轴对称图形教学反思
作为一名优秀的教师,我们要在教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,教学反思应该怎么写呢?下面是小编精心整理的轴对称图形教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
轴对称图形教学反思1
轴对称图形是一个较抽象的概念,在教学中始终以学生为主体,着力引导学生通过操作、观察、比较、思考、交流、讨论等等活动,主动获取知识,掌握和理解轴对称图形的概念和基本特点,并在自主探索中体会到探索之趣,成功之乐,培养了学生学习兴趣,更发展了学生的能力。从以下几个途径可以提升课堂教学的活力和效果。
1、从直观引入,将轴对称图形的特点具体化,学生较易理解,得到了初步感知。
2、动手操作充分,通过对各种图形的折、画、剪,学生在操作活动中进一步理解了轴对称图形的特点及对称轴的含义。
3、充分调动学生的各种知觉感官来学习知识,整个教学活动中留有足够的空间让学生动口、动手、动脑,充分发挥了学生的主体学习地位,在判断正方形、圆形等图形是否是轴对称图形中,学生自主探索,探究,理解了对称轴的意义,同时很好地培养了学生的发散性思维,发现了有的图形的对称轴不止一条,可能是1条、2条、3条……无数条。
整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则。教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人。其中动手操作不仅适合四年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去发现与掌握新知识。我认为,在经历了亲自探索、讨论交流、相互启迪的过程后,每位学生的自主意识、自主能力都将得到提高,最终将达到提高学生思维品质的教育目的。
轴对称图形教学反思2
讲过[轴对称]这节课,我有了新的熟悉,以下是我的几点收获:
第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形对称轴的生活经验,同时为本节课进一步熟悉轴对称图形的对称轴,探究轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!
第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天钻研的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!
第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的直线是对称轴”。
第四、在处理本节课的重点“在操作中探究轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发明两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清晰地发明对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发明去尝试,尝试才有发明,发明才有创新!耐下心来,总有学生会发明的!
然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发明不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的熟悉。
第五、在发明对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。
第六、要给学生强调画图的时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。
第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:
1 “找”,找出图形上的端点或者说要害点。
2 “定”,根据对称轴确定每一个端点的对称点。
3 “连”,依次连接这些对称点,得到轴对称图形的另一半。
小学阶段的画图,还是要给学生规范方法步骤的。
我课堂上的组织管理能力还有待提高,假如有学生提出质疑,要及时肯定赞扬,激励他的思量过程,思维习惯,久而久之,数学课堂上该有的思量味儿才会越来越浓!
轴对称图形教学反思3
1、充分利用学生的生活经验,合理处理教材。皮亚杰认为,学生的学习活动就是从原有认知水平经过同化和顺应达到新的认知水平。因此利用学生的生活经验,坚持“以学定教”,合理处理教材,选准教学的切入点,是本节课教学设计的基本立足点。本节教材的设计是利用天安门、飞机和奖杯引入对对称现象的认识,再把天安门、飞机、奖杯抽象成平面图形,认识轴对称图形的特征。
2、创设问题情境,激发学生的兴趣。兴趣是最好的老师。如何创设生动具体的生活情景,引导学生在具体的生活情景中发现问题,提出感兴趣而有研究价值的数学问题,应是教师课前思考最多也最重要的问题。本节教学中教师提出了一系列的问题,如:这些图片有什么共同的特征?什么叫完全重合?什么样的图形叫轴对称图形?等等。这些问题,使他们自始至终处于积极思维的状态,并保持浓厚的探究兴趣。
