《实际问题与方程》教学反思(精选25篇)
作为一位刚到岗的人民教师,我们的任务之一就是课堂教学,通过教学反思可以有效提升自己的教学能力,那么什么样的教学反思才是好的呢?以下是小编为大家整理的《实际问题与方程》教学反思,欢迎阅读,希望大家能够喜欢。
《实际问题与方程》教学反思 1
最近,我们学习的是六下列方程解决稍复杂的百分数实际问题,共花了四课时的学习时间,因为是稍复杂问题,条件信息变多,数量关系难找清楚,单位1有时已知,有时未知,需要分析清楚。学生在此前已学习了简单的分数、百分数应用题的基础上学习的,而且学生已经会用方程解答和倍、和差问题。
课前我思考:新的知识点的生长点在哪儿,起点又在哪儿呢?细读例题,教学时我设将例题改成学生熟悉的倍关系,接着改成分数关系,组织学生找单位“1”、说数量关系,以唤起学生对旧知的回忆,便于迁移到新知的'学习中。
教学例5时,我组织学生先根据例题,学习“如何画线段图、如何找等量关系式、如何正确设未知数X的问题以及如何正确设另一个未知数的问题、如何利用结果和条件中的数量关系来检验计算结果是否正确”等。学生普遍能够画出线段图、找准等量关系式,解决上面问题不大。
例6——已知一个数量,以及一个数量比另一数量多(少)百分之几,求另一个数量(单位“1”)的学习,学生就开始吃力了。
课堂上老师最累和学生最怕是找出适合列方程的数量关系式。引导学生观察线段图中各线段,在各线段的关系中寻找等量关系,仍有部分学生有困难。学生提到九月份的用水量+十月份比九月份节约的用水量=十月份的用水量,九月份的用水量-节约的用水量=十月份的用水量,九月份的用水量-十月份的用水量=节约的用水量。我没有引导学生及时选择合适的,而是让学生自己选择适当的进行列方程,让学生在自己的思考下,尝试中找到适合的等量关系。在全班交流中明确等量关系。
这个环节让我真切感受到部分学生对于寻找数量关系有困难。猜测着可能他们不清楚题目中的数量,也可能不会选择哪个数量关系式才适合列方程,还可能画线段图本身对他来说就是很困难的。到底平时作业不可能每道题目去画线段图(而且学生画线段图能力参差不齐),所以对部分学生来说找出合适的数量关系式非常困难。
正确检验也是本课的难点,不是所有的学生掌握,也没有要求学生全部理解。其中检验是否如何“比九月份节约20%”这个条件,这种检验方法掌握的学生不多。
后来,从小学数学教学网上看到有老师这样设计了准备题:
从看算式补充条件,引出例题6。“青云小学十月份用水440立方米,_____________,九月份用水多少立方米? 440×80% 440÷80% 440×(1-80%)与其他老师有同感,觉得这样的填空设计非常富于启发性。
在练习时,问题就开始大大小小的出现了:列方程时题目的等量关系式找不到,方程照样是对的;什么时候适合用方程,学生没有思考,反正不管三七二十一都用列方程的方法来解决;有的题目学生不想列方程,模仿记忆用除法计算,不知道为什么这么做……,这一个又一个问题的出现,也让我反思,这一单元就近该怎么教与学呢?
