
解决问题的策略教学反思15篇
身为一名人民老师,我们要在教学中快速成长,借助教学反思我们可以学习到很多讲课技巧,那么问题来了,教学反思应该怎么写?以下是小编为大家收集的解决问题的策略教学反思,仅供参考,希望能够帮助到大家。
解决问题的策略教学反思1
“解决问题的策略”这一课,可以说在整册教材中是最难的。它是在“找规律”的基础上来学习的,在学习“找规律”这一课时,学生已经初步接触了一些解决问题的方法,列举法便是其中之一。而这一单元,主要是让学生认识列举法,会用这一方法解决一些问题。
教材第一课时主要是让学生通过具体实例来认识“列举”这一方法。但一出示课题,学生便对“策略”二字产生了疑问,于是我便加以解释,在教学中也以“方法”代之,这样很快使学生消除了疑虑。而例1并不困难,学生在我的讲解下都能理解,并且在表格上显示则显得更为清晰。紧接着我将我的问题抛给了孩子:“同学们,王大叔非常感谢你们的帮忙,你们说的这四种方法都很好,王大叔都不知该如何取舍,你们谁愿意再一次帮助王大叔?”孩子们有的说选长8米宽1米的,有的说不好,应选长7米宽2米的,有的说选长5米宽4米的,当我问他们为何这样选时,有的孩子说不出来,只说他认为是这样,还有的孩子说算过这四种方法的面积了,觉得应该选面积最大的,这样在里面养的羊多。我将赞许的目光投给了这孩子。的确,在我看来,让他们自己去发现比我直接给他们答案要好的多。紧接着我又丢出一个问题:“如果这方法很多,老师无法一一去计算每种方法的面积,那该怎么办呢?”孩子们在我的引导中发现了长和宽的差与面积之间的关系。
磨课的过程我有以下几点体会:
一、想上好一节课真不容易。
这次比赛时间很紧,再加我学校工作很忙,准备时间有限,从抽签定下教学内容的那一刻就一直在构思,教学设计也是反复修改变得了好几次。既然是比赛就要注重个方面的设计,比如导课的方法、情景的创设、练习的选择……总之新课改的要求和标准你都要体现出来,要不你凭什么拿名次?但是,当我站在讲台上的那一刻,我突然意识到,不管你采用什么方法,最重要的一个目的就是看孩子有没有从这一节课中学到东西,其实就是我们所说的课堂实效,有了这个想法我反而不紧张了,我就一个目的,让孩子们学会用“一一列举”方法解决生活中的实际问题。是呀!抱着一颗平常心上课比什么都重要,我更应该关注孩子而不是名次!
二、备自己的课,才能上出自己的特色。
教者不同,学生不同,相同的教案会上出不同的效果。在本节课的设计上,我尽量从学生熟悉的'实际生活入手,引导学生步步深入理解掌握一一列举这样一种新的解题策略。同时,根据自己的理解我认为,书上片面强调列表列举尤其偏颇之处,本课的重点在于让学生掌握一一列举这样一种解题策略,而对于列表这样一种方法,在某些题目的列举过程中如果运用会显得较繁,而运用其他的方法则能更迅速,更明了。因此在课堂上,我在引导学生认识表格、理解表格的同时,允许多种表示方法的存在,甚至鼓励运用部分更简洁的方法。
诚然,不管你课前准备的和设计的如何好?课堂的主体毕竟是活动的人,想全面的掌控各种各样的情况显然也是不现实的,课后我反思甚深:
一、没有充分的了解学生的学习状况。因为此教学内容和前一单元《找规律》有内在的联系,学生上一单元还没完全结束的情况下讲授本课时,自然是优等生的课堂而不是每位学生的课堂,我觉得自己在给为数不多的几个优等生上课。
二、没有把“一一列举”这种解决问题的策略的方法灵活的教给学生,在处理例二时过于粗糙,时间的把握不足。
三、联系效果没有很好的体现出来。一是时间关系,而是课前没有及时调试好设备。
解决问题的策略教学反思2
“解决问题的策略”教学片断与反思
新课标提出要重视培养学生“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”如何践行这一理念呢?下面结合苏教版国标本五年级上册P63“解决问题的策略”例1的教学实践谈点粗浅的认识:
教学片断
师:王大叔想用18根1米长的栅栏围成一个长方形羊圈,他会怎么围呢?
(出示例1)
师:这句话中告诉我们什么信息?
生:这个长方形羊圈的周长是18米。
师:猜想一下,他会怎么围呢?
生1:用6根栅栏做长,3根栅栏作宽。
生2:还可以用8根栅栏做长,1根作宽。
师:你们是怎么想的?
生:要围成一个长方形,就要知道这个长方形的长与宽,根据条件知道长方形的周长是18米,可以知道长与宽的和是9米。
师:有没有不同的想法?
生:我是摆出来的,用8根栅栏做长,1根栅栏作宽。
师:同学们的想法都有道理,但现在王大叔思考的问题却是怎样围面积最大?你们能帮他解决这个问题吗?
生3:应该选长为8米,宽为1米的长方形。
师:为什么呢?
生:我觉得面积最大,它的长和宽就应该最大。
生4:不对,我觉得应该选长是5米,宽为4米的长方形。5×4=20,8×1=8,20比8大。
……
师:到底怎样围面积最大?光靠这样简单的猜想和无谓的争议是不够的,你们有没有更好的解决办法吗?
