众数教学反思
身为一位到岗不久的教师,我们的任务之一就是课堂教学,通过教学反思能很快的发现自己的讲课缺点,那么应当如何写教学反思呢?下面是小编收集整理的众数教学反思,仅供参考,希望能够帮助到大家。
众数教学反思1
《中位数和众数》是一节概念课,也是一节体会统计思想的活动课。在思考这节课该教学什么时,我认识到如果只是把“教什么”定位于“会求中位数、众数”,那么只是关注技术层面的练习,这是很不够的,因此我认为在这节课中理解概念的本质含义更重要。于是这节课我在层层递进的过程中,逐步丰富和建构对中位数和众数本质含义的理解。
一、创设认识冲突,引出概念
首先出示两个超市员工的平均工资,由平均数来对两个超市工资进行对比分析,激发学生进一步认识平均数,初步感受到,平均数受其中每个数的影响。引导思维转入深层次思考。然后制造认知冲突,出示工资表,旺旺超市的平均工资虽然高,可是员工的具体工资却比苹果超市低。让学生感受到:受极端数据影响,平均数不能很好的反映整体状况和集中趋势。采用两个超市的`对比,更加深刻的反映此时“平均数”不能很好的代表整体水平,由此激发寻找新的合适的量的必要性。
二、在对比中深化概念理解。
对比是理解概念的一种重要方式。
在创设主题情景时,对两个超市员工的平均工资的比较,创造认知冲突,“平均工资高的不一定员工工资就高”,从而比较深刻的感受“平均数骗了我们”,需要寻求新的量来表示。这样的设计与教材中呈现的情境相比,学生的认知冲突更为明显,产生寻找新量的“需求”更大,自然兴趣也更高。
在进一步明晰概念时,对两个超市的“平均数、中位数、众数”进行横向与纵向的对比,更能让学生体会概念的含义,以及概念间的区别与联系。
在深入理解概念的过程中,创设了动态的对比,将“19,20,21,21,24”中的“24”换成“49”,三个统计量(平均数、中位数和众数)会发生什么变化。这种在变化中的对比,促使学生能更深刻的体会三量自身的含义及相关联系与区别。
三、深入挖掘数学本质。
在学生体会了中位数、众数的概念含义,以及概念间的区别和联系后,我提出了既然平均数2500元不能很好表示旺旺超市的工资水平,可是旺旺超市的老板为何要这样写呢?学生说出这是老板的一种策略,我从而提出:“是啊,平均数2500元没错,但它会让求职者产生误会,以为员工工资都高,如果让你来重新写一份比较合理的招聘广告,你会写吗?”此时,学生都能结合中位数和众数来写广告,我又及时提出中位数众数我们都认识,可是一些阿姨年纪大,不认识这两个概念怎么办?这是学生又提出了中等工资水平,多数工资水平。可见在实际应用中,学生已经更深入地理解了这两个概念的本质意义。
众数教学反思2
本节课是北师大版五年级数学下册的内容。主要是让学生在实际情境中认识并会求一组数据的中位数和众数,并解释其实际意义。这是一堂概念课,也是学生学会分析数据,作出决策的基础课。
一、创设问题情境,引发认知冲突。
在使用教材时,我对教材使用了如下处理:创设了一个用平均年龄来反映一群人的年龄水平的生活情境,让学生在现实情境中发现单靠“平均数”来描述数据特征有时是不合适的,从而理解中位数和众数产生的必要性,让知识的.产生联系生活实际的需要。
二、引导分析讨论,加深概念理解。
接着提供了某人去找工作,招聘广告承诺月平均工资1000元,觉得条件不错,可当他看到该超市月工资表时,却有疑问了。就势向学生提出“用平均数1000元来描述该超市工作人员的月工资水平合适吗?那么,你觉得用哪个数来描述比较合适?” 这是一个生活中的真实问题,通过学生的思考、讨论,在此基础上理解众数、中位数的意义,怎么求中位数和众数,紧接着通过四组练习题,让学生了解到特殊情况下中位数和众数的求法。
三、在运用中完善知识结构。
从发展学生认识问题、探索问题、研究问题的能力角度考虑,我设计了大量的与学生生活实际密切相关的思考题,几乎所有的问题都在学生身边,使学生得以联系实际,设身处地的去考虑问题,在问题解决的过程中加深对概念的进一步理解,体会到平均数、中位数和众数三者既各有所长,也都有不足,一定要根据需要灵活选择。从而使学生领会到在实际生活中一定要多角度全面的考虑问题,分析问题。
上完此节课后,我觉得在三种统计量的应用方面还有所欠缺,如果课前能让学生自己去搜集一些生活中的数据,在课堂上提出来自己觉得哪种统计量更适合自己搜集到的数据,为什么?让其他同学来评评他的看法,这样能使课堂气氛更加活跃起来,增加师生以及生生之间的互动性。
众数教学反思3
自我评价:
本节课主要是要解决“什么是中位数和众数,中位数和众数在实际问题中表示什么样的意义”中位数和众数的概念很好理解,它们和平均数一样都是反应数据集中趋势的三个主要特征数,但它们具有不同的特点和应用场合,所以掌握在实际问题中我们如何选择合理的统计量来描述数据的集中趋势是这节课的难点。为了突出重点,突破难点,我采用以下教学策略:
