重视学生在活动中身临其境的体验。让学生运用所学梯形面积公式解决实际问题。这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了在教学中存在不足。例如学生在回答问题时,采用齐答的办法,为了节省时间没有彻底了解中下学生的掌握情况。今后要注意在教学中避免运用这种方法。还有个别同学发表了自己的错误想法,我就直接给驳回,没有让学生自己找到自身的错误所在。
《梯形的面积》教学反思 18
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。 这节课的教学,紧紧抓住“梯形面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把梯形面积转化成了其他的平面图形,进而归纳、概括出梯形的计算方法。这种多角度的思考,既沟通了新旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
这节课我运用了多媒体课件的演示,充分调动了学生的学习兴趣,提高了课堂教学效率,是其他教学手段无法比拟的。
本节课要教会学生一种学习方法,即在求梯形的面积计算公式时,学生在原有知识经验的基础上通过学生自主动手剪拼,运用转化的思考方法,把梯形转化成已学过的图形,然后研究两者之间的联系,从而推导出梯形的面积计算公式。 在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的.想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
这节课中我努力激发学生的学习积极性,向学生提供充分从事数学活动的机会,通过“猜想-验证”来展开知识的发生发展过程,促使学生主动探索,学生以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程。
《梯形的面积》教学反思 19
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的.想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
三、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
四、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
五、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
《梯形的面积》教学反思 20
《梯形的面积》教学反思《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。在推导梯形面积计算公式时,我安排学生自学课本内容,合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?
通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。本节课最大的亮点是:有放有收,在发挥学生能动性的基础之上,在教师有目的引导下,学生推导出了梯形的'面积计算公式。首先,我让学生回顾平行四边形和三角形的面积公式是什么,三角形的面积是如何推导的?然后呈现自学提纲,让学生围绕提纲,结合课本上的内容进行自学,自己动手操作推导梯形面积的计算公式。集体汇报时,对这几种推导方法的处理上也不一样,重点分析了学生发现的第一种方法,但同时也肯定了其他的推导方法。老师一句话中总结,不管用哪种方法来推,都能推导出梯形的面积公式:(上底+下底)×高/2。
本节课也有不足之处:首先,对学生的关注不够,学生计算体系的面积时遇到数字较大而且除以2的被除数是偶数时,应该提醒学生先除以2,再计算,减少了数字繁大所带来的麻烦。第二,在学生想办法转化成已学过的图形后,没有对学生按所选方法的不同进行分组,给学生一个更清晰的思路。第三,学生的个性没有得到张扬,受教学时间的限制,有的学生没有完成梯形面积的推导过程。我将在今后的教学实践中不断吸取教训,不断进步。
【《梯形的面积》教学反思】相关文章:
梯形的面积教学反思03-24
《梯形面积》 教学反思08-31
《梯形面积》教学反思08-31
梯形面积的教学反思03-07
《梯形的面积》教学反思08-23
梯形的面积教学反思04-14
《梯形的面积》教学反思07-08
“梯形的面积计算”教学反思04-14
“梯形的面积计算”教学反思04-14