生:我觉得应该把各种情况的长方形都算一算,就知道哪种面积最大了。
师:前面我们学过列表的方法整理数据,现在就请大家用列表的方法把各种情况都整理一下,再算一算。出示下表:
长(米)
宽(米)
面积(平方米)
(学生列表整理,计算汇报,教师把相应数据填入表中)
生:我们发现长5米、宽4米的长方形面积最大。
师:刚才大家用列表整理数据的办法验证了大家的猜想,可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的.探究给我们一些启发。现在大家再次观察一下上面的表格,你有什么新的发现?然后在小组内相互交流交流。
生:我知道了周长相等的长方形,面积不一定相同。
生:我觉得长方形的长和宽越接近时面积越大。
生:我发现长方形的长越大,宽越小,面积就越小。
师:这是为什么呢?同学们能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?
生:老师,我明白了当长方形的长越大,宽越小,围成的长方形就越扁,它的面积就越小,如果长为9米,宽为0米,这个长方形的面积就为零了。
生:老师,还可以围成更大的面积,只要把两根栅栏都平均剪开,这样就可以围成一个正方形了,它的边长都是45分米。
师:这是一个新的发现,这个发现有没有道理呢?相信大家能得出正确的回答……
教学反思
“策略”的习得不同于知识与技能的掌握,它对学生的数学学习提出了更高的要求,也成为我们开展新课改实践的新课题。纵观本课例的教学过程,有下列启示:
1、凸现问题的探究价值与开放性——形成策略
策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材上原本的设计是“围成的羊圈长8米,面积是多大呢?”教者在执教时将之巧妙地改为“王大叔会怎么围呢,怎样围面积最大?”比较两者的提法,显然后者的提法更富有探究价值,更具有开放性。正是源于问题的挑
战性,学生的学习兴趣盎然,思路放得开,能积极地尝试各种不同的策略进行探究,猜想验证、画图、列表等不同的问题解决策略自然而然生成。
2、紧扣“数学思维发展过程”这个学习活动核心——优化策略
标准提出,无论是什么样的问题解决策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时地引领着学生的思维不断攀爬提升,不断提升策略选择的思维品质。如出示问题后,教者提出“猜想一下,他会怎么围呢?”引导学生从数学的角度分析问题、形成策略;当学生对各种围法进行争议时,教师提出“光靠这样猜想、争议还不够,你们有没有更好的解决办法吗?”逼着学生另辟蹊径,进行策略改向;在学生以为顺利解决问题后,教师又提出“可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发”,引导学生开展交流与评价,进行策略反思。这样,一步步地引导学生用数学的眼光提出问题、理解问题、解决问题,发展思维,优化策略。
3、尊重学习个性,彰显创新精神——发展策略
列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是一本课的重点,但教者在教学活动中充分尊重学生的个性特点,基于此又不局限于此,让学生在体验不同的策略过程中个性得到张扬,从而激起创新的火化。比如,教者在学生提出不同的围法后,让学生大胆地直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测解决了问题,教者却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?”这样数形结合,进一步挑起究其竟的心理冲突、不满足的欲望,为形成富有理性的数学思考积累经验与感悟。
解决问题的策略教学反思3
小葛老师在尊重教材的情况下,把知识的逻辑起点与现实起点连接起来,将丰富的精彩问题策略进行外显。根据解决问题是多元的,让学生的思维流动,允许不同的学生有不同的发展,给学生有充分的学习自由度,让学生快乐的学习。
本节课教者没有把解决某一个具体的问题作为教学的主要目标,而是把重点放在了学生体会策略的.价值,并主动运用策略来解决问题上。这节课有以下几个点比较好:
一、教学设计“实”。
教学内容的设计符合学生的情感,结合教学实际,大胆更改教材,增加了情景中的信息量,让学生在解决问题的过程中产生一种需要情感——愿意在解决问题之前先整理信息。做到了教材服务于教学,而不是教学服务于教材。
二、教学方式“活”。
在教学中充分的体现老师的指导性和学生的主体性。所有知识的学习,教师扮演着组织者和指导者的角色,而学生则在老师的组织下充分的在课堂这一舞台上展示自己的才华,学生成了学习的主人,他们在评价他人的同时也学会赞美别人;他们掌握了学习的时间和空间,体验着成功的喜悦。
三、教学内容“丰”。
整节课的教学密度大,内容丰富,把数学和生活紧密联系起来。从课的开始一直到结束,每一个问题的产生,每一次知识的收获都离不开实际生活的情景,这是教师用心之处,让学生知道学习数学的最大作用就是让数学知识服务于生活。
让不同的学生学习不同的数学,从多种策略中慢慢感知、理解,在比较摆小棒、列举、图表等策略中使学生领略列举的优势,注重过程的学习。诱发学生学习快速进入探索状态,因学而设、顺学而导,把设计、学习、引导相结合,让学生在学习中,及时回头看一看自己的学习行为过程,关注学生学习的真切体会,及时检测学习效果,同时拓展了问题的深度,培养学习逻辑思维能力。
解决问题的策略教学反思4
