等差数列教学反思

时间:2024-09-13 08:26:29 教学反思 我要投稿

等差数列教学反思

  身为一位优秀的老师,教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,快来参考教学反思是怎么写的吧!以下是小编精心整理的等差数列教学反思,欢迎阅读与收藏。

等差数列教学反思

等差数列教学反思1

  这节课我是这样安排的:

  首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。

  根据本课学习目标,我把学生的自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。

  本节课的成功之处:

  1、在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。

  2、教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。

  不足之处:

  1、时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。

  2、“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的'主动权给的不够多。

  在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。

  总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。

等差数列教学反思2

  高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。本节课以学生为主体,教师为主导,充分调动了学生的积极性。教师教态自然,亲和力好,课堂气氛融洽。教学环节的设置松弛有度,从例题入手,探索实验,概括提炼,综合应用,步骤层次感强,学生参与度高,老师指导有方,引导得法,学生能充分体会成功的喜悦,从而促进学生学习的兴趣。

  1.选题针对性强,点评到位

  选材取自学生练习,针对性强,内容相对集中;从学生问题的点评答疑中,提炼结论,符合从具体到抽象的认知规律

  2. 充分发挥学生学习的自主性

  学生在课堂上体现了高度的参与和热情。学生对于本节课的内容由于事先做好了导学案,所以有充分的思考和训练时间,通过合作学习,进一步应用定义解决问题,学生积极主动参与复习的全过程,特别是让学生参与归纳、整理的过程,为学生提供了充分的锻炼机会。

  3.系统有效的'完成教学任务

  系统规划复习和训练的内容,帮助学生将所学的分散知识系统化。注意从学生的认识出发,通过学生解题的体验,挖掘提升数学方法和知识;注意细节和纠错,及时反馈作业中的问题。学生错误得到点评纠正,学生的思维和创造性得到提高。

等差数列教学反思3

x

  这一节课,成功的地方:

  1、合理置疑。在课前复习中,我巧妙地利用了学生花3 分钟还没有解答出来的一题目:求数列1 ,4 ,7 ,10 ,13 ,…… 的一个通项公式。设下悬念,学习了这节课内容之后,相信大家能在1 分钟之内就能求出它的通项公式。学生们的求知欲一下就被激发起来了,眼睛瞪得大在的,半信半疑,课堂上出现一种欲罢不能的愤愤不平状态。为这一节课开了一个好头。

  2、表扬在87 中的课堂更显神效。在学校领导介绍学校情况和周二听了高三、高二各一节课情况下,脑海里就思考着,87 中的学生基础较差,学困生学可能占一大半,我思考如何才能使我的课堂更高效呢?使自己的课受学生欢迎?能在宽松祥和的`学习环境下,让学生掌握这节课的重点与突破难点内容呢?这时我想起了我们可亲可敬的王红教授提倡的亲文化。我整节都面带笑容,一但发现学生做得好的地方,哪怕一点点闪光点,我都马上给予肯定和表扬,学生学习积极性很高,课堂答题的正确率很高,就是做题的速度有点慢,或许是因为基础差的原因。不知不觉就到了下课,还看到学生有种依依不舍的感觉,太快就下课了。课后,我与学生交谈,他们都说这节课很简单,都能听明白,并且练习都会做,这是我意料之外的,倍感欣慰。各位培养对象的点评是“妈妈”型的老师在87 中应该很受欢迎的。

  3、信息技术走进课堂:充分利用多媒体手段,以轻松愉快的动画演示,化抽象为形象,创设了直观的课堂教学效果,化解了知识的难点。

  4、探究式教学走进课堂为学生的学习提供了多样化的活动方式,激发学生的兴趣,让学生积极参与。学生通过观察、猜想、推理等丰富多彩的活动达到了知识的主动构建与理解。

  有待改进的地方:

