《圆柱的表面积》教学反思 (15篇)
身为一名刚到岗的人民教师,我们要有一流的课堂教学能力,借助教学反思我们可以学习到很多讲课技巧,教学反思我们应该怎么写呢?下面是小编帮大家整理的《圆柱的表面积》教学反思 ,欢迎阅读,希望大家能够喜欢。
《圆柱的表面积》教学反思 1
圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的`来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
[圆柱的侧面积和表面积]
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即s圆柱侧=ch=2πrh(r为圆柱底面的半径)
圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2
教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。
《圆柱的侧面积和表面积》教学片段
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
求铅笔涂漆部分的面积是求()的面积;
压路机滚动一周压过多大路面是求()的面积;
求一个水桶用多少材料是求()的面积;
求汽油桶用多少铁皮是求()的面积。
《圆柱的表面积》教学反思 2
苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。
一、创设问题的情景
在新授时我打破以前拿出一个圆柱放在桌上直接进行侧面积公式推导模式,而是提供给学生两个空心纸圆柱,一个矮胖型,一个瘦高型,鼓励学生大胆猜想,“谁的侧面积大一些”。学生们看到两个圆柱表现得非常积极,兴趣十分浓厚,思维也很活跃。有的说:“我认为矮胖型侧面积较大。”我就追问他为什么?他说:“矮胖型圆柱比较粗,我认为圆柱侧面积与它的粗细程度有关。”有的说:“我认为瘦高型的圆柱侧面积较大。”我也追问他为什么?他说:“瘦高型圆柱比较高,我认为圆柱侧面积与他的高低有关。”当然还有一部分认为它们的侧面积相等或无法判断的',因为他们认为圆柱的侧面积与圆柱的粗细和高低都有关系,甚至还把小的那个圆柱放在大圆柱内,再把大圆柱底面捏起来让我看。对子上面的回答我都没有给予直接肯定或否定,关键是我认为通过学生们对两个圆柱的观察都已认识到了非常重要的两点,即圆柱侧面积大小与圆柱粗细和高低有关。通过这样创设情景设疑大大激发了学生的直觉思维,而不是像以前对照公式直接去讲解。与此同时我再设一疑,这两个圆柱到底谁的侧面积大,你们能否通过动手来证明呢?
二、动手操作,实践领悟
在允许学生想一切办法证明自己的猜测时,学生们再一次表现了良好的学习兴趣,个个动手动脑,有的沿高直往下剪,把圆柱侧面剪开得到了一个长方形的展开图;有的斜着剪下来得到一个平行四边形;有的剪成各种不规则图形;还有的剪成若干个三角形,梯形等等,体现了学生思维的多样性,差异性。也使学生一下子明白其实求圆柱的侧面积完全可以转化为我们以前学过的图形。既然圆柱的侧面积可以转化成这么多以前学过的图形,那你们觉得把它转化成哪一种来求更为合理呢?
三、讨论交流,合作探索
因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、性质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。
四、实践应用,发展能力
在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生独立进行解答。侧面积会求了又如何求圆柱的表面积呢?独立解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。
这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手操作能力与创新精神。
《圆柱的表面积》教学反思 3
1、直观演示和实际操作相结合
新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,是以讲练结合贯穿教学的.始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
《圆柱的表面积》教学反思 4
数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践,自主探索,合作交流是学生学习数学的重要方式。而且,要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察、触摸,感受什么是圆柱的表面积。接着我和同学们一起动手实践,操作,将自制的圆柱体模型展开,让学生明白圆柱体的表面积就是两个圆和一个长方形。通过观察,学生明白长方形的面积就是圆柱的侧面的面积。接着小组合作探讨圆柱侧面积的计算方法,在这里让我惊讶的是,有一个孩子一边演示一边总结,长方形的长和宽都可以做圆柱体的底面周长。这是我没有想到的,最后孩子们通过小组合作推导出圆柱体表面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。
可以说,在这节课的学习过程中,我不是让学生被动地接受教材,也不是自己推导出现成的结论让孩子们去识记,去背诵,而是通过操作实践等活动,让学生经历了知识的.“再创造”过程。由于学生经历了不断的“再创造”的过程,积极主动的从事数学思考、建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收,这样,孩子们怎能对数学不动心呢?
《圆柱的表面积》教学反思 5
本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
根据教学内容的特点和我班学生的.实际,本节课的教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的空间观念和解决实际问题的能力。
1、把握重点,突破难点,合理利用教材
本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。
3、讲解与练习相结合
本节课,我改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
4、还要进一步加强学生解决问题能力的培养。
学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。
《圆柱的表面积》教学反思 6
我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。
一、小组合作学习的组织有序
这节课,我以“圆柱的侧面积计算公式”和“圆柱的`表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。
二、学生操作的缺失
整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。
三、教师指导还需到位
由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。
《圆柱的表面积》教学反思 7
著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。但为了培养学生的自主学习能力和自主探究的兴趣,我将圆柱侧面积的教学大胆改革,让学生试先准备好各种圆柱形的纸盒,给学生足够的空间让学生自主探索圆柱体的侧面展开情况及侧面积的计算方法。整节课,学生学习积极性非常高,收到了好的教学效果,也使其自主探究能力和小组合作能力都得到了提高。
反思如下:
一、圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的`底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。
二、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。
通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学反思 8
圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关 当我一个人的时候,手里拿着手机,浏览一些网页,看看电视上的新闻,打打篮球,看看自己喜欢的书籍… 当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空… 当我一个人的'时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在网上看看朋友、同学的动态… 当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。
面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。
《圆柱的表面积》教学反思 9
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:圆柱表面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的.面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)
条件:(厘米) r=3 d=4 c=6.28
底面积(平方厘米) 28.26 12.56 3.14
(三)教学圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
(2)小组合作探究。(剪圆柱形纸筒)
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米) h=5 h=8 h=10
侧面积(平方厘米) 94.2 100.48 62.8
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米) 150.72 125.6 69.08
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用
(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?