《实际问题与方程》教学反思 2
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,教者在学生的数量关系的分析上还要多花时间,多帮助学生,磨刀不误砍柴功,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的.主线贯穿在教学过程中。
教者复习了等式的性质后,出示了看图列方程并解答的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是教者的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:你是根据什么关系来列方程的?此时让学生初步感受到数量关系对列方程解决问题的重要。那么,我们怎样写出数量关系式?师出示第2题复习题根据条件,写出数量关系式。学生通过这次的练习后,对解方程的已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
另外,在解决问题的过程中,教者还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,重点要求学生不能列出诸如X=0.06+1.39(例7)这样的方程,让学生在小组交流中明白为什么不能这样列。像学生在解答中出现36-X=2.5(练一练1)、144X=1.5(练习二7)这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。
《实际问题与方程》教学反思 3
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
一.重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二.重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1.4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1.4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1.4倍数,如果用x表示女生人数,那么男生人数就是1.4x,这样方程就很快列出来:1.4x+x=48;
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
三.重视学生的综合训练,提高学生的整体思维。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2.5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的.表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
《实际问题与方程》教学反思 4
这是一节练习课,我在课的第二部分:列方程解决实际问题作了调整,把相遇问题、追及问题作为本课的重点,其余9、10、11题只在课堂上练了一道,其余两道作为课堂作业。行程问题中相遇问题学生数量关系比较熟悉,学习比较顺利。而我补充的追及问题,学生很生疏,我画线段图给他们看,引导他们说数量关系,他们还是有些茫然,好像结论数量间的相等关系,是我强塞给他们的,而不是他们自己发现的。我后悔不及,应该先请学生演示追的过程,再让他们自己画图,这样肯定弄得明白了。作为弥补,我再请学生演示追的过程,再次引导说数量间的相等关系。总算勉强通过。
本节课重点是列方程解决实际问题,我重视数量关系的分析,重视列方程解答问题的步骤的训练,学生能够有序思考、有条理地解决问题。但,可能是我一贯的作风节奏慢,我总是要到中下学生心领神会了,我才放心地进入下一环节;也可能是我与这些学生的磨合期还没过,怎样听别人讲、怎样回答问题、怎样讨论,也成了我常说的`问题。所以,我常完不成一节课的预定任务,课堂作业常带到课外完成。这个问题我要尽量克服。
想起这节课对追及问题的处理,其实增添这个内容是因为看到《补充习题》上有这类问题,课上不提出来,学生课后解决有困难。转念一想,我在做了一个追及问题之后,最好接着练习一个同类型的问题,这样这个新知识才会学得扎实。
这节课,一个突出的问题:我对追及问题的认识不足,处理不够恰当。究其原因,因为我没有正确把握学情,我不知道学生对这类问题很生疏。我这个一直教老教材的教师,新教材体系我要好好熟悉,学生原有的学习情况,我要及时地了解。
《实际问题与方程》教学反思 5
用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。
如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?
分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加X人,即(30+X)时人均旅游费用(800—10X)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”
(2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的'问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。
(3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。
尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。
《实际问题与方程》教学反思 6
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的`重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
《实际问题与方程》教学反思 7
列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的`块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习
《实际问题与方程》教学反思 8
新课改下,要求改变教师的课堂教学行为,发挥学生的主体作用,主张学生个性化学习。善思善想的学生得到几种不同的解答都有自己的道理。但是数学教学中虽提倡一题多解,可答案是确定的,并非灵活多变,对于上述类型题到底该如何确定答案,新课改实施后考题灵活多变,学生翻阅资料扩大知识面无可厚非。并且随着社会的发展,家长逐渐重视对孩子的教育,通过为孩子买各种各样的教辅资料来提高孩子的学习成绩。孰不知资料中对一些题的答案众说不一,到底谁是权位,我们师生又该如何面对。
新课程中教学活动是师生双边的活动,它是以教材为中心,教师教的活动和学生学的活动的相互作用,教师与学生要想发展,必须要将实践与探究融为一体,使之成为促进师生发展、能力不断提升的过程,而反思则是将二者有效结合。应从哪些方面实现师生互动的反思模式构建呢?