本节课是苏教版六年级数学下册第六单元第一课时,内容是第71-72例一、试一试、练一练及练习十四的1-3题。本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把新知的问题变成旧知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
基于此,我设计了以下六个教学环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。第二环节是"回顾运用,感知转化",在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到转化的好处。 随后在第三环节是“观察思考,再探转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。第四环节“及时练习,运用转化”中我改变了教材知识的呈现方式,把练一练和练习十四第2题的第(3)小题作为及时练习内容,使学生初步学会运用转化解决问题,巩固知识的同时体验成功的喜悦,激发继续学习的热情。第五环节“应用迁移,拓展深化”中通过学生的独立思考和合作交流利用转化的策略解决实际问题,达到巩固应用和进一步体验转化的目的。第六环节是“总结转化,深化思想”,本环节包含两个部分,首先让学生自己说说本节课的收获,再让学生欣赏“曹冲称象”和“司马光砸缸”两个古代智慧故事,激发了学生的应用兴趣,使他们对使用转化策略解决问题充满信心。
课前设想总是美好的,但在实际的操作中,总会出现一些问题。 虽然整节课的设计都是围绕让学生去感知、探索、体验“转化”的策略,但上完这一课后,我感觉没有达到预期的教学目标。整节课下来,学生的收获偏重于教材和我所提供的一些关于转化的问题,学生的创造性没有得到很好的`发挥,很难在以后的学习中把转化这一策略应用到新的问题上面。主要问题是学生对“转化”策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法???很多时候都是作为教师的我在“唱独角戏”,一个人在那儿说着“转化”的优点,而学生并没有所想的那样对转化有认同感。并且课堂上我对学生的启发提问,知识与知识之间的过渡语言,对学生回答完问题的评价语言显得贫乏苍白。此外,对课件的操作也存在着一些问题,很多时候学生从我操作中的“蛛丝马迹”中获取了问题的解决方法而不是通过思考主动利用转化策略去解决。这是对整个教学流程的把握不够自信和熟悉的表现。
一节课下来,静心沉思 ,积累成功的经验,思考失败的原因。总之就本节课而言,增强学生的转化意识,提高学生转化的技能,让转化思想扎根学生心田,这样学生的思维才能更灵活开放。符合就是成功,不符合就是失败,我会在以后的教学中不断改进。
解决问题的策略教学反思5
师:请你用自己的方法尝试解答一下。
学生自己解答,教师巡视,指导个别有困难的学生,并给予了提示,并且收集了几种比较典型的解题方法。
师:好,老师选了几个学生的作业,我们来听听听他们的想法。第一位同学在解题时时有困难的,所以,老师给她了帮助,我们一起来看一看。出示表格。
生1:30是第一天的,第二天比第一天多5个,所以是35个,第三天比第二天多5个,所以是40个,第四天比第三天多5个所以是45个第五天比第四天多5个,所以是50个。
师:很好,这种方法正确吗?
齐答:正确
师:我们一起来念一念,检验一下对不对。
师与生一起读:第二天35、第三天40、第四天45、第五天50。
师:是不是都多5个?求出答案后,我们应该回过来检验一下。
师出示列算式的方法。
生2:第一天是30个,第二天比第一天多5个,30+5=35个,第三天比第二天多5个,35+5=40个,第四天比第三天多5个,40+5=45个,第五天比第四天多5个,45+5=50个。
师:这种方法可以吗?
齐答:可以。
师:他是一步一步算出来的。我们一起来念一念,答案求出来我们要回过头去检验。从这里你能得出第3天,第5天吗?
齐答:第三天是40个,第五天是50个。
师出示生3的作业,请生3来介绍。
生3:我发现第三天比第一天多了两天,也就多了两个5,所以2x5=10,再把第一天的加上多的就是第三天的40个。
师:根据他的思路,我们来想想第五天比第一天多了几个5?
学生回答:4个。
师:可以怎样列式?
生:4x5=20,30+20=50个。
师:求出最后的答案正确吗?
生:正确。
出示错例
师:这位同学对吗?
全班同学一起来看,学生举手发现:第五天5x5+30=55是错误的。
分析:
整个板块老师收集了三种正确的`方法和一种错例来进行展示,这三种正确的解法是比较有代表性的,都是学生在理解了题意和数量关系后写出的,错例的展示提醒了学生从条件出发的重要性。对于第三种方法展示是,老师问了全班“第五天比第一天多了几个5?”这是引起全班同学的注意,不是每道题都一定要一步一步的解决,这是对于学习的提升。
建议:
从坐在边上的同学情况看,有一个错误,两个不会做,只有一个会做。我们可以看出,一部分学生对于这题的解决还是有难度的,所以是不是可以准备一些表格纸,装进信封放在小组长那边,如果谁有困难,可以到组长那边的信封里拿提示,适当降低点难度,我想这样全班就都会解答这些题了,从而也告诉学生所谓的解决问题的策略是有很多种的。
解决问题的策略教学反思6
上完这一节课本节课,我趁热打铁,立刻进行反思。本节课我努力体现解决问题这类课型的我们老师应该坚持做哪些工作,我个人思考不管是新课程理念还是老课程,也不管是什么版本,数学应该有其本质的东西,那就是给学生思考的时间和空间,引导学生会思考,促进学生去悟懂里面的道理。正是基于这样的理念和思考,所以在课中我三个招注重:
1、注重给学生充分思考的时间,我等着学生慢慢领悟其中的道理,课堂上照顾全体同学,决不是看到有同学举手,就像看见了一个救星一样,马上请这位同学回答,他回答对了,就代表都会了,这样做就以个体代替了整体,会造成课堂上个别学生的'表演。