一、创设情境,导入新课
首先我用小王去找工作,看到一份招聘上写着该公司平均月工资有20xx元,感觉很不错,结果到正式上班后却发现自己的每月工资远远低于20xx元,便认为经理欺骗了他,很是气愤,当经理拿出工资表的时候,让学生分析经理是否欺骗了小王。通过学生独立思考与交流,发现有些问题单靠“平均数”来描述数据的集中趋势是不够的,转而反问学生,还有什么数可以描述数据的集中趋势呢?以此导入课题,从而激发学生的学习兴趣和求知欲。
二、合作交流,探究新知
我先给出中位数的概念,并和同学一起理解概念,它不仅解释了什么叫中位数,还告诉了怎么求中位数。与学生一起由概念中找出求中位数的基本方法,那就是首先是把给出的数据排序,然后是分清所给数据是奇数个还是偶数个,最后按照相应情况求中位数。
明确了概念之后我便给出了教材上的例4“马拉松比赛问题”这个例题我适当进行了修改,第(1)问让学生求平均数,简单复习了平均数的内容,让学生独立完成,第(2)问要求中位数,为了让学生清楚基本步骤和格式,所以我进行了规范的板书,第(3)问是对选手成绩的评价问题,这便是本节的难点所在,所以我充分让学生进行了讨论,老师适时提示,让学生自己解决问题。
接下来安排了课后的.一个关于“工人日加工零件的情况”的练习题,相对于例题中的直观数据,本题中的数据均需从统计图中读出,而且容易出错,所以我首先设问这里一共有哪些数据?让学生充分辨析,进而问这里要用的是“件数”还是“人数”?通过分层设问,让学生轻松解决问题,同时这一题最后也设了一
问:“哪一个数据出现次数最多”,从而引出众数的概念。理解了众数的概念之后通过实际问题与学生一起运用众数解决问题。
最后回头看课前引入问题,分别让学生求出这个问题中的中位数和众数,让学生感觉这个问题中应该用哪一个数据来描述月平均工资更合适。让学生进一步感受这三个数之间的不同之处。达到前后呼应之效果。
最后引导学生进行归纳小结,回顾本课内容。
整节课我基本完成了教学大纲要求的教学目标,突出了重点,突破了难点,但也有很多不足之处。
反思问题:
1、引入问题有新意但叙述上略有繁琐,
2、师生互动还不够,学生参与的积极性还不高
3、新课改的理念体现的还不够
4、数学思想方法的提炼不够
课堂重建:
通过本节课的教学,我觉得自己最大的收获就是用好教材,解读好教材,挖掘好教材是上好每一堂课的关键。在新课程理念的指导下,教学过程中的师生地位已经发生了很大变化,要突出学生的主体地位,教师引导学生合作探究自主学,不能按原来“填鸭式”的教学方式上课了。
不足之处的改进策略及设想:
1、引入问题可让叙述更简洁,或者直入主题,或者改成如有一篇报道
说,有一个1米8的成年人在平均水深只有0.5米的一条河中淹死了,
这似乎有点奇怪,你怎么理解?
2、设置问题上还要多下功夫,以让更多的同学能够参与到学习活动中,
调动大家的参与积极性。
众数教学反思4
众数是小学数学统计中新增的教学内容。本节课教学认识众数,我认为教学目标要达到这三点:
1、让学生体会到众数产生的价值和需要;
2、如何求一组数据的众数;
3、能根据实际情境判断选择哪种统计量分析这组数据比较合适,进一步体会众数的实际应用价值。教学重难点之一是让学生理解众数的含义,进而会求一组数据的众数,理解众数在统计学上的意义。
我在教学这节内容时,创设的教学情境是“学校为‘六一’摆手舞选拔班级参赛队员”为例,共同分析得出这里既不能用平均数也不能用中位数去作代表,从而让学生产生探究新知的欲望。在学生的自主学习和交流中,适时引导学生分析这组数据的特点,发现1。43米这个数据在数据中出现的次数最多,从而引出众数的概念。让学生亲临体验知识形成的过程,使学生积极主动参与学习的能力得以提高。让学生自己归纳得出众数的概念是:众数是一组数据中出现次数最多的一个数。从而懂得生活中可以利用出现次数最多的数据,表现整组数据的状况。这样让学生体验到了众数产生的必要性和众数在生活中的应用价值。
学生在认识众数之前也,已经认识了平均数、中位数这两个统计量,于是在教学中我注重了对平均数、中位数的数学意义与众数的数学意义进行比较。平均数是在一组数据内移多补少,假想各个数据变成同样多,用这时的数据代表一组数据的状态。中位数是一组数据按大小顺序依次排列,居最中间位置的那个数,利用中位数,也能描述整组数据的状况。在课堂中我发现让学生选择众数平表示一组数据的集中程度是比较困难的。但我在整个教学过程,贯穿是的情境都是学生身边的熟悉的生活事例,有了这典型的.现实情境作支撑,就调动学生的学习主动性,通过主动探索、交流,理解和掌握了数学知识,使孩子们的思维能力得到了提高,让学生深深体会到了数学与生活间的密切关系。对于教材例题中的提问:“你觉得用哪个数据更能代表大部分同学的测量情况呢?”结果学生异口同声地回答是;“众数“。