1、要求做好课堂简要摘记。
当前,老师讲学生听已成了教学中最普遍的方法。而要学生对教学的内容进行反思,听是远远不够的。要反思,就要有内容。所以学生就要先进行课堂简要摘记。课堂简要摘记给学生提供了反思的依据。学生也能从课堂简要摘记中更好的体验课堂所学习的内容,学生的学习活动也成了有目标,有策略的主体行为,可促使老师和学生进行探索性,研究性的活动。有利于学生在学习活动中获得个人体验,提高个人的创造力,所以课堂简要摘记是学生进行反思的'重要环节。
2、指导学生掌握反思的方法。
课堂教学是开展反思性学习的主渠道。在课堂教学中有意识的引导学生从多方位、多角度进行反思性的学习。学生的实践反思,可以是对自身的认识进行反思,如,对日常生活中的事物及课堂中的内容,都可引导学生多问一些为什么?也可以是联系他人的实践,引发对自己的行为的比较反省,我们可以多引导学生进行同类比较,达到“会当凌绝顶,一览众山小”的境界;也可以是对生活中的一种现象,或是周围的一种思潮的分析评价,此外学生的反思还何以是阶段性的,如:一节课尾声时,让学生进行一下反思,想想自己这节课都有什么收获?还有哪些疑问?当天睡前,反思一下今天自己的感受;或是一周反思一下自己的进步和不足等等。
《实际问题与方程》教学反思 9
一、学生接受情况的方面
销售问题是我们生活中经常遇到的问题,学生比较了解,但对其中的一些概念并不是很理解,因此教学中应该对这些概念作出解析。比如什么是进价,什么是售价,什么是利润与利润率等等,教学中必须让学生搞清楚,否则进难于进行教学。对于公式:
利润=售价 — 进价 、 利润=进价×利润率。 教学中必须举例说明,才能让学生理解。
对于例题方面,学生对于盈利25%是什么意思?是表示进价的25%还是售价的25%?有的学生不理解。同样亏损25%是什么意思也不太理解,教师在此必须作出解析。否则教学效果很不理想。因此教学中要预见到学生什么地方会不理解,这是我们必须研究的一个方向。只有这样为学生所想,帮他们解决疑问教学才能有效果。
总的来说,按上面的设计,学生的学习效果的还可以,但对一些变式问题学生的应变能力还不够。
二、教师的教案设计方面
本节课的'设计能吸引学生的兴趣,从开头的幻灯片的有关的销售广告语“跳楼价、大放血、5折酬宾、入手,能吸引学生的兴趣。这是本节课的一个兴趣点,在课件中,利用图文并冒的方法让学生感觉到生活离不开数学,总的来说学生比较容易接受。
三、不足的方面
在销售问题中对于一些含有利润率的应用题,学生不太理解也不会做,比如课本P108的第4题,部分学生不知怎么去找出等量关系,这也说明学生的应变能力不好,这是我们教学应注意的一个问题。
《实际问题与方程》教学反思 10
这节课我们研究了实际问题与二元一次方程组中的行程问题,教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的几道实际问题。重点讨论了航行、相遇、追及三大类型。纵观本节课,其中有精彩之处,但也有很多不足,现反思如下:
航行问题很简单,在学习的过程中先回忆了航行问题中的基本公式,然后同学们讨论题目中的等量关系,最后设出未知数列出二元一次方程组,让同学们经历了回顾旧知、应用旧知解决问题的过程。 在讲解相遇问题与追及问题时,我选了两名同学分别相向而行和同向而行,表演了相遇和追及,让这两个问题动了起来,激发了学生的学习兴趣。然后用两种颜色的彩粉笔在黑板上分别来代表两个人,一边讲解一边画出两个人行走的路线,这样就将枯燥的`代数问题转化为直观的几何问题,大家很容易就从图示中发现隐藏在其中的等量关系,从而列出二元一次方程组解决问题。
总之,从整节课来看,我主要通过创设情境、自主探究、合作交流、精彩点拨、拓展延伸、归纳升华六个环节来进行,学生的情绪比
较饱满,思维比较活跃,能积极分析问题解决问题。我较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好;在教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,他们的各种方法没有及时的展示。今后,我还要多加努力,调整教学方法。
《实际问题与方程》教学反思 11
虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,
一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;
二、列方程解答两、三步计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的.数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
《实际问题与方程》教学反思 12
列方程解决简单实际问题,是在五年级(上册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要抓好以下几个方面的问题:
一.重视标准量分析训练。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的标准量,根据标准量找出题目中直接的等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住标准量来分析与思考,就能很快提高解题能力。
二.重视学生的语言训练。
在分析标准量的同时,我们要通过找出标准量、用语言分析标准量,提高学生的思维能力,例如:在“妈妈的年龄是桐桐的4倍,妈妈比桐桐大24岁。妈妈和桐桐的年龄各是多少?”这一题中,我先让学生说单位“1”的量(即标准量)以及怎样设。再找出数量间的相等关系。学生在小组交流相互补充,多次通过语言表达训练,学生分析标准量、列出相等关系的口头表达能力也提高了,也掌握了探究知识的`方法。
三.重视学生的综合训练。
在学生学会找准标准量、分析标准量的基础上,还要结合学生的掌握情况进行基础性、综合性等训练。在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是香蕉的1.5倍,如果香蕉是x千克,那么苹果和香蕉一共有xx千克,苹果比香蕉多xx千克,香蕉比苹果少xx千克……,类似这样的题目,让学生弄清每一个式子所表示的意义,经过一段时间的训练,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还通过适当的变式题目,训练学生的综合思维,提高学生的解题难度,促进学生的思维不断得到提高。
最后跟孩子们一起回顾列方程解决实际问题的整个过程,并总结出了六步曲:找数量关系式——解设——列方程——解方程——写答语——检验。教学中我反复训练,让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到学习的乐趣,增强学习数学的信心,学习效果很好,达到了预期的目的。
《实际问题与方程》教学反思 13
一、4点说明
1、单元中的地位及重难点;
本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究。通过本节课的学习对学生的要求是:能够找出实际问题中的已知数和未知数,分析他们之间的关系,找出问题中的等量关系,体会建立数学模型的思想。通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的过程,感受数学的应用价值,提高分析问题、解决问题的能力。
本节课是有理数、整式加减之后,以及在第三章2,3小节已经讨论过由实际问题建立一元一次方程和解决一元一次方的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节课选择了具有一定综合性的问题(“销售中的盈亏问题”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度。一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的'兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题埋下伏笔。
基于教材分析,我确定本节课的教学重难点是:建立实际问题的模型,让学生知道销售中的盈亏的算法。通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。
2、教学思想;
运用建模思想来指导七年级学生学习,在很大程度上是要在学生认知过程中建立起一种符号化的具有数学结构特征的“模型”载体,通过这样具有“模型”功能载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。
3、育人思想;
通过对盈亏问题的探索,让学生体验数学来源于生活,又服务于生活,从而激发学生学好数学的热情,培养学生严谨的学习态度和与刻苦钻研的顽强毅力。
4、教与学的困惑、对策;
我的困惑
1、一部分学生不习惯用方程解决实际问题,偏爱算术方法;
2、学生掌握等量关系较弱,等量关系式列不出来,影响方程成形。
3、书写格式不规范,解方程过程中去分母,去括号,移项经常出错。
优化对策
1、优化教学设计,丰富数学课堂活动,让学生体会到列方程简单;
2、选择能充分展示用方程解题思维上独特优势的练习题;
3、设计有坡度,使学生会用已有知识解决一个问题,通过解决此问题有助于下一个问题的解决。
二、3个设计特色
1、教学模式:安康市初中数学“四环五课”型第二类概念课教学模式,即情景诱导—探究指导—展示归纳—变式练习。
2、探究提纲简洁明了,层层深入。使学生能够在完成第一个题目的基础上,能独立完成第二个题目;在完成第一个和第二个题目的基础上。又能独立完成第三个题目。
3。变式练习是在探究题目的基础上,通过改编得到的,着重体现了以探究为依据,以变式为重点。
三、2个感悟