  1、课本的引例重视不够,在课件中虽然有显示,象放电影,太快!没有给予充足时间来让学生体会阅读,这一点应向“同课异构”增中何校学习,他在这方里花的时间刚刚好,能充分调动学生的积极性与学习的热情,让学生了解到原来数学来源实际生活,生活中处处有数学。

  2、对教材拓展得不够广,我只对教材的例题进行讲解,做了两道变式题,但是来自二中的邓老师,他能把等差数更一般化的通项公式也在引导出来,并且学生掌握得很好,能正确运用公式来解决问题。

  3、由于对学情还是了解不透彻,导致预设的内容,变式3 和等差中项的学习内容还没有来得学习就下课了,给下一节课教学的进度带来一定的影响。

等差数列教学反思4

  本节课是学习等差数列的第一课,注重了学生基本知识和基本能力的培养。理解等差数列的概念,了解等差数列的通项公式推导过程,培养学生观察、分析、归纳、推理的能力;通过练习,提高学生的分析问题和解决问题的能力。

  本节课,学生对定义和通项公式掌握不错,对一些基本问题能按照要求转化为首项和公差来处理。能使用简单的'性质;对基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学习起来轻松有兴趣,他们也有对其进行探究的热情,如学生用定义推导出通项公式an a1?(n 1)d nN*,培养了学生的推理论证能力和思维的严谨性。学生的解题具有一定的规范性。

  本节课,我始终注重“以生为本”,打破教师奖,学生听的传统教学模式,一开始让学生带着问题自主学习,自己去发现问题;再通过合作探究,以集体的智慧去解决问题;最后教师加以引导、点评、小结,效果良好。

  本节课,学生的学习积极性很高涨,但是设计教学的成面与学生的知识面还有一定的的差距不然可以使学生的学习兴趣进一步高涨,在以后的教学中,除了备好教材外,还要备好学生。因为,一堂好课不是看老师讲的有多好,而是看学生学得有多好。

  本节课,教师有饱满的情绪去激励学生,感染学生,创设良好的课堂心理气氛。因为轻松、愉悦的学习环境可以诱发学生的学生的学习兴趣,开发学生的学习潜能,从而更好地帮助他们接受新知识,并在获得新知识的基础上,形成创造性学习能力。教师起到一个引导作用,教学有法,教无定法,相信只要我们大胆探索,勇于尝试,课堂教学一定会更精彩!

等差数列教学反思5

  探究式教学走进课堂为学生的学习提供了多样化的活动方式,这里我充分利用多媒体手段,并采用了学生朗读,小组讨论合作交流并汇报成果,个别做答,集体做答,学生演板,学生说教师写等方法,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求利用等差数列的通项公式知三求一,体会方程的思想。在推导等差数列的通项公式时选用了不完全归纳法与叠加法,培养了学生的推理论证能力,强调了思维的严谨性。 不过在教学中还是存在一些不足:

  1、在回答等差数列的特点时,有的同学会说“前一项与后一项的差为常数”,那么我们讲数列从函数的观点来看是当自变量从小到大的依次取值时,所对应的一列函数值,所以我们以从前往后发展的`眼光来看用“后一项与前一项的差为常数”更为妥当。

  2、“如果a,A,b三个数成等差数列,这时我们称A为a与b的等差中项”。其实A也是b与a的等差中项,即b,A, a三个数成等差数列。

  静下心来思考,在今后的教学中其实还应该注意:

  1、在证明等差数列时,学生往往用有限的几个连续两项的差为常数就得到此数列为等差数列的结论,其实这是一种不完全的归纳,是由特殊到一般,这种方法是不严密的。应该用等差数列的

  数学表达式来证明。怎样用等差数列的数学表达式来证明等差数列还需要利用课堂时间进行专门训练,因为在高考有关数列的考题中往往第一问就是用定义证明等差数列。

  2、用数学建模解决实际问题时绝不是单纯的几个计算而已,一定要强调格式,解应用题,数学模型一定要交代,而且要交代清楚,平时的训练中不能忽略这个问题,在对答案时要把文字部分反复几遍要学生用笔记在解答过程中,这样他们才能引起重视,以后学习解概率题时不会丢掉必要的文字叙述。

等差数列教学反思6

  在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考.