我自己感觉这堂课的教学还是达到了目标,学生能够初步区分中位数、平均数与众数。但是有少部分学生在数据较多时找中位数时经常出现找错,这是美中不足的,孩子对于中位数的掌握还不是很牢固,在今后的教学中,我更要注意对旧知识的复习温故。
众数教学反思5
在具体的教学情境黄豆种子发芽试验中初步认识众数的意义,在一组数据中出现次数最多的这个数就是这组数的众数,反映了这组数的多数水平。在理解众数的意义后让学生计算这组数据的平均数,将其与众数进行比较,学生认识到低于平均数的有3个,高于平均数的6个,平均数偏离了这组数据的中心,所以用众数代表这组数据的整体情况比较合适,加深了学生对众数的`理解。在练一练中学生能比较轻松地找到一组已知数据的众数,并能根据实际进行说明。
《一课一练》的智力冲浪:仔细阅读上面的第4题,你认为派谁去参加比赛更加合适?第4题:甲乙两位射击队员在赛前热身练习中各打了10发子弹,根据给出的数据求出甲乙两队员成绩的众数和平均数,平均数都是9.5,而甲的众数是9.5、乙的众数是10。这道题的讨论非常热烈:陈兴凯认为选甲比较合适,因为他的成绩比较稳定,最低成绩都在9环以上,而且10次中有5次都打出了9.5环。但李刚认为应该选乙,因为在甲乙两名选手成绩的平均数相同,乙的众数是10,甲的众数是9.5,这说明甲打中靶心的次数多一些,获胜的可能性要大一些。在他们振振有词的争论中,我真正感受到学生是有思想的,而且他们的想法是有理有据的。我及时鼓励了他们的想法,然后抛出我的想法:我会选甲参加比赛。因为虽然甲乙的平均数相同,且乙的众数高于甲,但射击需要运动员稳定发挥,在这方面乙10次射击中有两次成绩都在9环以下,而甲的成绩则明显稳定得多,所以综合考虑实际情况,我选甲。
众数教学反思6
平均数和众数都是一种统计的数计,是数据的代表,是统计量。教学的'重点使学生能够根据具体的生活实际选择适当的统计量来表示数据的不同特征,帮助学生会用数据说话。因此在出示例2后,通过:
让学生看一看:在做试验的9人中,发芽几粒的最多?有几人?
让学生算一算:这一组数据的平均数怎样求?是多少?
让学生想一想:你认为在我们研究这批种子的发芽状况时用平均数14来表示合适吗?为什么?
让学生议一议:你认为用哪个数据来表示这批种子的发芽状况比较合适呢?为什么?
……
通过一系列教学活动,学生在合作交流中逐步感悟众数的意义、求法以及作用。
众数教学反思7
一、教学内容分析
1.教学主要内容
本节课“中位数和众数”是北师大版数学五年级下册第七单元《统计》的第三课时。
2.教材编写特点
本节课是在学生认识、理解并会求平均数的基础上学习的,学生在生活实例中体会中位数、众数这两个统计量的实际意义,初步体会数据可能产生误导,使学生认识平均数、中位数、众数的特点,根据问题,能选择适当的统计量表示一组数据的不同特征。
3.教材内容的数学核心思想
本节课的数学核心思想是学生通过生活中大量的实例,认识、体会平均数、中位数、众数在统计中的实际意义,根据实际需要,会求一组数据的平均数、中位数、众数,并能解释结果的实际意义,能选择适当的统计量表示一组数据的不同特征。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识与技能目标:掌握中位数和众数的概念,会求一组数据的中位数和众数。
(2)数学思考:通过实际背景,初步体会平均数、中位数、众数三者的差别。
(3)解决问题:能结合具体情况选择利用平均数、中位数和众数解决一些实际的问题
(4)情感态度价值观:培养学生认真的科学态度,深刻体会现实世界离不开数学,同时培养学生合作意识。
二、教材内容及重点、难点分析
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
教学重点: 中位数和众数的意义和求法。
教学难点:对统计数据需从多角度进行全面分析
三、教学对象分析
1.学生已有知识基础(包括知识技能,也包括方法)
本节课是在学生认识、理解并会求平均数的基础上学习的,学生理解平均数及其含义,能正确地求出平均数,对中位数、众数这两个统计量的实际意义,只有朦胧的认识,生活中有运用,但没有被明确提出过。
2.学生已有生活经验和学习该内容的经验
对中位数、众数这两个统计量的实际意义,只有朦胧的认识,生活中有运用,但学生明确运用较少,没有被明确提出过。学生该部分知识缺少生活经验。
