高一数学教学计划

时间:2024-09-22 18:31:15 教学计划 我要投稿

高一数学教学计划模板合集八篇

  时间过得可真快,从来都不等人,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。那么计划怎么拟定才能发挥它最大的作用呢?以下是小编为大家整理的高一数学教学计划8篇,欢迎阅读与收藏。

高一数学教学计划模板合集八篇

高一数学教学计划 篇1

  一、制定的依据

  随着高一新教材的全面实施,本年级数学学科的教学进入了新课程改革实际阶段。本计划制定的依据主要是以下三个:

  (1)二期课改的理念:一个为本、三类课程、三维目标

  (2)新数学课程标准(详见《广州市中小学数学课程标准》)

  (3)三本书:课本、教参、练习册

  (4)本校教研组对本学期学科的要求

  二、基本情况分析

  高一(3)全班共52人,男生24人,女生28人。上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。高一(4)全班共53人,男生26人,女生27人。上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。

  从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。

  优势是:

  1、有潜力;

  2、师生关系比较融洽,互相信任,配合默契。

  存在的不足是:

  1、聪明有余,而努力不足;

  2、男生聪明,上课积极,但不够勤奋、踏实;女生认真,但上课效率不高,学得不够灵活。

  3、从期末统测来看,差生的比重大;

  4、个别学生懒惰成性,学习态度、学习习惯极差;

  5、平时学习不够用心,自觉,专心思考、钻研的时间太少;

  6、一些同学学习成绩起伏大,不稳定;

  7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;

  8、学习兴趣,动力,上进心不足。

  三、本学期力争达到的目标

  1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。

  2、完成新数学课程标准规定的教学目标。

  3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。

  4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。

  5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。

  四、具体措施

  1、从期末统测来看,学困生的比重大,优秀率没有。为此要进行分层教学,学困生要注重基本题、常规题的反复操练,增强他们对数学学习的信心和兴趣。好学生要避免无谓失分的情况,注重数学思想、方法、能力的培养,着眼于高三。总而言之,学困生还是继续注重双基的训练,将做过,讲过的题目再反复操练。另外也不能忽略了高分学生的`培养,给好学生布置一些有质量的课外题,定期查阅,批改,答疑。这样,通过抓两头,促中间,带动整体水平的提高。

  2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。

  3、从期末统测看学生应用能力明显不足。教师要通过平时教学培养学生阅读审题、数学建模的能力。让学生熟悉一些常见的实际问题的背景,及解决这些问题的相关数学知识。

  4、期末统测中选择题普遍得分不高,应引起我们的重视。由于选择题只有唯一答案,所以解答选择题的策略是:合理、迅速、检验,要善于转化,避免机械套用公式、定理和“小题大做,舍近求远,简单问题复杂化”的不良习惯。另外,由填空题的错误表达和解答题的计算粗心、考虑不全面而造成的无谓失分,导致了分数上不去和好学生考不出高分。所以,为保证得到该得的分数,要求必须认真审题,明确要求,弄清概念,思考全面,正确表达。

  5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。

  五、保障措施和可行性

  1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;

  2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;

  3、注重加强知识之间的联系和综合,内容和方式要更新,有层次推进,多角度理解,反思总结,重视教与学的方式多样化;

  4、激发兴趣,重视过程教学,重视错误分析型学习;

  5、重视开放性、研究性问题的教学,关注主观评判性问题的学习,研究新题型,真正发展学生的数学素质,培养其数学能力。

  6、结合二期课改新课程标准、教参,扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  7、加大课堂教改力度,培养学生的自主学习能力。

  8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  9、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解,过关。

  10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题,每人在课本留白处做好课堂笔记。另外,我自己有充足的时间与资料,进行习题精选与练习补充。

  六、总目标达成度与现阶段教学目标达成度的相关分析

  本学期一定要在如何提高课堂效率上下功夫,同时抓平时的学习习惯,学习规范,作业质量等细节问题,切实提高学习的有效性。另外,在上学期的基础上,本学期力争消灭不及格,并使那些因无谓失分而导致分数起伏不定的学生能稳定下来,从而进一步提高优秀率。

  目前,我班面临的困难与问题还非常多,好在学生的学习势头保持良好。我和我们班的全体学生,将尽我们所能,力争在本学期能有所收获,更进一步。

  七、课堂教学改革与创新、信息技术的应用与整合

  1、结合二期课改,将“接受式学习”变为“主动式学习”,“启发式学习”,将“要我学”变为“我要学”,并积极开展拓展性课程,研究性课程,培养学生的创新精神和实践能力。

  2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。

  3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。

  4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。

  5、利用“Bb”系统建设e课堂,建设网络学习包。

  6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。

  7、对不同层次的学生进行分层辅导,分层补充课外练习。

  8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。

高一数学教学计划 篇2

  本学期担任高一x1、x2两班的数学教学工作,两班学生共有xx人,初中的基础参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验"发现--挫折--矛盾--顿悟--新的发现"这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力,工作计划《高一数学上学期教学工作计划》。

  2、培养学生的运算能力。

  (1)通过概率的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的`运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  1.集合、简易逻辑

  (1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

  (2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

  (3)掌握一元二次不等式、绝对值不等式的解法。

  2.函数

  (1)了解映射的概念,理解函数的概念.