指出:圆柱表面积在实际计算中的意义。
(二)根据要求练习。
1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)
3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)
根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
练习要求:(多媒体出示)
讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
反思:
一、合理灵活地组织和利用教材
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
《圆柱的表面积》教学反思 10
本课用课前预习课上小组内交流汇报的教学方式组织教学,课前布置了《圆柱的表面积》预习提纲 :
1、什么是圆柱的表面积?
2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?
3、怎样求圆柱的侧面积?
4、怎样求圆柱的底面面积?
5、怎样求圆柱的表面积?
课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的.侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。
但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,第一:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱体表面积的障碍。
针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。
总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。
《圆柱的表面积》教学反思 11
圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的.教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法,
方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)
方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)
方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)
方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)
方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。
《圆柱的表面积》教学反思 12
《圆柱的表面积》是义务教育教科书六年级下册第三单元第二节的内容。圆柱的表面积包括侧面积和两个底面面积。底面是圆,关于圆面积的计算,上学期已经学过,学生已能熟练、准确计算,而在上节课《圆的认识》中,学生对于圆柱的侧面与展开后形成的长方形之间的关系也已了熟于胸。因此,本节课可放手让学生自学、互学,把重点放在解决生活中的实际问题上。
一、 知识链接,唤醒回忆
课前,先让学生进行有关圆的周长和面积的计算,以及圆柱的特征,目的在于唤起学生对旧知的回忆,为新知的学习打下基础。
二、 自学互学,提高能力
21世纪的文盲是不会学习的`人。基于这一点,我十分注重学生学习能力的培养。根据学生在课前所提问题“什么是圆柱的表面积?”“怎样计算圆柱的表面积?”为提示进行自学,在全班内交流展示之后,又以“怎样计算圆柱的侧面积?你是怎么想的?”为提示,让学生根据手中学具,在组内探究、交流圆柱侧面积的计算方法。在这一环节中,学生自主学习、合作探究的能力得以提升。
三、 联系生活,巩固练习
数学来源于生活,又应用于生活,服务于生活。在学习圆柱的表面积、侧面积的计算方法之后,让学生利用有关知识解决生活中的实际问题——求制作厨师帽所需材料、商标纸的面积、制作笔筒所需材料、给音乐大厅的柱子涂油漆所用油漆的质量等,避免学生出现“数学无用”思想,同时,又是学生将所学知识得以巩固。
四、 谈收获,总结升华
课的最后,让学生谈谈本节课的收获,以及解决问题时需要注意什么,使学生对本节课所学知识做一全面的总结,同时,培养了学生总结知识的能力。
当然,本节课中还存在一些问题:如学生计算能力还有待提高。为了能将本节课的教学内容按时结束,我将学生需要计算的数进行了改动,减轻学生计算的压力,即使如此,还有个别学生计算速度慢,出现错误现象。
《圆柱的表面积》教学反思 13
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。因此本节课的教学,从始至终贯穿着以学生为主体,教师为主导,训练思维为主线的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、把握重点,突破难点,合理利用教材。
圆柱表面积这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的 推导作为教学难点来突破,将表面积的计算作为重点来教学,将用近一法取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中 有放,放中有收。
二、直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积 之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是 圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是 每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形,这是一 种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。
三、习题设计。
在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的`联系。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思 14
我今天教学的内容是《圆柱的表面积》,圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下,听取了老师们的评课,又联系课堂教学,我进行了深刻地反思。这节课的优点主要有以下几方面:
一、激情导课,激发学生的求知欲。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,闯关激发学习兴趣。
本课教学,以闯关的形式将课程分为三部分,以闯关成功奖励一节活动课为诱饵,激发学习兴趣。第一关是侧面积的计算,探究新知时,让学生通过讨论、交流,明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的.底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二关开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。第三关是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了数学来源于生活,数学应用于生活。
三、把握重、难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法,直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。俗话说:听过了就忘记了,做过了就记住了。学生亲身实践了,一定记忆深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
一、实践操作展示得不够。
在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。
二、学生对圆周长和面积的计算不够熟练。
所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思 15
《数学课程标准》的基本理念指出:“教师要向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”
1、在教学中,我设计了具有趣味性、挑战性、探索性和有一定的现实意义的教学情境――计算饮料罐的商标纸面积,学生在独立思考的.基础上进行了小组合作,他们分工明确,在愉快的劳动中获得了对知识的理解,并在不知不觉当中使用了S=ch这个公式。
2、教学过程中,学生通过自己观察、触摸,体验感知圆柱的特征、圆柱的表面积包括哪些部分;并通过动手裁剪实验,与小组成员共同探究圆柱侧面积与表面积的计算方法,通过不断的测量与计算,构建起知识的框架。学生对这些计算的方法有了丰富的情感、态度和实践经验支撑的“活学活用”。
3、计算烦琐,对于学生而言是有一定难度的,学生们的计算正确率确实很低,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
【《圆柱的表面积》教学反思 】相关文章:
“圆柱的表面积”教学反思04-05
“圆柱的表面积”教学反思04-05
圆柱的表面积教学反思12-19
《圆柱的表面积》数学教学反思03-03
《圆柱的表面积》数学教学反思03-03
《圆柱的表面积》教学反思(精选22篇)03-02
圆柱的表面积教学反思15篇01-11
《圆柱的表面积》教学反思(15篇)03-20
《圆柱的表面积》教学反思(15篇)03-10