3.学生学习该内容可能的困难
学生认识平均数、中位数、众数的特点,根据实际需要和问题,能选择适当的统计量表示一组数据的不同特征。
4.学生学习的兴趣、学习方式和学法分析
求职,学生听过见过,有一些这方面的经验,从生活中的求职引入新课, 学生比较感兴趣,发现问题时,学生充分发表自己的见解,由学生讨论解决,教师适时加以点拨,当学生理解后,将概念及时总结归纳整理升华,并加以运用,学生兴趣浓厚。
5.我的思考:
本节课是在学生认识、理解并会求平均数的基础上学习的,学生理解平均数及其含义,能正确地求出平均数,对中位数、众数这两个统计量的实际意义,只有朦胧的认识,生活中有运用,但没有被明确提出过。学生缺少该部分知识的生活经验。学生认识平均数、中位数、众数的特点,根据实际需要和问题,能选择适当的统计量表示一组数据的不同特征是学习的重点也是学习的难点,所以,本节课的设计从生活中的求职引入新课, 学生比较感兴趣,发现问题时,学生充分发表自己的见解,由学生讨论解决,教师适时加以点拨,当学生理解后,将概念及时总结归纳整理升华,并加以运用,学生兴趣浓厚。生活中学生还会遇到一组数据有多个众数或没有众数的现象,在设计课堂教学环节时予以了补充。
四、教学策略及教法设计
本方案中根据教材内容和学生的认知特点,我准备采用“以问题为中心”的讨论发现法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现概念,逐步建立认知结构。
具体说本节课由五个基本环节组成:创设情境,提出问题——合作交流,构建新知——巩固练习,寻找差异——实践应用,鼓励创新——归纳小结,反思提高。
本方案针对学生的各种学习心态,把教学内容中无法感知的事实、现象和过程,用多媒体形象的展现在学生面前,努力创设一种生动的情景,弥补他们在经验和阅历方面的不足。由于多媒体的使用,节省了教学时间,提高了教学效率。
五、教学媒体和资源应用设计
根据教学内容及教学目标和学生的情况,我在本节课的五个教学环节里都有多媒体的应用,力求创设一种引人入胜的教学情景,挖掘出趣味因素,最大限度地吸引学生的课堂投入,符合学生的'心理特征和认识规律。
在第三个环节里面由浅入深设置问题串,使学生思维分层递进,目的是突出本节重点,分解了难点;通过追问层层引导,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善知识结构。
六。教学过程
第一环节:创设情境,提出问题
课伊始,创设了小马过河的情境,利用这个例子,是为了复习平均数的概念,同时说明有些数据利用平均数是反应不出问题的,为引入其他数据代表奠定基础。
第一环节:合作交流,构建新知
这个环节创设小范应聘的问题情境,是力求创设一种引人入胜的教学情景,挖掘出趣味因素,最大限度地吸引学生的课堂投入,符合学生的心理特征和认识规律。并由此情境引出中位数和众数的概念,符合学生的认知规律。这一节主要是学生小组讨论,合作交流,并回答问题。
在讨论提问时,我对学生的各种回答给予肯定,各人从不同的角度理解会得到不同的结论, 目的是让学生从表格中获取信息,培养学生敏锐的观察力和科学的判断力;
组织学生们讨论问题,目的是引起学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平?提出一个真实的问题,揭示学生认识上的矛盾,产生新的疑点,引起学生对“平均水平”的认知冲突。
在导出以上问题后,学生讨论,各小组再拿出最能反映工人真实工资水平的数据全班交流。学生可能会用人数最多的工资1100元或中等水平工资1200元来回答,从而引出:今天要学习的内容————众数和中位数。(板书)
第三环节:巩固练习,寻找差异
通过求一组数据的中位数和众数,让学生观察,分析,比较出中位数和众数的一些特性,明确求中位数的方法,知道众数不是唯一的,可能多个,也可能没有,让学生通过练习,巩固了这两个新概念。
最后进行小结,让学生谈自己的收获和体会后,帮助学生进一步归纳总结提升,便于学生更好地理解区分掌握和运用。