  (2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

  (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

  3.数列

  (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

  (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

  三、教学重点

  1、集合、子集、补集、交集、并集.一元二次不等式的解法

  四种命题.充分条件和必要条件.

  2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

  3.等差数列及其通项公式.等差数列前n项和公式.

  等比数列及其通项公式.等比数列前n项和公式.

  四、教学难点

  1.四种命题.充分条件和必要条件

  2.反函数、指数函数、对数函数

  3.等差、等比数列的性质

  五、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过"知识的产生,发展",逐步形成知识体系;通过"知识质疑、展活"迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。

  课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  (1)加强数学数学竞赛的指导,提高学习兴趣。

  (2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

  (2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

  3、搞好单元考试、阶段性考试的分析。

  学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、目标承诺

  1、及格率不低于98%。

  2、人平比年级平均高15分以上。

高一数学教学计划 篇3

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的'意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

  三、教学内容

  第一章集合与函数概念

  1.通过实例,了解集合的含义,体会元素与集合的属于关系。

  2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

  3.理解集合之间包含与相等的含义,能识别给定集合的子集。

  4.在具体情境中,了解全集与空集的含义。

  5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

  6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

  7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  10.通过具体实例,了解简单的分段函数,并能简单应用。

  11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  12.学会运用函数图象理解和研究函数的性质。

  课时分配(14课时)

  第二章基本初等函数(I)

  1.通过具体实例,了解指数函数模型的实际背景。

  2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

  3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

  4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

  5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

  6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

  7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

  课时分配(15课时)

  第三章函数的应用

  1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

  课时分配(8课时)

3.1.1



方程的根与函数的零点



约1课时



10月25日



3.1.2



用二分法求方程的近似解



约2课时



10月26日27日



3.2.1



几类不同增长的函数模型



约2课时



10月30日



|



11月3日



3.2.2



函数模型的应用实例



约2课时





小结



约1课时



  考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划 篇4

  教学目标

  1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

  2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

  3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

  教学重点、难点

  重点:幂函数的性质及运用

  难点:幂函数图象和性质的发现过程

  教学方法:问题探究法 教具:多媒体

  教学过程

  一、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

  (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的.形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

  教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

  幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

  2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

  (学生讨论,教师引导。学生回答。)

  3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

  (学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

  例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

  (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

  4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

  (学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

  让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

  教师总评:幂函数的性质

  (1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

  (2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

  (3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

  5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

  学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

  例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

  例4简单应用1:比较下列各组中两个值的大小,并说明理由:

  ①0.75 ,0.76 ;

  ②(-0.95) ,(-0.96) ;

  ③0.23 ,0.24 ;

  ④0.31 ,0.31

  例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

  例6简单应用2:

  已知(a+1)<(3-2a) ,试求a的取值范围。

  课堂小结

  今天的学习内容和方法有哪些?你有哪些收获和经验?

  1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。

布置作业:

  课本p.73 2、3、4、思考5

高一数学教学计划 篇5

  教材教法分析

  本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。

  学情分析

  一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的'方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。

  教学目标

  1、知识与技能

  ①通过具体情境,使学生感受建立空间直角坐标系的必要性

  ②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

  ③感受类比思想在探究新知识过程中的作用

  2、过程与方法

  ①结合具体问题引入,诱导学生探究

  ②类比学习,循序渐进

  3、情感态度与价值观

  通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。

  教学重点

  本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。

  教学难点

  “通过建立恰当的空间直角坐标系,确定空间点的坐标”。

  先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。

高一数学教学计划 篇6

  一、学情分析

  这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。

  二、教学目标

  1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。

  2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。

  3. 进一步培养学生的空间想象能力与确定性思维能力。

  三、教学重点:在空间直角坐标系中点的坐标的确定。

  四、教学难点:通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置

  五、教学过程

  (一)、问题情景

  1. 确定一个点在一条直线上的位置的方法。

  2. 确定一个点在一个平面内的位置的方法。

  3. 如何确定一个点在三维空间内的位置?

  例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?

  在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。

  (此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)

  教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。

  这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置。

  (二)、建立模型

  1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义。

  从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面,yOz平面,zOx平面。

  教师进一步明确:

  (1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。

  (2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。

  2. 空间直角坐标系O-xyz中点的坐标。

  思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?