2、注重审题,我感觉对于一个问题,能够正确全面的审题对于能否解决问这个问题至关重要,所以新授部分,我注意让学生多次读题,并且把重要的信息让学生重读,并且说说自己的理解,之所这样就是想培养孩子仔细审题、全面审题的能力。通过课堂效果来看,起到了预期的效果,在学生正确全面的审题以后,解决问题就水到渠成了。
3、注重学生在独立思考后的讨论交流,课堂上我是先让学生独立思考,思考后再进行交流,而不是抛出一个问题后就直接让学生讨论交流,我感觉那样的讨论交流一般是比较流于形式的,是浅层次的交流,是没有深度的。因为每个同学还有经过自己的思考张口就说,看上去很热闹,往往是:自说自话,简单的想法。通过课堂效果来看,这样的处理有着实实在在的效果,对于发展学生的思维能力是非常有帮助的。
再来反思自己上课的不足之处,我感觉也有很多不足之处:
1、没有很好的调动起学生的积极性,提前一天和学生交流的时候,学生很活跃,所以今天在会场上我想也应该是这样的,其实不然,学生是紧张的,而我还是以昨天的表现来应对今天的局面,显然是不妥的,课前也没有进行充分的交流。
2、课堂的练习设计层次性不强、趣味性不高,所以感觉课堂上后面的练习学生积极性不够高,显得沉闷和呆板。
3、课堂语言不够生动和活泼,也不够精炼。
以上三点都是我在今后的教学中需要下大力气进一步改进的地方。
解决问题的策略教学反思7
“一一列举”的策略不是完全的新知识。在小学阶段虽然安排在五年级学习,但是在各册教材中都有渗透,这种解题的策略对学生来说不应该是陌生的,所以,我布置了四道预习作业作为本节课的铺垫1、把7个苹果随意分成2堆,有哪几种分法?2、《科学世界》、《七彩语文》、《数学乐园》,从中任意订2本,有多少种不同的订法。3、解放军叔叔轮流换岗,第一次换岗时间是7:00,第二次是9:00,第三次是11:00,第四次是( ),第五次是( ),第六次是( )。4、用10根火柴棒摆一个长方形,有几种摆法?请你摆一摆,画一画。
从预习作业来看1、2、两题列举方法多样,第四题好多同学把10看成了长方形的.周长。“一一列举”的策略不是一一列表。教学中可以用多种方法来解决问题,分类列举,用文字,用字母,画图等等,表格只是其中的一种方法,所以在教学中,我们引导学生先尝试用自己的方法解决问题。学生表达出了多种形式,有列式的,列表的,用长宽对应书写的。然后教师再向学生推荐表格列举。通过有序与无序、重复与遗漏列举的对比,让学生感悟列举要性。
寻找到突破口,找到“从那里想起?”。而后让学生体会“像刚才这样把事情发生的可能按一定的顺序,有条理地列举出来,这种策略就叫做一一列举”。为了上好这节课我精心研读教材,了解学生,和同伴反复交流,教学效果较为明显。
解决问题的策略教学反思8
第一课时
假设是解决问题的常用策略之一,对学生分析实际问题的数量关系,积累解决问题的经验,感悟一些基本的数学思想方法,提高分析和解决问题的能力,都有着十分重要的意义。因此,我认真钻研教材,对照“真学课堂”的要求,精心设计了这一课时。
一、课前交流,渗透“等量代换”思想
“等量代换”是假设策略的核心思想,我在课前让学生重温了“曹冲称象”的故事,意在让学生明白曹冲用石头的重量来替代大象的重量实际上就是蕴含了一种数学思想“等量代换”,为解决课上的实际问题作了铺垫。在解决例1时,也确实起到了作用,大部分学生能很顺利的想到将大杯换成小杯,或将小杯换成大杯。
二、创设问题情境,形成认知冲突。
在学生口答完简单的只有一个未知量的题目后,出示例1含有两个未知量的题目,呈现对比强烈的问题,引导学生比较问题的结构特点,形成认知冲突,进而产生把复杂的问题转化成简单问题的心理需求,激发学生进一步探求解决问题策略的欲望。
三、以学定教,教学中适时调整教案
在教学例1时环节,我的教学预案上,我预设了学生解决问题的三种思路:第一种是全部是小杯或全部是大杯,第二种是通过画图再解答,第三种是列方程解答。但是在课堂上学生都是采用了第一种假设方法,画图也只有极个别的学生,全班没有列方程解答的学生。这时,我就调整教案,展示了第一种思路。方程的解法,我选择是一带而过,只需要让学生了解这类题目也可以用方程解答,方程也是假设的思想,而且列方程解答,相对列式解答来说就复杂一些,既然学生能掌握列式解答的方法,就不必要求他们列方程。
四、自主尝试后小组活动
非操作类小组活动,应该建立在学生充分自主的基础上。在解决例1时,我先让学生独立思考、自主尝试,列式解答。再让学生在小组内活动,说清楚每一步求的是什么。这样让组内学习较好的学生有自我展示的机会,对于后进生来说,在自主尝试的时候没有得出解决问题的方法,那么在小组活动的时候,他们可以听取组内其他成员的思路与方法,对他们理解题目起到帮助作用。个人认为在这些非操作类小组活动前,先由学生自主尝试,能培养学生面对难题时独立思考的习惯,让学生有勇气去面对难题。如果没有给予学生充分自主思考尝试的时间就进行小组活动,这样就会让学生对他人产生依赖,形成惰性,面对难题时也就失去了战胜困难的勇气。
五、展示交流多样化。
真学课堂的要求指出:要给学生充分展示、主动交流的机会。我在本节课中运用了组内展示、全班展示,直观展示、口答展示等形式。在学生小组活动时,让学生在组内充分展示自己的思路,在小组活动结束后我选取了两种不同方法的作业纸,通过投影仪展示在前面的'白板上,让学生直观清晰的看清楚他人的作业,这时我并没有请被展示作业的学生进行自己作业的讲解,而是请全班同学共同思考这份作业的每一步求的是什么?再指名回答。我认为被展示作业的学生已经在小组内展示过了,没有必要让他再讲解一遍,应该给予他们更多发言的机会,同时又给予了全班同学又一次理清算式每一步的机会,再指名回答,在倾听他人回答的时候,这时全班同学又进行了第三次思考。