教学反思:上完这节课之后,我最大的感受就是:教师一定要钻研教材,熟悉教材,把握教材的重难点,中位数和众数是一个新知识,就是以前我读书时也没接触过,加上备这课我也比较仓促,没很好的研读教材,把大部分的时间放在如何设计课件,如何创设情境上,对教材的核心思想掌握不够,在练习求中位数时,本来我设计的一题是要通过排序才能求出中位数,结果,在练习过程中,没有一个孩子知道要先排序,我居然也忘了强调,结果这题学生就全做错了,想到这里,自己就觉得很惭愧,在设计课件时,怎么就没想到要设计一个先排序再求中位数的课件呢?这重点不去把握。难点不去突破,一节课都在关注无关紧要的环节又有什么用?情境是为教学服务的,教学重难点没突破,这节课就是相当失败的一节课,教师不能在课堂上及时发现问题(当时自己都没意识到)及时的引导纠正,这对学生的后续学习是非常不利的,这等于说教师犯了学科性的错误,是不可原谅了,之所以会产生这样的结果,全怪自己没有很好的理解知识,没有把时间花在刀刃上,俗话说:磨刀不误砍柴工,我不磨刀更误工,还误了大工,得不偿失,这结课给我的教训是非常非常大的:做为一位数学教师,一定要非常熟悉自己所教的学科,一定要认真的钻研教材,现在的新知非常多,很多都是我们刚刚接触的知识,老师自己都没搞懂,怎么让学生懂?怎么把学生教会?在编写教案时,自己不去动脑,只会到网上复制。粘贴,那有多少真正的粘贴到自己的脑子里?离开电脑真的是脑子一片空白,电脑好用,所需的知识要真的被我们人脑所用,才能体现出它的价值。我决定再去钻研教材,重新设计,争取最大限度的提高教学效率,而且,在今后的教育教学工作中,我要更加努力,引以为戒,不再犯这样的错误,不断提高自己的教育教学能力。
众数教学反思8
六(下)数学中有关统计量的教学时老师们一直头疼,认为比较难教的内容。我觉得对这些统计量的有关概念应正确理解,注重知识的应用,避免单纯的数据计算和概念判断。如平均数、中位数和众数的联系和区别,这三个统计量到底在什么条件下适用,一直困扰着很多老师。自己也查找了一些资料,如下:
平均数、中位数和众数都是反映一组数据集中趋势的量数,代表一般水平。
平均数能反映全体数据的信息,任何一个数据的改变都会引起平均数的.改变,比较敏感,因而应用比较普遍;缺点是易受极端值的影响。日常生活和研究领域的统计数据,多数都选择平均数作为代表值。如我们国家和地方统计部门经常公布的人均产值、人均收入、物价指数等等,都是应用平均数作为代表值。中位数处于中间水平,不受极端值的影响,运算简单,在一组数据中起分水岭的作用;缺点是不能反映全体数据的情况,可靠性较差。众数不受极端数据的影响,运算简单,当要找出适应多数需要的数值时,常用众数;缺点是不能反映全体数据的情况,可靠性较差。众数可能不唯一,甚至有时没有。
这三个统计量有着各自的特点和适用的条件,可以根据研究和解决问题的需要来选择;与中位数和众数比较而言,平均数可以反映更多的样本数据全体的信息。然而它们三者并不是一种完全排斥的关系,特殊情况下这三个统计量或者其中的两个统计量都有可能成为一组数据一般水平的代表。如学生的考试成绩往往服从正态分布或者近似正态分布,那么,这三个统计量很可能相等或者非常接近,这时用三个统计量中的任何一个作为该组数据的一般水平的代表都是可以的。有时把平均数和中位数结合使用,会了解更多的信息。如某次数学考试全班49人平均分数为92分,小林考93分,排名第25,小明的成绩比小林高2分。可以发现中位数是93分,小明的成绩处于中上等水平,平均数低于中位数,说明可能有极端的低分数。
众数教学反思9
回顾本节课,主要有以下几方面的特点:
通过猜一猜的游戏引起学生思考,使学生在认知结构上产生冲突,使之成为学生重新建构认知的良好契机,让学生对本课有一定的求知欲望。再者众数的学习虽然很自然很容易,但是我在练习中充分地利用这组数据,引导学生发现一组数据中的众数可能有
1、2个或可能没有,使学生对众数的.认识更全面,最后通过学生主动探索、思考、发现过程中,体会到中位数的产生过程及实际背景。这样,学生不但完成了对新知的整合与建构,而且把探索求知、发现新知的权利真正交给了学生。
此外,在本节课中,无论从概念的得出、问题的解决、还是决策的制定,合作与交流贯穿整个教学过程。通过组内讨论、同桌交流体现了各层次学生对知识的不同理解;在交流过程中,每个学生的思维与智慧都与同学分享,学生对概念的理解更全面,更深入。
遗憾和不足是:
例如中位数在学生的生活中运用不是很多,如何通过丰富的事例让学生感受到中位数和众数在生活中的意义和作用,还值得我们进一步去研究。
总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。
众数教学反思10
一、闪光点:
如上图。在学习众数的概念中,我运用自主学习,小组合作,全班交流的策略来解决这个问题,孩子们通过这三个层次的学习,弄懂了众数的意义是“出现次数最多的数,叫一组数据的众数。”,以及,众数的特点是“反映一组数据的.集中情况”。
二、遗憾点:
如下图,这道题错的人比较多。原因是一班的众数有四个:分别是8.5,8.3,8.4,8.6。孩子们受中位数只有一个,平均数只有一个的影响比较大,无法相信众数竟能一下子出现四个,所以他们大多数只选了一个,说明孩子们对众数意义的理解不深刻,导致运用不灵活。这道题目这样处理比较好:
先引导学童回顾众数的概念----“出现次数最多的数,叫一组数据的众数。”再找一找出现次数最多的数据是什么?这四个数据,都符合众数的特点,从而根据众数的意义和特点判断出他们就是这组数据的众数。最后,把众数和平均数、中位数做一个比较,找一找他们的不同点----中位数只有一个,平均数只有一个,而众数可能有多个。
三、改讲点:
如图。这道题的第二问,好多孩子答案是9.事实上,答案是1。问题出在这些孩子没有认真审题,题目问的不是良好这一档,而是良好以上这一档。针对这些错例,我打算采用圈画重点词的方法,帮助学生提高审题能力,培养学生良好的审题习惯。
众数教学反思11
一、改造教材
本人认为,这节课在用教材方面有两个特点:
第一、教材中的三个例题都是开放性的,学生很可能会大多指向平均数,从而忽视了中位数和众数在实际生活中的应用。故本课仅采用了和学生生活最贴近的例.1(比较三人成绩)来展开,同时增加了中位数、众数的例子,把相关的知识点纳入其中,既巩固了知识点,有起到了以题激情,题情交融的效果。
第二、改变了例题与习题的界限和跨度。每一例题呈现后,我都安排学生有默读的时间,让学生独立地在读中研,在研中读,有意识地使学生学会提取、处理和加工信息,培养他们的阅读数学数据的能力,在这个基础上再开展合作交流。老师主要进行方向性的引导,从而使例题的探究交流过程就是习题的解决过程,改变了例、习题之间单纯的示范,记忆和模仿,加大例题之间的思维跨度,让学生的思维不断地产生认知冲突。
一、从关注教到关注人
首先、从关注教到关注学,小组讨论时,我走进学生中间,巡问、点拨,“引而不发”,激发学生主动精神,让学生始终保持求知欲,为了让问题讨论更加广泛和深入,我及时删掉了一个例题。整节课教师尽可能多地引发并适应学生的观念,参与学生开放式的探究,引领学生掌握真正的研究方法,自主、合作、探究地学习,从而让师生相互交流和启发,共同分享彼此的思考和经验,丰富教学内容,求得新的发现,从而实现教学相长和共同发展。
其次,从关注学到关注人。由于我在该班开展“指导——自主学习”的教学活动,同学的大胆质疑否敢于发表自己的想法,课堂气氛相当活跃。课堂教学从关注学转向关注人就意味着要求教师要改变学科本位观,有更高的人文素质。既要关注每一位学生,多一些尊重和关心;还要关注学生的情感体验,用“心”施救,体现教师的人文关怀,力求从“目中有人”到“心中有人”;还要关注学生的人格养成,从而使教学过程成为学生一种丰富的人生体验,让我们的教学服务于“完整的人”的成长。
二、跳出模式,走向理念
为了让课堂形式适合初一学生的`年龄特点和认知水平,更好地服务于教学目标和内容,我一方面改变了例题的呈现方式,把“效果评价”放入课堂,创设真实的学习环境,激活学生已有的知识积淀,一下子拉近了师生间的心理距离;另一方面尽可知多联系学生的生活实际和经验背景,设计有一定挑战性、开放性的教学任务,通过自主探索与合作交流(而非形式上的热闹,促使学生在较复杂的水平上理解这三种数,从而较好地达到了有效教学的目的。
另外,从构建探究性教学模式到超越模式,课堂教学更多地关注研究性教学的理念,让学生带着问题走进教室,走向生活。课堂教学是创生问题的起点,不必过于追求探索教学的形式,更改地是问题与方法的迁移、发现,让学生有进一步探究的愿望。
三、几点不足
虽然我还是比较注意运用“延迟判断”,给学生较充足的思考与发言的时间和空间,但有些地方还是过早地介入了学生的发言。
这节课对学生中的“弱势群体”关心也不够,新课程要求我们关注每一个学生的发展。我觉得学生评价老师的主要标准应该是他在课堂中有没有真正的收获。本课中虽然只有个别学生认为自己收获不大,给老师打了80分以下的分数,但也足以说明我的教学设计和教学过程更多地关注了中上水平的学生,忽视了对困难生的关爱和帮助。
众数教学反思12
本节课我创造性地使用教材,虽然本课知识点是小学阶段第一次出现,但课本中对中位数和众数的概念阐述很清楚。为了避免学生由于预习而造成思维定势,把课本中的概念进行生搬硬套而得出答案,于是我把课本内容进行了创造性使用。从故事的导入及工资表的内容和呈现方式经过精心设计,学生在不知不觉的探究中发现问题,通过判断分析,使问题得以解决,继而把过程内化为经验,自然而然升华为概念。整堂课学生在探究中得出结论,又在巩固中验证结论,并发现新问题。学生学得轻松,印象深刻。
本节课教学中,师生在共同研讨、交流、互动中三维目标得到了很好的落实,学生的能力得到了提高。学生在解决问题的过程中加深了对概念的理解,并且体会到平均数、中位数、众数三者的不同特征及其实际意义。
回顾本节课,主要有以下几方面的特点:
(一)有冲突才有探究,有认知才会建构。