3、通过自主探究、合作交流的学习方式,为学生提供充分的自主空间,最大限度地保障学生的主动参与。自主探究,动手操作,合作交流是新一轮课程改革倡导的重要学习方式。但是,如何引导学生自主探究、合作学交流,进行有效的数学学习,是值得每一位教师认真思考的问题。本节教学按“发现问题、提出问题——猜想探究、建立模型——应用拓展,走进生活”这一思路展开教学,用学生感兴趣且富有探究空间与探究价值的问题引领学生的探究方向,用科学而有结构的材料指导学生的探究活动,用独立猜想、动手操作、小组交流、班级交流等形式给学生足够的探究空间与交流机会,引导学生经历获取知识的过程,感悟数学学习的方法与策略,使教与学达到高度和谐,使学生在数学课上得到了充分发展。
在教学设计上若能更贴近学生的生活,学生的兴趣将更高,教学效果将更好。
轴对称图形教学反思4
本节课我们采用的是利用《学习单》的先学后教模式上课,先将《学习单》提前一天发给学生。在学生比较充分预习的基础上我们进行课堂教学,从预习情况来看优生基本可以完成简单的作图,如线段、三角形、四边形,包括对称点在对称轴上的简单图形等。中等学生只能画出简单的一些图形,但是对称点在对称轴上的简单图形存在一定难度,中下学生只能做更简单的一些填空题。如果我们提前一天提示学生如何做一个点关于某直线的对称点,还有对称点在对称轴上怎么画等等。学生在预习中的效果会更好,上课的效也会更加好,特别是中下生更有预习的兴趣。
我们的教学设计是以学生自主探究为主,教师主要起引导作用,通过设计一系列的学生活动,一方面充分展示它们的预习成果,另一方面还要充分调动学生学习的主动性,使学生在动手过程中发现问题,提高学生观察发现总结问题的能力。特别是剪纸活动,使整个课堂气氛非常活跃,学生各显神通,纷纷展现自己的创新能力。在整个教学过程,师生很好的互动,教师设置了大量的问题,学生在动手操作的过程中探索问题的答案,提高自己解决问题的能力,并且对整节课的知识有更深刻的体会和记忆。不足的是这节课的图片欣赏比较多,教师在这一部分花费了较多的时间展示欣赏图片,以致后面操作的时间比较紧,而且由于学生操作的环节比较多,所以纪律方面有点难控制。同时给学生交流讨论的时间不够,有部分学生对做轴对称图形的关键之点理解不够。
随笔:要多给与学生表现的机会,每个学生都希望受到表扬,正因为学生有这种成功的欲望,所以他们都想争取机会展现自己,如果能制造更多的给学生表现的机会,学生的学习动力和兴趣会大大增加的。
轴对称图形教学反思5
这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。
两只小兔到外地旅游,介绍沿途参观的很多著名景物(这些景物都是对称的),带领学生一起畅游了一番,学生在愉悦的气氛中开始观察优美的画面,仿佛身临其境,领略了对称物体之美,从学生熟知的生活情境出发,让学生初步感知对称的事物。这种营造宽松愉悦、开放式的环境,学生纷纷自觉投入到学习活动中,观察这些实物的特点——它们的两边都是一模一样的,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串连教材的效果,让学生在这种欣赏美的教学情景中快乐的学习,激发学生学习数学的兴趣,开拓学生的思维,发展学生的联想、想象能力,引导学生感受美、鉴赏美、领悟美,达到情境交融的教学效果。
本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折,剪一剪,画一画,等一系列活动,让学生多种感官参与教学活动。在新授课时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就引入“完全重合”,让学生反复地操作体会,再配合课件的动画演示,初步感知什么是“完全重合”;最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,始终以学生动手操作实践为主导,在巩固练习中也安排了一些学生操作的活动,让学生在操作过程中体会“完全重合”和“不完全重合”的区别,为辨别是否轴对称图形奠定了基础。在最后的制作轴对称图形时完全放手让学生去操作,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
轴对称图形教学反思6
对称是基本的图形变换,学习空间和图形知识的基础,能够帮助学生建立空间观念。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学
1、会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。
2、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。
3、小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
4、是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。
5、生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折:
1、过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
2、是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
1、是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。
2、次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
3、节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
轴对称图形教学反思7
《轴对称图形》是人教版十一册第四单元的教学内容,为概念课。这一课时的教学内容是在学生学过基本几何图形的基础上进行教学的,这节课双基训练要求是
1、初步学会判断一个图形是否轴对称图形。
2、学会画一个轴对称图形的对称轴。
曾经何时,我们数学老师们都在思索一个问题:为什么学生老不爱学数学?上海市1998年的一份调查揭示:92%的学生不爱学数学。即使数学考试成绩很好的学生也不爱数学。我们曾经都把这归纳于数学学科是抽象的,知识是枯燥的。现在在新课程理念的昭示下,我们恍然大悟,我们过去苦苦追求的让所有学生都爱上数学原本根本就不可能的,因为我们让学生学习的教材内容,原本就没有建立在学生的生活经验基础之上,我们的数学学习内容根本就是为了培养数学家的东西。这就决定让学生喜爱数学只能是空中楼阁。记得荷兰的教育家拂雷登塔尔提出:“数学是现实的,学生要从现实生活中学习数学,再把学到的数学应用到现实中去。”新制定的数学课标对数学教学也提出了要求:数学学习的内容与形式必须建立在学生的生活经验之上。结合以上理论,也简要谈谈本人对数学课课改理念的粗浅理解,我觉得新理念下的课堂教学模式要做到:
1、让学生觉得课堂上他是快乐的。
2、让学生能够用自己喜欢的方式去探究、应用数学。
3、数学的学习不能仅仅着眼于追求单一的分数,应该追求一种更高一层次的对学生的发展有所作用的东西。所以,本节课我对教材做了一些偿试,在把握教材双基要求的同时,教学设计上力求体现“生活数学”、“美与快乐数学”这二条基本理念,力求让学生在数学学习过程中产生“数学是美的、数学是快乐的、数学是有用的、数学在生活中”的情感体验,力求让学生用快乐的方式去做数学,用快乐的方式去用数学。
根据以上设计理念,本节课我设计了:猜——折——画——摆——展五个环节。对于概念的揭示摒弃了过去概念课繁琐的推理过程,改之为游戏、猜想、验证的学习过程。对概念的应用,也改变已往简单的作业本练习方式,改之为轻松活泼的活动。这样的设计,目的为了使学生在轻松愉快的气氛中、在活泼的动手实践中发展思维,丰富眼界,培养创新意识,提高实践能力,最重要的是让学生充分地感受到数学的美与数学的快乐,让学生不再惧怕数学,不再把数学学习当成是老师要他学的东西。
本节课中,第一个环节中的游戏的设计,在为创设情境的同时,也让学生在游戏中唤醒生活记忆,初步感知数学概念的生活原形。为猜测轴对称图形的特征搭路铺桥。第二个环节与第三个环节的折与画,用手指比划,既是对概念的进一步感知,也是概念的初步应用。对新知起巩固作用。练习中用学生喜爱的“爱心”置换课本练习题毫无意义的图形以提高兴趣。“爱心”后面“抽象的眼睛”的对称轴学生不容易画,是让学生明白画对称图形的对称轴乃至思考问题要着眼于整体,同时也是为了下面摆轴对称图形来点启发。第四个环节介绍轴对称图形的应用与摆轴对称图形,在使本课的学习内容得以综合应用,拓展提高的同时,同时体现一些人文的东西和学科综合的东西在里头,也使数学学习与艺术创造有机结合,提高学生创新能力与创造能力,让数学回归于生活,就用于生活。第五个环节的展示,是为了让学生在展示中体验成攻感受,同时也为了在交流中从他人的成攻的作品中得到一些启示,实现不断创新。最后,对学生课后提的二点要求,是作业的生活形式化。让学生用最乐意的方式实现课堂的延伸。
轴对称图形教学反思8
本节的教学时间较为充裕,这主要是考虑到要给学生时间去自主探索、动手实践,如果不能给这一过程以足够的时间,那么学生自己的探索和发现很可能流于形式,不利于学生全面地获得数学知识。
一、教学建议
内容呈现的形式为:“问题情境----探索活动----归纳总结-----结论”因此在数学学习过程中,如果只是为学而学,学生容易感到乏味,提不起兴趣,收不到好的效果,而经历知识的形成与应用过程,将有利于学生的理解与应用数学获得成功的经验,增强其学好数学的信心,因此教学过程也应尽可能的展现知识的形成过程与应用过程,即“问题情境----建立模型----解释应用与拓展”的模式展开。因此在对这一部分教学时,应充分利用课本上所安排的大量关于折纸,画图,操作,猜想等大量贴近学生生活中的有趣的问题情境,引导学生在做中体验和感受,在经历观察操作推理想象的过程中,感悟本章的数学本质
二、教学反思
在教学中我紧密联系生活实际来设计教学过程,教学环节,整个过程我充分让学生动手,让学生自己发现问题,解决问题,让学生感受轴对称图形的美,让学生充分感知数学美,激发学生爱数学的情感。但课后,我想了又想:还是不应该一上来就把抽象的事物展现给学生,应把实际转化成抽象,这样更能让学生自然而然地接受。在让学生画图形的另一半,使成为轴对称图形时,不应该拘泥于一种形式,放开,让学生选任意一边为对称轴画另一半,这样的话,效果会更好,更能发展学生的思维。最后环节,应该让学生通过学的知识,画轴对称图形。既然学了,就应该让学生尝试运用学过的新知画轴对称图形,再一次把抽象回归到生活中。总的来说,这节课该放手还是不够放手,作为老师应该多相信学生,相信学生是能做到的。