在展示“试一试”解题过程时,我并没有在投影仪下展示学生的解题过程。因为我通过巡视,发现全班基本都会做这道题,所以我只是让学生站起来回答问题,同时提醒学生倾听,这样让学生一边倾听同伴的发言,一边思考同伴说的是否正确。既培养了学生倾听的习惯,同时在倾听的同时又思考了一遍,强化了解题思路。
不足的地方:
一、回顾总结不到位。
教材上安排了“回顾解决问题的过程,你有什么体会?”这一环节,而我只是把这些渗透在解决具体题目中,并没有作为一个环节,回顾解决了的问题。我应该启发学生从为什么假设、怎样假设、假设后怎样思考等方面展开交流,并作适时的提炼和概括,以提升认识。
二、没有充分调动学生的积极性。
整节课,可能由于后面坐了听课的老师,学生有些紧张,举手的学生不多。我没能很好的调动他们的发言积极性,所以有很多学生会回答但是手却不举起来,这就需要我平时在教学中要注意,多使用激励性语言,多鼓励孩子。
三、关注学困生还不够。
解决问题的策略在小学阶段是比较有难度的一部分,特别是对于学困生,不容易理解。这就需要我们老师在课堂上要时时的去关注他们,不能只考虑课堂的时间安排,而忽视了他们。
解决问题的策略教学反思9
《解决问题的策略——从条件想起》这节课是苏教版三年级上册第五单元第一课时。这节课主要帮助学生联系已有的解决实际问题的经验,学会用从条件出发思考的策略分析数量关系,探寻解题思路,并解决一些实际问题。所谓从条件想起的策略,就是从已知条件出发,想出由这些条件所能解决的问题,并最终与所需解决的问题建立起联系,这是一种由因到果的思考方法。在解决实际问题的过程中,几乎都会运用到这一策略,所以理解并掌握这一策略,对于学生形成解决问题的能力具有非常重要的意义。在执教这节课的过程中:
一、从提问导入,初步感受策略
课始,我创设了“小猴乐乐的农场”的情境,提供两个已知条件,让学生根据已知条件提出数学问题,让学生初步体会到根据有联系的已知条件可以提出相应的数学问题。然后再出示教材中安排的小猴摘桃的例题,通过读题,找已知条件和问题,分析“以后每天都比前一天多摘5个”这个已知条件的含义,引导学生体验从条件出发思考的策略,初步感受策略运用的过程和特点。
二、比较反思,注重解题过程的回顾
教材中的例题在解决的过程中出现了两种方法,一种是列表法,另一种是算式法。在学生尝试解答之后,我让学生比较一下这两种比较的方法有什么共同之处,体会到虽然解题方法不同,但是都是从条件出发思考,结果也是相同的。回顾解决这道题的.过程:读题,找已知条件和问题,分析有含义的已知条件,解决问题。教材中安排的“想想做做”第2题,我将它安排在解决了例题之后,我觉得这两题其实是十分类似的题型,所以在完成例题之后再完成这道题,然后将两道题的分析思考过程放在一起,比较一下这两道题在分析思考的过程中有什么相同之处,从而得出从条件一步一步地到问题的解决的过程,体会从条件想起策略的一般步骤,帮助他们由具体到抽象,不断加深策略体验,逐步增强解决问题的策略意识。
三、低估了学生的分析解题能力
在解决例题和想想做做第2题时,都是由我带着学生一起分析有含义的条件:“以后每天都比前一天都摘5个”和“每次弹起的高度总是它下落高度的一半”。在教学过程中,我发现大部分学生是理解这两个已知条件的含义的,所以我应该在理清了已知条件和问题之后就放手让学生来独立完成,然后再交流想法:为什么这么做?学生应该会说到从哪个条件得到什么等等,这样更能体现从条件想起的策略。
四、忽视了列表、画图辅助方法优势的渗透
解决实际问题时,学生一般都想到用列算式的方法来解决。本节课还渗透了列表,画图等多种方法辅助思考,引导学生根据实际问题的特点,合理选择解决问题的方法,使策略运用过程更具针对性。在学生解决完例题后,指名让学生上台交流,在交流的过程中,发现学生没有很好的认识列表这一方法,学生只是在运用了列算式的方法得出了结果之后把每天摘桃个数一一填到了表格中,没有体现出列表这种方法的优势,所以这里我应该引导学生认识一下表格,了解一下表格的里的内容等等,让学生明白列表也是解决问题的一种方式。在解决“想想做做”第3题时,由于教材中已经提供了18个圆圈,学生很快根据条件找到了答案,然后我让学生通过算式的方法再解决一遍时发现较多学生有困难。其实这里是一个让学生发现画图方法优势的好机会,在算式方法交流完后,我应该适时地总结:有的实际问题,运用画图的方法能更快地找到答案,我们要针对具体问题合理选择解题方法。
总之,这节课的设计不尽人意的环节较多,没有很好地体现学生学习的主动性,也没有突出从条件想起这一策略的优势,需要进一步改善。
解决问题的策略教学反思10
预习,正越来越被更多的小学数学老师所青睐,它作为一种学习方法,预习习惯的养成,预习方法的掌握,对于培养学生终生学习的能力,促进学生终生发展有着不可估量的作用,这不容置疑。
可有些老师提出:教材中一些需要推导算理、计算公式以及需要探究后才得出结论的内容不必安排预习。理由是抹杀了学生探究的欲望,就不具备探究学习的条件了。而我恰恰认为,这类课,预习过后,合理组织教学,也可以培养学生的思维能力,或者说反而具有更高的思维含量。
例六年级上册《解决问题策略――替换》一课,我是这样组织预习的`:
(1)布置阅读书上P89-90页的内容;
(2)720毫升全部倒入小杯需要几个小杯,全部倒入大杯需要几个大杯?你是怎样想的?
(3)在解决例题时,你是怎样替换的?
(4)在探究过程中,你还遇到什么问题?
第二天,我这样检查预习并组织新课,分为这几个层次:
1.开门见山,检查预习情况,指名学生解答预习要求;
2.720毫升全部倒入小杯需要9个小杯,9个小杯是怎么来的?
3.同样720毫升,全部倒入大杯需要3个大杯,3个大杯是怎么来的?