通过开放性的问题设计引发学生思考,使学生在认知结构上产生冲突,使之成为学生重新建构认知的'良好契机。在学生主动探索、思考、发现过程中,体会到中位数的产生过程及实际背景。这样,学生不但完成了对新知的整合与建构,而且把探索求知、发现新知的权利真正交给了学生。
(二)有合作才有交流,有补充才愈完善。
在本节课中,无论从概念的得出、问题的解决、还是决策的制定,合作与交流贯穿整个教学过程。通过组内讨论、同桌交流体现了各层次学生对知识的不同理解;在交流过程中,每个学生的思维与智慧都被整个群体共享,学生对概念的理解更全面,更深入。
我认为本堂课有以下亮点:
1、创造性使用教材。
2、所呈现的问题紧扣知识点。
3、把课堂还给学生。
4、作业设计有代表性,把问题引向深处。
5、板书体现了本课的重难点和问题的关键。
6、真正做到数学源于生活又用于生活。
缺憾之处:
本节课仍然存在着遗憾和不足:例如中位数和众数到底表示一组数据的什么水平,学生还是有些糊涂,认识比较浅显,如果能再充分地利用几组数据,引导学生发现一组数据中中位数和众数各表示什么水平,那样学生对中位数和众数的认识会更全面,更具体。因此如何使学生明白中位数和众数的意义,还值得我进一步去研究。
要是课堂时间再把握紧奏些,最后多留点时间让学生把所学知识联系于生活运用,这样不仅加深理解,还把知识用活,进一步达到课堂的升华。
总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。
众数教学反思13
众数是小学数学统计中新增的教学内容,而中位数、平均数、众数的选择与运用对学生来说又是比较难掌握的。本节课是学生第一次认识众数,这部分内容紧密结合学生实际,围绕“怎样选取人员更合适”展开讨论,让学生通过讨论、尝试的过程,认识另一种统计量——众数。在理解众数的.意义和作用的同时,初步体会平均数、中位数与众数的区别,并能根统计量进行简单的预测或做出决策。
为了让学生能够更好的认识到平均是、中位数与众数的区别,在教学中我把众数放在新旧知识的对比中学习。在认识众数之前,学生已经认识了平均数和中位数。在新课的学习中,我注重了对平均数、中位数、众数的数学意义和统计意义的比较;在新课的练习中,强化了平均数、中位数和众数在现实生活中的灵活运用。
从课堂效果上来看,孩子能够初步区分中位数、平均数与众数,但是美中不足的是在找中位数时,由于数字较多,孩子经常出现找错中位数的情况,可以看出,孩子对于中位数的掌握还不是很牢固,在今后的教学中,更要注意对旧知识的复习。
众数教学反思14
众数是在现实需要的基础上产生和学习的统计量。因此,众数的学习不能也不应该脱离现实情境。在教学这节课时,我把众数这一概念的学习放在了具体的生活情境中,让学生自己去体会、比较、感知。
在教学时,我创设了这样的生活情境:
小王看到一份电子厂招聘广告上写着:本公司工作人员月平均工资1500元,现招收普通员工若干。小王一看条件还不错,就做了一名普通员工。可第一个月他只拿到工资760元,第二个月也只有800元多一点,问了一些同事,大部分都是1000元左右,少数超过1000元。小王很气愤,就找公司经理去理论,公司经理将公司员工工资发放情况交给小王看齐。
请同学们仔细观察表中的数据,讨论回答下面的问题:广告中说的话是否准确?
同学们根据提供的数据,利用已有知识经验,计算员工的平均工资是多少?学生通过计算得出平均每人是1500左右。马上引起了学生的质疑:那为什么小王只能拿到800元呢?
通过学生交流得出,平均数不能反映员工工资的集中趋势,从而让学生得出一个结论要寻求更好的统计方式去解决这个问题。通过情境创设,交流解决小王在找工作时遇到的实际问题,使数学贴近生活,
激发学生的兴趣。同时让学生在帮助小王的过程中感受到在这里平均数不能真实反映员工的`工资水平,初步感受众数产生的必要性。
然后,通过几组相关练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,增强学习数学的兴趣与成就感。
众数教学反思15
今天用多媒体上了《中位数和众数》,虽然没有什么大问题和疑问,但还是有一些知识需要整理和补充。以下是我在教学过后从网络上学习的内容,虽不是我所写,但是却是我所想。中位数和众数是根据《数学课标》的要求新增加的教学内容。在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。
平均数、中位数、众数这三个统计量虽然都代表一组数据典型水平或集中趋势的量,但是它们反映数据的特征有所不同。
下面谈谈这三种统计量之间的异同点:
一、平均数、中位数、众数的相同点.