轴对称图形教学反思9
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
1
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
2、五年级数学下册《因数与倍数》的教学反思
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
3、五年级数学下册《合数与质数》的教学反思
在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2
一、学生参与面广,学习兴趣浓。
新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。
二、从学生的角度出发,把课堂的主动权还给学生。
课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。
三、点燃学生智慧的火花,让学生真正活起来。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。
4、五年级数学下册《公因数和最大公因数》的教学反思
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3
且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。 《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?” 学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛 “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1) 什么是公因数与最大公因数?
(2) 怎样找公因数与最大公因数?
(3) 为什么是最大公因数而不是最小公因数?
(4) 这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
5、五年级数学下册《最小公倍数》的教学反思
《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:五年级下册数学反思
一、创设情境 激发兴趣,使学生主动的参与到学习中去。
“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。五年级下册数学反思
二、培养学生自主探究的能力。五年级下册数学反思
教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。
三、挖掘不足 有待改进
1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。
2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。
轴对称图形教学反思10
学情分析:由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。
设计理念:图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。
教学目标:
1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。
重点:让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。
教学过程:
一、创设情景,激趣导入。
(1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。
师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。
(创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)
二、感悟特征,“识”对称。
1.出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。
2.引导学生动手操作。(课本附页的图形)。
引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。
3.出示各种几何图形,让学生小组合作,探究其是否对称。
4.认识轴对称图形、对称轴定义
师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折 完全重合)。
把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕 对称轴)。