4.小结两种替换方法(大杯换小杯,或小杯换大杯);
5.组织验证;
6.质疑:预习中你还遇到了什么问题?
7.改变条件拓展提升:把小杯容量是大杯的1/3,改成大杯容量比小杯容量多160毫升,让学生思考如何替换,组内交流。
8.对比总结:这两题有什么不同?
9.巩固训练:如何用替换这一策略解决实际生活中的问题。
反思:这样的课堂把原来要通过探究,最终得到的“替换”这一解决问题的策略,让学生预习感知,并通过预习反馈,延续下面的探究活动,解决这节课的重难点,可谓单刀直入,不拐弯抹角,学生的思路清晰,思考方向明确。问题是数学的心脏,我让学生创造性的学习,把学习的主动权交给学生。这样,学生有充足的思考时间,有自由的活动空间,有自我表现的机会,促进了创造性思维的发展。谁又能说抹杀了学生探究的欲望,就不具备探究学习的条件了呢?反而,我认为:
1.这样的课堂,高度激发了学生的参与热情,充分地展现了多样化的见解,能让不同层次的学生都有话说,都能或多或少有自己的思考,不至于跟不上教学的节奏,能让他们充分体验到成功的喜悦。
2.这样的课堂,学生不满足于课本知识的获得,敢于向课本挑战,从不同的角度提出不同的见解,长此以往,还能进一步培养学生的问题意识,从而达到对课本知识的深层次理解。
3.课堂中教师可以重点点拨预习中产生的疑惑,围绕重点难点组织合作交流,拓展、创新。而不至于课堂中平均用力,突不出重点难点,造成会的学生不愿听,不会的学生听不懂。这样的课堂,充分节约了教学时间,加快了课堂教学的节奏,能有效提高课堂教学的效率,正是我们所追求的有效课堂。
解决问题的策略教学反思11
本课是在学生学习了用列表的策略收集和整理信息,用从条件或问题想起的方法分析数量关系的基础上教学的,本课系统研究用画图的方法收集、整理信息,并在画图的过程中,分析数量关系,用“画图”的策略解决相关实际问题,帮助学生积累数学活动经验,感悟直观化的数学思想方法,发展几何直观,提高分析、解决问题的能力。
在教学例1前我先出示2题“看图解答”,引导学生看图说出问题、条件和数量关系,再列式计算,此环节的意义是通过从图中整理条件引导学生体会“图”的好处,同时也勾起了学生脑海中关于“画图”的回忆,也为例1的教学做好铺垫。例题1是用纯文字的形式出示的,由于题中的条件比较多,使学生在对文字的阅读理解中遇到了困难,对题中数量关系的理解也有些模糊,不过借助课一开始的“前置性练习”,很多学生能够想到用画线段图的方法来解决,但如何准确的在线段图上表示题意却有一定的困难,这时老师给出一条线段表示小宁,给学生一个“支点”,再让学生画另一条线段表示小春,并说说为什么要这样画,在画好了主体部分后让学生把题中的条件和问题在图上表示出来,从而完成一幅完整的线段图。在画好图以后,教师就要诱发学生“看图”进行推理,找出数量关系并进行分析,确定基本的解题思路,化图形为算式。本课中的例题不同与一般的简单的实际问题,由于其条件、数量关系的复杂性和抽象性,适合用画图的策略来解决,例题1呈现的是两个数量的和和差,通过假设让两个数量相同,期间通过演示使学生看到总数的变化,形象的展示了解题思路,加快了学生的理解速度,之后学生自主解题,板演并进行讲解,如此在观察中推理,在计算中比较,在比较中发现。最后的回顾环节,意在帮助学生已经积累起来的画图述问题、分析问题的`经验上升到策略的层面,进而获得对策略的深刻的体验。
值得一提的是学生对策略的掌握要经历从模仿到逐步内化的过程,“试一试”是对画图策略的强化,教师要进一步放手,“想想做做”重在引导学生内化策略,“画图”作为解决问题的一种常用策略,是学生通过画图不断解决问题的过程中逐步感悟获得的,本课学习,画图不是最终目的,不可能仅凭一两堂课就能使学生掌握,画图是一种中介,是为了学生更好的学会思考,随着学习的深人,学生所遇到问题的类型在不断变换,而解决这些不同类型问题的策略却始终如一,学生对画图策略的运用越来越娴熟,对策略的理解也越来越深刻,从而帮助积累更多的解决问题的经验,感受策略的价值,提升数学思想方法。
解决问题的策略教学反思12
解决问题的策略从条件想起是三年级上册新增的内容,重点是让学生利用从条件想起的策略解决问题,《解决问题的策略》教学反思。对于三年级的学生来说是第一次接触“解决问题”也是第一次接触“策略”。为了让孩子形成解决问题的一些基本策略,在快乐和轻松的氛围中发展合作交流能力,我跟我们级的老师进行多次探讨,在几次磨课过程中感受很多,对“从条件想起的策略“这课教学有了更为深刻的认识,下面就谈一谈我的几点认识。
第一、精彩的导入是一节课良好的开始
导入是思维的起点,好的导入可以激发学生的学习兴趣、动机,调动学生学习的积极性,往往关系着学生学习这一节课的效果如何。如果导入成功,学生就会兴趣盎然,精力集中,思维活跃,理解和记忆的质量就会相应提高。所以课堂一开始我就“挑逗”孩子的.味觉,事先准备了孩子爱吃的棒棒糖,并说这是老师为举手积极的小朋友准备的奖品,紧接着问“猜猜这里面有多少个棒棒糖”,教学反思《《解决问题的策略》教学反思》。在孩子们都猜错的情况下,给孩子们一个条件,他们发现条件很重要,从而揭示课题“今天我们就来研究怎样根据条件解决问题”。这样的导入能激发孩子的表现欲,让他们积极地开动脑筋,又能很好的揭示这节课的主题。