  一、对内容的理解及相应的教学设计

  1.“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题.因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念.

  2.等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题.其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开.本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”.

  3.用公式解决问题的内容很丰富.本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程.这样的处理比较恰当.

  二、求和公式中的数学思想方法

  在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法.一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法.

  从特殊到一般的.探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。

  从一般到特殊的化归思想方法的揭示是本节课的最大成功之处.以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考.同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”.相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓.不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现.

  在等差数列求和公式的推导过程中,其实有这样一个问题链:

  为什么要对和式分组配对?(因为想转化为相同数求和)

  为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)

  为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)

  由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因.

  三、几点看法

  1.注意挖掘基础知识的教学内涵

  对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地.其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上.

  2.用好教材

  现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图.当然,由于教材的客观局限性,还需要教师去处理教材.譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平.

  3.无止境

  一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次.譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当.课没有最好只有更好!

等差数列教学反思7

  一.教材分析及能力要求:

  数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

  二.教学中的重点、难点教学

  数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

  三.教学过程反思

  在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的`不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

等差数列教学反思8

  等差数列这节我们已经学习完了,回过头清理一下,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求转化为首项和公差来处理;能使用简单的性质;对五个基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学起来轻松有兴趣,他们也有对其进行探究的.热情,如,学生由定义推导出通项公式 an=a1+(n-1)d , an-am=(n-m)d , 若 m+n=p+q , 则 an+am =ap+aq 等 。 培养了学生的推理论证能力和思维的严谨性。学生解题具有一定的规范性。

  但是也存在着一些不尽人意的地方,学生对题目中的条件不能用在恰当的位置,计算能力有待进一步培养,对证明一个数列是等差数列,受课本例题的影响,过程复杂,写成 an+1-an= an-an-1 , 没有抓住定义的内涵,将问题的形式简单化,写成 an+1-an= 常数,因而在做题时出现 3 an+1-3an=2 , 这样的式子看不出此数列是等差数列。对等差数列前 n 项和的含义的理解不够透彻,导致奇数项和与偶数项和不能正确表达。对求等差数列前 n 项的最值问题,有求和公式求最值比较熟练,但从通项研究最值问题不够熟练。针对以上问题,我们将在后续的等比数列的教学中有意识地进行针对性的训练,力求使学生对重点内容和重要方法熟练掌握。

  

等差数列教学反思9

  长期以来,我们的教学太过于重视结论,轻视过程。为了应付考试,为了使对公式定理应用达到所谓的“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化。在数学概念公式的教学中往往把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策。 基于以上认识,在设计这两节课时,我所考虑的不是简单地复习等差数列求和公式,而是让学生自己去推导公式。学生在课堂上的主体地位得到了充分的发挥。事实上,定义推导过程就是建构知识模型、形成数学思想和方法的过程。

  等差数列是高中数学研究的`两个基本数列之一。等差数列的前n项和公式则是等差数列中的一个重要公式。它前承等差数列的定义,通项公式,后启等比数列的前 项和公式。高三最后复习阶段,可千万要重视课本知识,要注意对课本知识和例题的挖掘,如果我们能指导学生不满足课本所给的知识,学会对课本例题的再研究和再探索,那势必会达到事半功倍的效果。

【等差数列教学反思】相关文章:

等差数列教学反思04-09

等差数列教学反思(通用7篇)06-26

《等差数列性质》的教学反思(精选12篇)12-24

《等差数列》教学反思(通用15篇)06-10

等差数列教学设计04-23

等差数列教学设计04-23

等差数列的说课稿12-05

《等差数列》说课稿01-13

数学等差数列教案02-25