  在学生充分讨论思考之后,教师明确:

  (1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z)。

  (2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.

  这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z)。

  教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念

  对于空间任意点A,作点A在三条坐标轴上的.射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。

  (三)、例 题 与 练 习

  1. 课本135页例1.

  注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。

  2. 课本135页例2

  探究: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?

  (2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?

  解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。

  3. 已知长方体ABCD-ABCD的边长AB=12,AD=8,AA=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  注意:此题可以由学生口答,教师点评。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?

  得出结论:建立不同的坐标系,所得的同一点的坐标也不同。

  [练 习]

  1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2. 已知:长方体ABCD-ABCD的边长AB=12,AD=8,AA=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件。

  (四)、拓展延伸

  分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。

  六、评价设计

  1、 练习 : 课本P136. 1、2、3

  2、 课堂作业: 课本P138. 1、2

高一数学教学计划 篇7

  教学分析

  课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.

  三维目标

  1.理解集合之间包含与相等的含义,能识别给定集合的.子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.

  2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.

  重点难点

  教学重点:理解集合间包含与相等的含义.

  教学难点:理解空集的含义.

  课时安排

  1课时

  教学过程

  导入新课

  思路1.实数有相等、大小关系,如5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)

  欲知谁正确,让我们一起来观察、研探.

  思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

  类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

  推进新课

  提出问题

  (1)观察下面几个例子:

  ①A={1,2,3},B={1,2,3,4,5};

  ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

  ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F={6,4,2}.

  你能发现两个集合间有什么关系吗?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?

  (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

  (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

  (5)试用Venn图表示例子①中集合A和集合B.

  (6)已知A?B,试用Venn图表示集合A和B的关系.

  (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

  (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

  (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

  活动:教师从以下方面引导学生:

  (1)观察两个集合间元素的特点.

  (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

  (3)实数中的“≤”类比集合中的 .

  (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

  (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

  (6)分类讨论:当A B时,A B或A=B.

  (7)方程x2+1=0没有实数解.

  (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)类比子集.

  讨论结果:

  (1)①集合A中的元素都在集合B中;

  ②集合A中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

  ④集合E中的元素都在集合F中.

  可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,则A=B.

  (4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

  (5)如图1121所示表示集合A,如图1122所示表示集合B.

  图1-1-2-1 图1-1-2-2

  (6)如图1-1-2-3和图1-1-2-4所示.

  图1-1-2-3 图1-1-2-4

  (7)不能.因为方程x2+1=0没有实数解.

  (8)空集.

高一数学教学计划 篇8

  一、基本情况

  高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.

  二、指导思想

  全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。

  三、工作任务和措施

  任务:基础模块第一章至第四章

  第一章集合(9月份

  第二章不等式(10月份

  第三章函数(11月份

  第四章指数函数与对数函数(12月份-1月份

  措施:

  1.夯实三基

  知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:

  A.教学面向全体学生。

  B.重视概念的归纳、规律的总结、技能的训练。

  C.重视知识的产生、发展过程。

  D.加强知识过关检测,做好查漏补缺工作。

  2.优化课堂教学结构

  A.精心设计课堂教学:

  B.课堂练习典型化;

  C.教学语言精练化

  D.板书规范化。

  3.加强学习方法指导:

  A.指导学生看书,培养学生主动学习的习惯。

  B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。

  4.加强学风建设与学习习惯的培养。

  适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。

  四、各章节授课具体时间安排:

  (基础模块第一章集合(约12课时

  (1理解集合、元素及其关系,掌握集合的表示法。

  (2掌握集合之间的.关系(子集、真子集、相等。

  (3理解集合的运算(交、并、补。

  (4了解充要条件。

  (基础模块第二章不等式(约12课时

  (1理解不等式的基本性质。

  (2掌握区间的概念。高一上数学教学计划高一上数学教学计划。

  (3掌握一元二次不等式的解法。

  基础模块)第三章函数(约20课时

  (1理解函数的概念和函数的三种表示法。

  (2理解函数的单调性与奇偶性。

  (3能运用函数的知识解决有关实际问题。

  (基础模块第四章指数函数与对数函数(约20课时

  (1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。

  (2了解幂函数的概念及其简单性质。

  (3理解指数函数的概念、图像及性质。

  (4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。

  (5理解对数函数的概念、图像及性质。

  (6能运用指数函数与对数函数的知识解决有关实际问题。

【高一数学教学计划】相关文章:

数学高一教学计划05-31

数学高一教学计划01-14

高一的数学教学计划04-17

高一数学的教学计划10-10

高一数学的教学计划01-19

高一数学教学计划10-25

高一数学教学计划08-25

高一数学教学计划09-01

高一数学个人教学计划08-29

高一数学教学计划苏教版07-15