1、在“情景诱导”中,激发学生兴趣。教师要通过智慧和艺术,充分展示数学的亲和力,拨动学生的好奇心,激发学生学习数学的原动力。结合授课内容,凭借图画、音乐、表演等手段,使学生有感、所悟、所惑、所想、所动。
2、在“探究”中,引发学生数学思考。给学生充足的时间和和空间经历观察、实验、探究、猜想、验证和推理,积累多样化的数学经验,引发学生思考,提出问题。反思问题,解决问题。
四、3个优化构想
1、设计时充分考虑师生互动性。
2、注重知识生成过程的教学,提高学生学习能力。
3、评价要客观全面,面向全体,注重全程,以达到了解,促进,激励学生的作用。
《实际问题与方程》教学反思 14
本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的`三道实际问题:牛饲料问题,药品问题以及学生就餐问题。在解决这些实际问题当中,我充分体现了以学生为主体,让学生积极参与,我充分让时间留给学生,发扬教学民主,发挥了学生的主动意识,因此在学生解决(探究1)牛饲料问题当中,学生能想出两种方法,并能选择最简单的方法,在选择用二元一次方程组解决问题时,又有不同列法,这是我意想不到的收获,这是我实施高效课堂中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。
教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。如:在探究1解决牛饲料问题中,我先让学生对平均每只母牛和每只小牛1
天的食量进行估算,再寻求检验估算的方法,使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。
不足之处:
1、 时间把握得不够好,使得“课堂小结”这一教学环节没有得以实施。
2、 没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥。
总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,学生注意力比较集中,对重点内容也都能掌握。
《实际问题与方程》教学反思 15
列方程解决简单实际问题,是在五年级(下册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要注意以下几个方面的问题:
一.重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的相等关系,这样可以便于学生列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的.的实际问题。因此学生如果学会抓住关键句来分析与思考,能很快提高解题能力。
二.重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们要通过找出关键句、用语言分析关键句,提高学生的思维能力,例如:在“爸爸的年龄是小红的4倍,爸爸比小红大24岁。爸爸和小红的年龄各是多少?”这一题中,先让学生说说单位“1”的量以及怎样设。再根据哪一句可以找出数量间的相等关系。我在教学中采用小组交流相互补充和提高,多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力,让学生在学习的过程中掌握探究知识的方法。
《实际问题与方程》教学反思 16
列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的`几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习
《实际问题与方程》教学反思 17
用方程解决问题的关键是找到题目中的等量关系,而对于班级中理解能力一直较差的那部分学生来说确实是一大挑战,学生又是刚接触用方程来解决问题,虽然连着几个课时的学习与练习,解题步骤与规范的书写都有了极大的改观,但分析题意、找等量关系还是个尚需努力提升的大问题。于是,这几个课时的例题我都处理得很慢,先把前一节课学生在作业中出现的易错点、薄弱环节作简要的补充复习,再设计一些较简单的题目为新知的学习创设一个奠基与梯子,让他们的思路更顺一些。
比如说今天的这堂课,我参照教参建议,将本节课的`例题以三个层次呈现:
一、数学源于生活又用于生活,比如说今天我们去市场买水果,(出示苹果和梨子的图片),该付多少钱的问题?你们能列出等量关系式吗?大多数学生们快速准确地说出:苹果的总价+梨的总价=要付的水果总价。这个简单的等量关系式将是今天解决问题的重要依据,看似简单,但进入方程解决问题中,那些学习有困难的学生便慌了阵脚,不知如何下手,所以今天我们先来一些铺垫,让他们的思想少走弯路。接着,孩子们的思维打开了,补充了苹果的总价和梨的总价分别怎么计算,还主动向老师寻求条件来解决问题。这个主动解决问题的意识是好的开端;