(本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)
三、深化认识,“做”对称。
(1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)
引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。
(2)展示学生作品。说说各自的.创作方法。
(在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)
四、多向拓展,“辩”对称。
1.课件出示:天天开心。(心:是剪出来的轴对称图形)
引导学生观察,发现“天”字也是轴对称的图形。
2.出示字母: B A N G
引导学生判断各个字母是否轴对称图形,出现争议的字母B,引导学生验证结果。
3.挑战难题,激励优胜。
①“木”字的一半②看似轴对称的“奉”字,让学生判断分析,合成 “棒”字激励学生。
4.指导学生掌握学习方法:(猜测——验证——总结)
5.引导学生列举生活中的例子。
(多向拓展,让学生感悟数学在我们生活中无处不在。)
五、升华认识,赏对称。
1、欣赏短片
2、说一说。
出示短片中不止一个对称轴的图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。
(通过赏析,引导学生感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。)
六、课堂小结
出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)
(本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)
师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。
板书设计: 轴对称图形
(猜测——验证——总结)
对折 完全重合
折痕 对称轴
教学反思:我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。
轴对称图形教学反思11
案例背景
新课标倡导:数学课堂的内容一定要充分考虑数学发展过程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数学与教科书上的数学的联系,使生活与数学融为一体。只有当学习材料和学生的生活经验相联系时,学生对学习才最感兴趣。这样看来,丰富多彩的现实世界应当是数学学习的背景,在平时教学中,笔者比较注重在课堂上有意识地渗透生活味,让学生把所学到的知识与生活建立起联系,并把所学的知识运用到生活中去,从而让学生慢慢明白、感悟生活中其实有很多的数学问题,可以用我们所学到的数学知识去解释和解决。
学生对平面图形已经有了较为系统的认识。本节课主要让学生通过动手操作,认识轴对称图形。学生对轴对称图形的认识,并不是从概念中获得的,而是要求学生能够通过自己的动手实践与操作,在自主研究的基础上归纳、了解轴对称图形以及对称轴的概念,而这需要通过大量的观察以及动手操作才能达到目的,因此必须加强学生自己的操作与实践。
设计意图
针对小学生年龄偏低,抽象思维能力还相对较弱的实际情况,我一开始就借助一幅儿童非常熟悉而又滑稽的大头娃娃的头像,通过“眼睛的不对称,让学生想办法使其变成对称”这样一个过程,使学生在游戏中初步感知“轴对称图形”,并形成表象。这样的过程做到了“寓知识于游戏,化抽象为形象,变空洞为具体”,使学生的学习具有形象性、趣味性。
教学片断
(一)教学轴对称图形的含义:
师:下面请同学们拿出准备好的纸,先对折一下,然后随你剪一个什么图形,再展开,并观察一下,看你有什么发现。
(学生自主地剪纸,同桌间讨论各自的发现。)
师:谁愿意把自己剪的图形展示给大家看看。
(学生纷纷上来把剪的图形放到展示平台上。)
师:同学们在这么短的时间里居然剪彩出了这么多美丽的图形,真不简单!那谁能够说说这些图形的共同点吗?
生1:这些图形的左右两边都是对称的。
生2:这些图形沿着一条直线对折,两侧的图形都能完全重合。
师:讲得真好,那现在谁能告诉老师什么叫轴对称图形吗?
生:一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。
师:讲得真棒!那你能告诉我中间的这条“折痕”叫什么吗?
生:折痕所在的这条直线叫做对称轴。
师:讲得太好了,我们一道把这位同学刚才讲的话齐读一遍。
(教师出示概念的投影,学生齐读。)
设计意图:在这个环节里,我把美术课中的手工剪纸运用到数学课堂教学中来,学生通过自己动脑、随意剪纸,各有创意地剪出了不同的图案,既增强了学生的学习兴趣,又培养了学生的创新能力,而就在学生剪纸“玩”的过程中,学会了轴对称图形以及对称轴的概念。
(二)研究生活中树叶的对称情况,加深理解:
师:刚才我们通过自己的探索与实践,知道了什么叫轴对称图形。现在我们把课前准备的树叶拿出来,小组讨论一下,按今天所学把它们分成两大类,好吗?
(学生讨论,把带来的树叶分成轴对称图形和不是轴对称图形的两大类。)
师:谁愿意把“轴对称树叶”放到展示平台上展示给大家看看,并说一下你的想法。