第二、适当的教材重组能提高教学质量
在小学数学的教学过程中,教材的编排虽然已经考虑到学生的共性,但毕竟存在地域、群体乃至个别的差异。在这种情况下,就需要教师在把握教材特点的基础上,适当的重组教材,从而做到优化教学,使每个孩子都可以充分地发展和学习。“从条件想起的策略”这课例题只出现两种方法解题,所以我教学例题时问“还有没有其他方法”孩子发现还有其他比较好的方法,解题思路的多向化也能很好的激发孩子的学习兴趣。想想做做内容量较大,所以我也进行了重组,原先的五道题我只用了三道,并对最后一题进行了提高。想想做做第一题由于比较难理解,我将知识分解,降低学生的学习难度。这样的目的是为了在提高教学质量的同时,使学生在学习中既长知识,又长智慧,身心也能得到健康发展。
第三、课堂是孩子的“课堂”
在前几次的试教中,我发现整堂课我说的太多,有时候孩子说的挺好我还要再强调一遍。这种情况就导致了孩子的学习效率不是太高。其实课堂是孩子的,学生与学生的互动与对话应该体现在课堂的每一个细节中,在课堂上一定要让出充分的时间给孩子“说”。孩子能说的就让孩子说。在例题教学时让孩子说一说“以后每天都比前一天多摘5个”是什么意思,我先让孩子自己思考一会儿,然后小组里说一说,最后全班一起说一说。用策略时也是让孩子讲给孩子听,先根据什么求出什么,再根据什么求出什么,老师只是适当的点拨一下。社会的发展越来越需要孩子们具有较强的口头表达能力,做为老师就应该提供各种机会让孩子各抒己见,学生无暇率真声音的课堂应该是最“动听”的课堂吧!
解决问题的策略教学反思13
作为第一节上课的老师我是比较有压力的,怕上不好,所以在备课时不仅看了教参还从网上查阅了很多资料,也认真听取了我们数学教研组的前辈老师们给我的各种意见,谢谢他们帮我屡清楚思路,团队的力量很大。
本节课是在具体的情境中通过问题解决让学生感受体会总结从问题想起的解决问题的策略,例1结合实物图呈现了两套运动服、两双运动鞋和两顶帽子的价格,要求学生依据图中的信息以及“小明和爸爸带了300元”这个已知条件,求“买一套运动服和一双运动鞋,最多剩下多少元?这个问题。这样的场景是学生熟悉的,我顺应学生思维分四步引导学生分析和解决问题。
第一步,根据具体问题产生“从问题想起”的需要引导学生说说自己是怎样理解“最多剩下多少元”的含义,启发他们在交流中明确:购买的运动服和运动鞋的价格不同,剩下的钱自然也就不同;要使剩下的钱最多,应该购买价格最低的运动服和价格最低的`运动鞋。在这个环节中我比较拖沓,出示例题前提出问题“他们可能买了什么?”让学生列出所有算式和结果,而且自己的提问过于细致,给学生思考的时间较少。
第二步,引导学生从所求问题出发,进一步分析数量关系,数量关系是从问题想起解决问题的关键,看着数量关系说说哪个知道了,哪个不知道,确定先算什么,再算什么。并会完整地说一说。数量关系之前就没有提过,所以在我这里反而成为了一个“难点”我就纠结在这里了,不断的提出繁琐的问题,希望孩子可以说出来,浪费时间,是自己的方法有问题,引导的不好,我思考的太少了,教育方法过于死板,无趣。
第三步,鼓励学生依据上述解题思路各自列式解答,并在此过程中进一步加深对题中数量关系的理解。学生列示解答时反馈阶段太简单了,应该让孩子说说每一步算的是什么,在结合数量关系式一起理解。
第四步,组织学生回顾解决问题的过程,说说自己的体会,进一步明确从问题出发展开分析和思考的基本过程,即,先根据问题想数量关系,看哪个知道,哪个不知道,确定先算什么,感受策略的价值。这个过程完成的不好,好像所有定西都是自己总结的,我想是我问题太多,有的问题也没有个度,把孩子都问傻了。接下来的“想一想”让学生独立说说根据问题要先算什么?是怎么想的?学会运用从问题想起的解决策略。之后回顾刚才解决的两个问题,都是根据要求的问题,找出数量关系,看哪个知道了,哪个还不知道,确定先算什么,再算什么。从而揭题。最后就是从问题想起解决相关的实际问题,在练习中注意不断地引导学生根据问题找到数量关系,看需要的条件,确定先算什么。
总体来说这节课基本按照教学设计上完了,但是没有达到理想中的效果,我提问很多很琐碎,引导的太多,这样限制了孩子的发挥,导致课堂学生参与度不高,更谈不上高效课堂了。对细节的思考不够,课堂效果出不来。我的语言不够准确,精练。这是一贯的问题,需要长期注意,才能慢慢提高。对孩子的鼓励不够,策略有好有坏,但是思考过程不分好坏,都是有价值的,应多多鼓励。这些问题在之后的课堂当中要多加关注了。
解决问题的策略教学反思14
解决问题的策略从问题想起是三年级下册新增的内容,重点是让学生利用从问题想起的策略解决问题。对于三年级的学生来说是第二次接触“解决问题”也是第二次接触“策略”。根据学生的基础,结合评课老师的建议,我对“从问题想起的策略“这课教学有了更为深刻的认识,下面就谈一谈我的几点认识。
第一、精彩的导入是一节课良好的开始