二、在解决基础题:已知苹果、梨的单价、数量,求出总价后,将条件与问题调整,已知苹果、梨的数量、梨的单价、要付的总钱数,求苹果的单价。题目一出,孩子们自信满满:“这两题都是一样的呀!”“一样中还有不一样,细心的同学一定会发现并解决它!”对呀,这两题的等量关系是一样的,数据是一样的,但要求的问题却不一样了,这道题用方程怎么解决?学生们主动拿起笔,回忆上节课所学所内容后开始解决问题:
1、解:设未知数;
2、根据第一个环节中的等量关系列出方程;
他们都习惯了捉笔便完整答题,这种急切、主动的学习态度令我满意。不过,课堂上我们可以轻松一些,暂时休息一下,让我们来个解方程男女生P赛。古灵精怪的他们为对方选取了他们认为实力不太强的选手,其实不然,同学们都很有集体荣誉感,乐于参与、自信满满。而台下的孩子们则比台上的更是激动,在心里为同伴呐喊加油。“有些同学不仅在观战,还在看他们写得怎么样,还在思考、可能等下还有评价!”这时,原本有些躁动的课堂安静了,一个个手举了起来。他们的评价动听、到位、详细,也让参与者乐意接受。
三、老师就是个“变题龙”,总喜欢把一道题变来变去。瞧!我把其中的一个数字改了,方法还是一样吗?把3千克梨变成“2千克梨”了。学生们纷纷点头,我顺着他们的意思将黑板上方程中的3改成了2,改好后转过身看看满脸挂着自信与成功喜悦的娃娃们。不!有人摇头了,还有人兴奋地举手了,静静地等待后有人有思考了!还有人没忍住说出了“乘法分配律”。我依旧选择了一个一直保持端正坐姿的孩子,并告诉大家我选她的理由,新一道方程便出来了,“能看懂吗?”其实这两道方程是一样的;其实这是乘法分配律。“这条算式中的每个数表示什么?每一步求的是什么?”依次解读后再来场解方程赛,这次让我们一起动手算,动静结合也让你们不觉得重复吧。
三个环节,孩子们始终投入,而我也觉得欣慰,这样的学习状态挺好!你们今天在数学课堂上的表现我很满意,进步喜人!不过练习的时间却已不太多了。课堂时间有限,我们终有取舍,重了分析与理解的铺设,可能尾就略草了,有一些遗憾也好,说明我们还有进步的空间!希望这样的学习能让你们有收获!
《实际问题与方程》教学反思 18
本节课例题的教学注意利用三个等量关系列出三个不同的方程,让学生自主讨论、列出,并利用学过的解方程知识尝试解方程。注意让学生比较选择,让学生明了顺着题意列方程更简洁。注意让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。
在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于“解”,而在于“学解”。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。
本节课的教学设计,注重让学生分析条件、问题,让学生首先理解题意,然后让学生通过分析、交流、讨论等活动,找出等量关系,充分展示他们的思维过程,发展思维能力。 应用题的教学难点就是:如何引导学生理解题意,列出需要的数量关系式或等量关系式。在这个过程中,重要的`并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式。
本节课教学设计注意总结回顾方法,让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。
在小组合作方面,本节课主要在分析等量关系,根据等量关系列方程两个环节给孩子们小组合作探讨交流的时间。纵观本节课小组合作有利于学生理解掌握题中的数量关系,找出等量关系,根据等量关系列方程。我们学校本学期开展的是基于导学案学习基础上的小组合作学习,导学案有三分之二的学生能基本完成,三分之一的学生基本不做、做的很少、干脆不做。导学案的学习非常有利于学生的学习,能加快上课的节奏,加大练习量,但对于不预习、不做导学案的学生上课效果大打折扣。基于导学案学习出现的现象是“优者更优”,“弱者被动挨打”“积弱者更弱”。关键是怎样调动学生积极性,怎样让家长配合老师,让学生做好提前预习,让学生提前预习好导学案。这样才能目的效果兼收。
《实际问题与方程》教学反思 19
今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的'数量关系:小军的成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
《实际问题与方程》教学反思 20
《列方程解决简单实际问题》教学反思列方程解决简单实际问题,是在四年级下册初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。本周教研活动我们四年级组内听刘淑萍老师的课,对刘老师的课堂给予很高的评价,一赞刘老师课堂敢于放手,把主动权教给学生;二赞小组合作交流分工明确,真实高效;三赞刘老师平时注重习惯的培养。课后评课我们都羡慕这样的课堂,都迫不及待的让刘老师传经送宝,之后我也在课堂上采用同样的方式进行教学。通过我的教学实践,和刘老师的课堂进行对比,反思自己的课堂还要抓好以下几个方面的问题:
一.重视等量关系式分析训练
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住等量关系来分析与思考,就能很快提高解题能力。
二.重视学生的语言训练。
在解决问题时刘老师采用以三人小组交流的方式分析解决问题。如:1号同学讲,2号、3号听;或是3号、1号分析题意,2号书写等,分工合作,共同完成。小组内交流人人参与,人人思考,人人表达,因此刘老师的'课就是思维的课堂,知识的火花在交流中碰撞、升华。同时小组交流的一大好处就是带动后进生,带动跑神的学生,让他参与到课堂中,带动他们一起进步!与刘老师的课堂相比,我需要加强学生的语言表达能力,就像刘老师所说,刚开始不能急,要慢节奏,教给孩子怎样说,怎样小组交流,正如磨刀不误砍柴工,练上一个月,一个学期,你就会有不一样的收获。
三、重视学生解决问题思路
训练回顾列方程解决实际问题的整个过程,刘老师让学生总结出了七步:读(读清题意)--找(找数量关系式)——解设(未知数x)——列(列方程)——解(解方程)——检(口答检验)--答(写答案)。方法的引领比获得的知识更重要,告诉学生以后碰到类似的问题如何解决。教学中刘老师一节课教学内容我用了两节课时间训练让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到小组学习的乐趣,增强学习数学的信心,学习效果很好,初步达到了预期的目的。课堂属于学生,课堂的精彩不在于老师多么优秀,在于学生的出彩,在以后的教学中,我要慢慢践行放手小组合作交流学习,给学生更多的思考时间,更大的展示空间,让我的数学课堂更有魅力。
《实际问题与方程》教学反思 21
学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”
让学生根据“20XX年的东北虎只数比2003年的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的`优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。
《实际问题与方程》教学反思 22
苏教版小学五年级下册第一单元《方程》第8—9页。这部分内容是在理解方程的含义,会用等式的性质解简单方程的基础上进行教学的。本节课主要解决列方程求“相差关系”和“倍数关系”的问题。学好本节内容将为以后学习打下基础。教材通过例7,试一试,练一练及练习二第5、6、7题完成任务。
“列方程解决简单的实际问题”的教学,既要让学生掌握列方程解决简单实际问题的一般过程,学会列方程解决一步计算的实际问题,更要让学生学会思考解决问题的方法。
列方程解决简单的实际问题,和用算式方法解决简单的实际问题有不同的地方,除了形式上的不同,更有思考方法上的不同。教材安排的“例7”是一幅情境图,理解图的意思是必须的,我的`教学中引导学生进行摘录:小刚的跳高成绩是1.39米,比小军的跳高成绩少0.06米,小军的跳高成绩是多少米?情境图虽然直观,但表达的信息零星,需要整理,整理也是学好数学的重要方法,其中摘录是常用的整理方法。理解情境图的意思是解决实际问题的前提条件,算式方法、方程方法都必须有这一环节。
“含有未知数的等式是方程”。方程既然是等式,就要从数量间的相等关系入手思考,上题可以从关键句“小刚的跳高成绩比小军少0.06米”寻找,这句话蕴含的数量间的相等关系有二:一是小军的跳高成绩-0.06米=小刚的跳高成绩;二是小军的跳高成绩-小刚的跳高成绩=0.06,应用“大数-小数=相差数”这一规律悟得。
在明确题中数量间的相等关系的基础上,教师指出:“小军的跳高成绩不知道,可以设为x米,再列方程解答。”这里教师的讲授,就是为了让学生体验列方程解决要把未知量与已知量结合起来进行列式,体验和算式解决问题的不同。到此,形成了“整理信息—找相等关系—列方程”的思维框架。至于“列方程解决简单的实际问题”的书写格式,可以通过模仿课本、讨论交流、教师指导、作业反馈来熟悉,熟悉“写设句-列方程-解方程—检验写答句”是列方程解决实际问题的一般步骤。
第一堂课学生的课堂作业有许多毛病,如:解写了两个,“设”前面写了一个,解方程时又写了一个;假设未知数x时后面缺了单位;求得的未知数的值的后面多了单位等等。虽然有诸多的问题,但利用课间小组长的力量和练习课的专门辅导,基本得到全面解决。
“列方程解决简单的实际问题”是用方程方法解决问题的起始阶段,让学生明晰“整理信息—找相等关系—列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架去用方程解决简单的、复杂的实际问题。还有,要重视找数量间相等关系方法的积累,如根据“部分数+部分数=总数”、公式、常见的数量关系式等去寻找。长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高!