(学生上讲台展示“轴对称树叶”,并说理由。)
设计意图:在这个环节里,我让学生把随手可得、极为常见的生活中的树叶作为研究的对象,通过学生的合作、研究,让学生在加深理解所学“轴对称图形”这一知识的同时,增强了学生的学习兴趣,而且渗透了“生活中处处有数学的”数学思想,很好地体现了新课程理念。
案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化----关注学生的生活世界,学习内容更贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“折纸”“剪纸”是很感兴趣的内容,因此,也具有现实性,即回归生活。让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。
在学生的学习过程中,教师的适时教诲和适时表扬,令学生的心灵得以纯洁,精神得以振奋,行为得以矫正,这样,可以让他们中每个人都有独特的作用,可以让他们正确评价自己。同时让学生通过折一折、看一看、说一说、议一议等,使学生感受到民主、平等、积极、愉悦,从而他们才可以敢想敢说,个性充分张扬,健康心理也得以培养,课堂也真正成为学习的共同体。
通过这节课的教学,我感悟到:新课堂,学生不再是接受的“容器”,而应是可点燃的“火把”;新课堂,学生不再是“配角”,而应是活动的“主体”;新课堂,不再是机械的训练,而应是注重获取新知识的能力;新课堂,不再是教师在表演,而应是学生在交流合作。
面对新课标,我们如何从过分强调传授知识的系统性、完整性,开始向关注学生人格发展的健全性、全面性思考?如何从过分强调严格划一的统一要求,开始关注不同学生的不同需求和个性发展?如何从偏重知识传授、智力开发,开始向注重学生心理健康、情感体验等非智力因素的思考?又如何从偏重课堂教学具体环节程序的设计,开始向注重创设愉悦和谐的课堂氛围而努力?是否所有的教学内容都可以按上面这种教学模式来上?这些都值得我们去思索和探讨。
轴对称图形教学反思12
《轴对称图形》是数学西师版教材三年级下册第六单元《轴对称》中的第二课时。我在两年前曾为数学市级骨干教师上过展示课,两年后再上,只是在个别环节上做了一些修改,但面对不一样的学生,不一样的心境,又有了很多不一样的感悟。
我所执教的这节课是在上节课认识了生活中的对称现象的基础上,来认识图形中的对称,也就是轴对称图形。要让学生经历观察、操作、交流的过程,初步认识轴对称图形及对称轴;在学习的过程中,培养学生的空间想像力;感受图形的对称美,体验到学习数学的乐趣。低年级学生由于其年龄特点,具体形象思维仍占优势,学习新知识在很大程度上还要靠具体形象或表象、动作进行思维,因此在学习时单靠教师讲是不行的。操作就是培养学生能力的一种重要措施。
一、学具操作中可以激发学习兴趣。
与由教师讲授和个人自学相比,学具操作可以更好地激发学生的学习兴趣,调动学生学习主动性、积极性。激发学生的学习兴趣是发挥学生认知活动中的主体作用的重要条件。在低年级课堂教学中,每当我们让学生进行学具操作时,学生总是兴趣盎然,热情很高。究其原因,主要有:
(1)低年级学生由于其年龄比较小,经常表现出爱的程度上得到满足,使他们在操作中体验到成功与快乐,因而总是情趣较浓。
(2)学具自身不论是在颜色、设计的形状等方面都近似于儿童玩的一些拼插玩具,能够吸引学生对它进行操作。
(3)让学生进行学期操作能够给学生提供一个自己去探索发现学习知识的自由空间。正如赞习夫所说:"教学法一旦触及学生情绪和意志领域,触及学生的精神需求,这种教学法就能发挥高度有效作用。"让学生进行学具操作正是这样的教学法。
二、在学具操作中可以发挥学生潜能,使他们主动探索知识,提高课堂教学效果。
提高课堂教学效果是教学改革追求的一个具体目标。让学生进行学具操作有利于这一目标的实现。让学生进行学具操作改变了以往"教师讲,学生听;教师演示、学生看;教师问、学生答"被动局面。在教学中体现了以学生为主体,教师为主导方针,使学生在教师指导下动手、动口、动脑,自主地探究知识,实现从不知到知,从已知到新知矛盾转化,形成新知识网络,提高课堂教学效果。抽象概念的掌握要从动作开始,让学生动于操作学具可以使丰富的信息源源不断刺激细胞,以控制学生情绪使注意集中在学习活动中。
在教学新知的这个环节里,为了让学生自主的探究和发现轴对称图形的特点,我将教材中的例1、例2进行了整合。让学生在第一次图形的对折过程中明白完全重合的概念:是形状、大小一样,边缘重在一起的。并通过第二次对折三等分圆的错例分析,强化学生对完全重合的认识。在理解了什么是完全重合后,给出轴对称图形及对称轴的概念。在这个环节的最后,通过观察正方形的不同折痕,发现不同的对称轴,有意识的渗透了有的图形的对称轴不止一条的观点。
三、在学具操作中可以发展思维能力,培养创新意识。
动态学具操作为学生思维能力提供直观支持。学生的思维能力是在学习知识,运用知识的过程中逐步形成和发展的,低年级学生正处在于由具体形象思维为主的抽象思维为主发展过渡阶段,运用学具操作,引导学生思考,把操作思维和语言表达紧密结合起来,使学生在感知认识基础上经分析、综合、抽象思维化。促进了思维发展,为学习抽象数学知识和数学思维发展奠定坚实基础,同时也会擦出创造性思维火花。教学中第一个练习设计为判断轴对称图形,从对折过度到在头脑里想对折的过程,培养学生的空间想像力。因此,让学生动手操作学具是发展学生思维能力,培养创新意识的重要渠道之一。