导入是思维的起点,好的导入可以激发学生的学习兴趣、动机,调动学生学习的积极性,往往关系着学生学习这一节课的效果如何。如果导入成功,学生就会兴趣盎然,精力集中,思维活跃,理解和记忆的质量就会相应提高。所以课堂一开始我就“挑逗”孩子的心理,事先准备领孩子们购物,并说这是老师为小朋友准备的奖品,在孩子们都选错的情况下,给孩子们一个问题,他们发现问题很重要,从而揭示课题“今天我们就来研究怎样根据问题来解决问题”。这样的导入能激发孩子的表现欲望,让他们积极地开动脑筋,又能很好的揭示这节课的主题。
第二、适当的教材重组能提高教学质量
在小学数学的教学过程中,教材的编排虽然已经考虑到学生的共性,但毕竟存在地域、群体乃至个别的差异。在这种情况下,就需要教师在把握教材特点的基础上,适当的重组教材,从而做到优化教学,使每个孩子都可以充分地发展和学习。“从问题想起的策略”这课例题只出现两种方法解题,所以我教学例题时问“还有没有其他方法”孩子发现还有其他比较好的方法,解题思路
的多向化也能很好的激发孩子的学习兴趣。想想做做内容量较大,所以我也进行了重组,原先的五道题我只用了三道,并对最后一题进行了提高。想想做做第一题由于比较难理解,我将知识分解,降低学生的学习难度。这样的目的.是为了在提高教学质量的同时,使学生在学习中既长知识,又长智慧,身心也能得到健康发展。
第三、课堂是孩子的“课堂”
在这次课中,我发现整堂课我说的太多,有时候孩子说的挺好我还要再强调一遍。这种情况就导致了孩子的学习效率不是太高。其实课堂是孩子的,学生与学生的互动与对话应该体现在课堂的每一个细节中,在课堂上一定要让出充分的时间给孩子“说”。孩子能说的就让孩子说。在例题教学时让孩子说一说“最多剩下多少元”是什么意思,我先让孩子自己思考一会儿,然后小组里说一说,最后全班一起说一说。用策略时也是让孩子讲给孩子听,先根据什么求出什么,再根据什么求出什么,老师只是适当的点拨一下。社会的发展越来越需
要孩子们具有较强的口头表达能力,做为老师就应该提供各种机会让孩子各抒己见,学生无暇率真声音的课堂应该是最“动听”的课堂吧!
解决问题的策略教学反思15
解决问题的策略这一课,可以说是整册教材中最难的。它是第例题的基础上来学习的,在学习例题一的基础上进行第二课时教学。这个例题是用三步计算解决的简单实际问题。教学时让学生认真读题,找出题中的条件。由于题中的条件比较多,要引导学生找出这些条件的对应关系。然后根据题中的问题,找出相关的信息整理成表格,引导学生认识到:要求出桃树和梨树一共有多少棵,就要分别知道桃树和梨树各种了多少棵。学生已经初步接触了一些解决问题的方法。这里可以大让学生自己尝试着算出来,遇上问题后再来解决,这样做既能让学生通过旧知道去探索新的知识。也能锻炼了学生的自学能力。要是遇上学生不懂可以启发学生根据整理好的表格表达自己解决问题的思考过程,从而体会到“列表整理”的策略价值。在这里里教师要尽量把问题抛给学生,例如:当学生出现不同的算法时。教师要是能这样就好“小白菜很谢谢你们能为她想出这么多的解决方法来,但是小白菜不知道怎样取舍,你能来帮她吗?哪种理解的方法和
算法你比较喜欢?”在试一试中,也是用三步来解决。所不同的`是,例题是求两积之和,这里是求两积之差。但思考的策略不相同,教师在学生解答例题的基础上,独立列表整理条件,再在小组里交流自己的思考过程,然后再独立解答出来。在这个过程中,有些孩子仍然说不出思考过程来的,这时老师带领导已经过关的学生来帮组强思维能力较弱的学生,这样达到以好带差的效果。
在想想做做的时候,先指导学生认真看图,收集各种有用的信息,然后根据根据问题将各种条件整理成表格,并分析问题与条件之间的数量关系,再让学生独立解答。这样的做法,让学生学会跟着老师思路想问题,又能养成独立的解题方法。
第二题时,先让学生独立完成,然后根据学生出现的问题进行一一指导解答。最后启发学生根据图中情况再提出些问题并解。第三题虽然与例题和试一试的不同,但学生也能通过列表整理的方法,独立地,认真地用自己的能力理解题意和解决问题。
在第环节中:教师以“一台织布机3小时织布84米,如果织8小时可以织布多少米?”为下面的学习做好铺垫。
在新课环节:教师在出示例题后让学生谈谈感受,这里留给学生自学的空间。在这环节中,老师的一句:“你准备从哪想起。让学生对题目的理解做到了认真细致。在这题里,学生可以有两种想法,一是:要求桃树和梨树一共有多少棵,要分别算出桃树和梨树各有多少棵;二是根据桃树有3行,每行有多少棵,可以求出桃树的棵数;根据梨树有4行,每行5棵,可以求出梨树的棵数,然后求出桃树、梨树一共的棵数。 这里老师能让学生独立的回答每步的思考过程。在第二课时里,学生的小组交流不够多,在教案中我们设计了让小组活动交流的时间,但在实际的课程中,这样的活动只有一次,而且质量不高。
【解决问题的策略教学反思】相关文章:
解决问题的策略教学反思 03-07
解决问题的策略——画图教学反思03-01
《解决问题的策略—假设》教学反思04-06
解决问题的策略替换教学反思04-05
《解决问题的策略从条件想起》教学反思09-02
解决问题的策略教学反思(精选21篇)12-07
解决问题的策略教学反思(精选24篇)12-13
《解决问题的策略》教学反思(通用11篇)11-29