《实际问题与方程》教学反思 23
本节课的教学内容非常重要,列方程解简单的实际问题既是解决问题的一种策略,又是十分重要的数学数学方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。
列方程解简单的实际问题是学生第一次接触,它具有固定的解题步骤和格式,告诉学生这些步骤是必须遵循的书写格式是应该模仿的,因此,在教学这环节时,采用接受学习的方法,结合例题的解题过程,通过谈话和板书,把解题步骤呈现给学生。
在解题过程中,凡是学生自己能做的,都让学生做,虽然采用的`是接受式学习方式,但仍然发挥了学生的主观能动性。在总结列方程解简单的实际问题的基本步骤时,引导学生根据老师的讲解过程得出:写设句—根据等量关系式列方程—解方程—检验—写出答语。并概括成顺口溜:方程解题真方便,找准等量是关键。等式性质来解答,千万不要忘检验。
《实际问题与方程》教学反思 24
实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。
例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。
例1的教学,我是按照“求谁设谁”的思路来讲的。
第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。
第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的原纪录+超出部分=小明的成绩。
最后列式,则把具体的数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21.
将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。
例如做一做中的“我们拿桶接了半小时,共接了1.8kg的水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。
这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的.知识去寻找关系,具体设置的题目有这样差不多的几个:
1、长方形的长是6m,面积是24平方米,宽是多少?
2、小明走了半个小时,走了120m,小明每分钟走多少m?
3、小红买了5只钢笔,花了24元,每支钢笔多少元?
像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。
1、考验的是面积的计算公式
2、考验的是速度=路程÷时间
3、考验的是单价=总价÷数量
而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。
用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。
所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。
《实际问题与方程》教学反思 25
学生在解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
一、重视关键句分析训练,让学生感悟方程的思想。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“2010年的东北虎只数比2003年的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的'几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。
二、重视解方程的技巧训练,让学生知其所以然。
前面学生已经接触过用等式的性质解一种关系的方程,而今天第一次要解答两种关系的方程,这里学生必然会产生较大的障碍。这种技能技巧的训练与获得也要体现教学的开放性。当学生尝试解答完了,在交流的时候我是有策略的。我让学生说出列出的方程与最后的结果,让学生比较说出方程的左边有什么变化。这样让所有的学生明确了解方程的目标,也就是要抵消掉“乘2”和“减22”。要达到目的有几种方式,先消“乘2”再消“减22”,或者反之,当然一起消也是一种选择。我通过巡视发现也前两种选择,哪种对哪种错,我们教师只是学生学习的组织者、引导者、合作者。我认为最高明的做法就是让学生自主的去发现,去否定自己,寻找正确的做法。于是我把两种做法都板书在黑板上,并予以充分肯定。那两种都对吗?这是学生也想弄清楚的事情,怎么办?检验,第一种对的,我让学生一起来口答检验,第二种错的我故意自己来检验,把“X=54代入原方程,54减22等于32,再乘2得64,所以X=54是原方程的解”。这时,学生产生异议,然后引导学生认识到解方程也要符合混合运算顺序。接着我再乘热打铁,如果把写关系式比作穿衣服,那么解方程就相当于脱衣服,和X先有关系的是2,那就是X的内衣,“减22”就是外衣,脱衣服能先脱内衣再脱外衣吗?通过这样的比喻让学生印象更加深刻。这样也方便解释解方程的过程书写:把2X当做一个整体。内衣还没脱,所以要照抄。
总之,一堂课要上得精彩,教师在课前要多做准备工作,教材钻研得透彻,当然还得学会进行取舍。本节课我对等量关系式的时间花得太多了一些,这样就会影响到学生对方程的思想体验得不够充分。
【《实际问题与方程》教学反思】相关文章:
《实际问题与方程》教学反思10-24
《实际问题与方程》教学反思(精选15篇)11-06
《实际问题与方程例三》的教学反思10-09
《实际问题与方程》教学反思通用15篇09-30
《列方程解决实际问题》教学反思06-27
《列方程解决实际问题》教学反思08-18
《实际问题与方程》教学反思(通用15篇)03-09
《实际问题与方程》教学反思(通用16篇)11-19