在教学的过程中,也有很多需要改进和注意的地方:
1、在操作的过程中,老师给予学生的要求还不够明确,有些学生没有真正的静下心来听清老师的要求,对操作的过程不清楚。加强对孩子操作的指导,给孩子提出明确的要求,并让学生真正的听懂要求,是相当重要的。
2、在教学中对时间的把握不够,在由我示范的剪纸过程这个环节中,用的时间比较长;而在这个时间段学生却无事可做,显然浪费了时间。我后来想如果在课前将剪纸做好,只展示剪纸的步骤,可能会好一些。
3、这节课在放手让学生自主探索和解决问题上还不是很够,如果让学生自己说出自己的想法,或许会更好。
轴对称图形教学反思13
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学。
请会折叠衣服的同学上台来展示一下叠衣服的方法,从而引出课题。
1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。
2、剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折。
通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。
三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
轴对称图形教学反思14
《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。
一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。
二、创设自主学习的条件 苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本
本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。
三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。
总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。
轴对称图形教学反思15
一、数学的实质是一种文化
《新课程规范》指出:“数学是人类的一种文化,它的内容、思想、方法、语言是现代文明的一局部。”本节课的教学我没有拘泥于课本,“唯教材至上”,而是变“教教材””为“用教材”,把教材作为一个传达数学知识的一个载体。在公开课教案中将“自然、社会、历史、数学”等领域中轴对称图形有机的结合在一起,放大了轴对称图形的文化特性,折射出“冰冷”的图形背后的魅力,将轴对称图形的神韵淋漓尽致的表示了出来。
课堂上我用课件展示自然界中的蝴蝶、蜻蜓等具有轴对称图形特征的动植物图片,调动了同学的已有的表象,丰富了同学的感知。面对一幅幅精美的图片,同学流露出的不只是惊喜,还有几分疑惑:为什么大自然如此的垂青于轴对称图形的形状呢?当“天安门、重庆人民大礼堂、上海东方明珠、河北赵洲桥”等极具中国特色的具有对称美的事物出现在同学的眼前时,同学们被这种文化氛围陶醉了,激发了同学热爱劳动人民的朴素情感和民族自豪感。
二、把探究活动引向深入
我在教学中创设了剪纸游戏、展示同学的作品,然后让同学观察自身创作的作品,比较他们的不同。由于是同学自身的作品,因此同学观察的很仔细。“我发现他们形状不同。”“我发现他们大小不同。”“我发现它们左右两边是完全一样的。”这样的发现过程是真实的,也是一个逐渐发现的数学学习过程。这样同学们就能够较好的判断一个图形是不是轴对称图形。
寻找平面图形中的轴对称图形是本节课的一个重要的环节。一是放手让同学通过自主探索、小组合作的方式进行探究性的活动,最后让同学汇报、争论。二是上述案例中的方法。尽管开放性没有方法一好,但是由于有了师生的互动,。在实践中我发现尽管方法一有很强的开放性,有利于培养同学的合作能力和探究能力,但是经常表示为优等生的游戏,绝大局部后进、中等的同学课后对这一环节表示疑惑。因此我在教学中采用了方式二,尽管开放性没有方法一好,但是由于有了师生的互动,方向性较强,又培养了同学层层深入研究、发现问题的能力。在争论平行四边形是否是轴对称图形的环节里,同学思维的火花在迸发,师生的对话是那样的自然,平等。教师的欣赏犹如催化剂,使探究活动走向高潮,生成性的精彩不时在课堂出现。
纵观本节课的教学,同学在新课程文化的轻拂下学习还是比较轻松的。这股清新之风吹走了数学的枯燥、苦涩,吹走了同学心灵中对数学的恐惧,让同学生长在富有情趣和意义的数学文化氛围中,使数学课堂充溢着文化的气息。
【轴对称图形教学反思】相关文章:
《轴对称图形》的教学反思06-27
轴对称图形教学反思07-06
《轴对称图形》教学反思10-16
《轴对称图形》教学反思06-01
《轴对称图形》的教学反思10-31
轴对称图形的教学反思04-05
《轴对称图形》教学反思04-10
《轴对称图形》教学反思05-21
《轴对称图形》教学反思10-01
轴对称图形的教学反思01-04