平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌,平均数和中位数都有单位(众数如果表示的是数时,也有单位);它们的单位和本组数据的单位相同。三者都可以作为一组数据的代表。
二、平均数、中位数、众数的不同点
(一)三者的定义及优缺点不同。
1.平均数。
①平均数的定义及特点。
小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况(用平均数表示一组数据的情况,有直观、简明的特点),也可以用它进行不同组数据的比较,可以看出组与组之间的差别。平均数反映一组数据的平均水平,与这组数据中的每个数都有关系;用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,所有的数据都参加运算,对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。在平均数中有一种去尾平均数,它是将一组数据的其中一个最大值和一个最小值去掉后其余数值的平均数.它保留了平均数的集中趋势代表性强的优点,又具有中位数的可排除个别数据变动较大所带来的影响的特点,因而当一组数据的个数较少、且可能个别数据变动较大时,常用去尾平均数去描述一组数据的集中趋势.例如,体操比赛时给每个运动员评分,实际上用的就是去尾平均数:若干个裁判员同时给一个运动员完成的动作评分;然后在去掉其中一个最高分和一个最低分后,将其余分数的平均数作为该运动员的得分。
②平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定,它也是学生今后学习计算离差、相关和统计推断的基础。
③平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算。一组数据的每一个数据都要参加计算才能求出,特别是当一组数量较大的数据,其计算的工作量也较大。平均数易受极端数据的影响,从而使人对平均数产生怀疑。这也就是为什么在许多竞赛场合下对评委亮分后的成绩分数,要去掉一个最高分和一个最低分,尔后再计算平均数的一种考虑。
2.中位数。
①中位数的定义及特点:一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。用中位数作为一组数据的代表,可靠性不高,但受极端数据影响的可能性小一些,有利于表达这组数据的“集中趋势”。
②中位数的优点。
简单明了,很少受一组数据的极端值的影响。
③中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
3.众数。
①众数的定义及特点。
几组数据中出现次数最多的那个数据,叫做这批数据的众数。用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。如果一组数据中出现频数(一组数据中每个数据出现的次数成为频数)最多的是并列的两个数,不是用这两个数的平均数做它们的众数,而是说这两个值都是它们的众数。如果一组数据中没有哪一个数值出现的次数比别的多,我们就说它们没有众数。没有众数,不能说众数为O。众数也可能不是数。
例如:20xx年8月,某书店各类图书销售情况如下图:8月份书店售出各类图书的众数是——。
回答应该是:8月份书店售出各类图书众数是文化艺术类。
②众数的优点。
比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
③众数的缺点。
当一组数据变化很大时,它只能用来大略地估计一组数据的.集中趋势。
(二)三者的计算方法不同。
1.求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
2.求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
3.众数由所给数据可直接求出,出现次数最多的数据就是众数。
(三)三者的适用范围不同。
1.平均数的计算中要用到每一个数据,因而它反映的是一组数据的总体水平,选择特征数表示一组数据的集中趋势时,我们用得最多的是平均数,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,能够最为充分地反映这组数据所包含的信息,在进行统计推断时有重要的作用,但容易受到极端数据的影响。在大多数情况下人们喜欢使用平均数这一指标来代表一批数据或用它来反映大量事物的整体水平。
例如:用平均分反映一个班级学生的某项能力测验结果;用平均分来集中概括一些竞赛场合下各位评委对参赛选手进行评分的总结果等等。
2.中位数是一组数据的中间量,代表了中等水平。中位数在一组数据的数值排序中处于中间位置,在统计学分析中扮演着“分水岭”的角色,由中位数可以对事物的大体趋势进行判断和掌控。在个别的数据过大或过小的情况下,“平均数”代表数据整体水平是有局限性的,也就是说个别极端数据是会对平均数产生较大的影响的,而对中位数的影响则不那么明显。
所以,这时用中位数来代表整体数据更合适。即:如果在一组相差较大的数据中,用中位数作为表示这组数据特征的统计量往往更有意义。
例如:甲乙两学生射击的环数如下:甲:10环、10环、9环、3环。乙:9环、5环、3环、2环。请你试一试如何评价他们的射击成绩。这里甲有2个10环,1个9环,一个意外的3环,对于这个3环,可以看作是一个奇异值或极端数据,如用平均数来评价甲的总成绩就不能客观反映甲的射击环数主要是9环与10环的事实。由于数据中有一个极低数值出现,故计算平均数时就一下子把分数降下来了。采用中位数9.5环较合适。乙的射击成绩中5环以下有3次,还有一次是意外的9环,对这组数据,如计算平均数后是5环,但用5环来代表乙的成绩在一定程度上偏高估计了乙的总体成绩,所以采用中位数4环比较合宜。
3.众数代表的是一组数据的多数水平,若一组数据中众数的频数比较大,并且与其他数据的频数相差较大时,我们一般选用众数。众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
例如:,某班42名同学,年龄11岁的有24个人,年龄10岁的有8个人,年龄12岁的有6个人,年龄超过12岁的有4个人。则该班同学年龄分布的众数为11岁,它表明该班年龄为11岁的同学最多。(注意众数不是24人)
总之,平均数、中位数和众数从不同的侧面向我们提供了一组数据的面貌,我们可以把这三种特征数作为一组数据的代表,但它们所表示的意义是不同的。
选用它们表示一组数据的集中趋势时,一般是遵循“多数原则”,即哪种特征数能代表这组数据的绝大多数,正确选用合适的特征数来说明、评价、分析实际问题,避免误用和滥用。关于平均数、中位数、众数的知识我们可以总结为:
分析数据平中众,比较接近选平均,相差较大看中位,频数较大用众数;所有数据定平均,个数去除数据和,即可得到平均数;大小排列知中位;整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是众数。
【众数教学反思】相关文章:
众数教学反思04-06
认识众数教学反思04-16
认识众数教学反思04-16
众数教学反思15篇04-16
中位数和众数教学反思03-24
《中位数和众数》数学教学反思02-18
中位数众数教学反思15篇04-02
中位数众数教学反思(15篇)04-02
中位数和众数教学反思14篇03-25