- 相关推荐
九年级下册数学教学计划集锦十篇
时光在流逝,从不停歇,前方等待着我们的是新的机遇和挑战,写一份计划,为接下来的学习做准备吧!相信许多人会觉得计划很难写?下面是小编帮大家整理的九年级下册数学教学计划10篇,仅供参考,大家一起来看看吧。
九年级下册数学教学计划 篇1
一、教学思想:
教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于生活又反过来服务于生活。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯、实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、本学期的'教学内容共四章.
第二十六章二次函数
第二十七章相似
第二十八章锐角三角函数
第二十九章投影与视图
三、在教学过程中抓住以下几个环节
(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)抓住课堂45分钟。严格按照教学计划备课,统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。
(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
四、不断钻研业务,提高业务能力和水平
积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。
五、提高质量的措施
1、认真学习钻研新课标,掌握教材。
2、认真备课,争取充分掌握学生动态。
3、认真上好每一堂课。
4、落实每一堂课后辅助,查漏补缺。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生良好的合理化建议。
7、以“两头”带“中间”战略思想不变。
8、深化两极生的训导。
九年级下册数学教学计划 篇2
为加强课堂教学,更加高效地完成本学科教学任务制定本教学计划。
一、教学目标:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、在教学过程中抓住以下几个环节
(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的'指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(7)积极与其它老师沟通,加强教研教改,提高教学水平。
(8)经常听取学生良好的合理化建议。
(9)以“两头”带“中间”战略思想不变。
(10)深化两极生的训导。
三、不断钻研业务,提高业务能力及水平。
积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。
四、分层辅导,因材施教
对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。
五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。
六、强化复习指导。
分二阶段复习:(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。
2、 按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲 方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲 图形与变换;第七讲角、相交线和平行线;第八讲 三角形;第九讲 四边形;第十讲三角函数学;第十一讲圆 . 复习中由教师提出每个讲节的复习提要,指导学生按“提要”
九年级下册数学教学计划 篇3
本学期是初中学习的关键时期,教学任务非常艰巨,因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。
一、学情分析
经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想
坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析
本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的'位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:
(1)审题不清,不能正确理解题意;
(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;
(3)对所学知识综合应用能力不够;
(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
四、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。
五、采取的措施。
1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;
2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;
3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;
4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;
5、积极与其他教师沟通,加强教研教改,提高教学水平;
6、经常听取学生良好的合理化建议;
7、以“两头”带“中间”的战略不变;
8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;
9、认真开展课内、课外活动,激发学生的学习兴趣,工作计划《九年级数学下册教学计划》。
10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。
九年级下册数学教学计划 篇4
一、教材分析
本章的主要内容有反比例函数的概念、解析式、性质和图象。本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题。反比例函数是最基本的函数之一,是后续学习各类函数的基础。
二、重点难点
反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法。反比例函数本身在日常生活和生产中也有着许多直接应用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点。
反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点。
三、课时安排
1。1 反比例函数 3课时
1。2 实际问题与反比例函数 4课时
复习 4课时
四、教学侧重点
(1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识。生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的“图形与坐标”及“一次函数”。所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处。
(2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的。教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等。
(3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多。这一方面体现教材的横向联系,又体现本章内容的实用价值。如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等。若学生在这方面有缺陷,则直接影响到本章的学习。老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明。
(4)在画反比例函数的图象时充分发挥“自主探索—合作学习” 这种学习方式的作用。在按课本顺序指导学生画完图后,让学生回顾画图的全过程。体现课标要求“性质的探索过程——根据图象和解析表达式探索并理解其性质”。引导学生分清:①两个分支是一个函数的图象,不是函数有两个图象。②画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结。③在图象所在的每个象限内,当k0时,函数值y随自变量x的增大而减小;当k0时,函数值y随自变量x的增大而增大。
(5)在教学中应充分利用,注意各章节之间的内在联系。在这里就尽量用图形变换的思想叙述性质、用图形变换的`角度观察、分析图形之间的联系。如反比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;的图象与的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象。
(6)本章还渗透了建模的思想。具体过程可概括为:由实验获得数据———用描点法画出图象———根据图象和数据判断或估计函数的类别———用待定系数法求出函数的关系式———用实验数据验证。随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流。中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击。中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用。通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美。同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作。通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决。解决问题过程中充分体现高度的协作精神。教科书中的渗透正是体现了这种思想。
九年级下册数学教学计划 篇5
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。下面小编为大家整理了九年级下册数学第26章教学计划:第1节反比例函数,欢迎大家参考阅读!
一、教材分析
本章的主要内容有反比例函数的概念、解析式、性质和图象.本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题.反比例函数是最基本的函数之一,是后续学习各类函数的基础.
二、重点难点
反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法.反比例函数本身在日常生活和生产中也有着许多直接应用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点.
反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的`问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点.
三、课时安排
1.1 反比例函数 3课时
1.2 实际问题与反比例函数 4课时
复习 4课时
四、教学侧重点
(1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识.生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的“图形与坐标”及“一次函数”.所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处.
(2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的.教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等.
(3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多.这一方面体现教材的横向联系,又体现本章内容的实用价值.如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等.若学生在这方面有缺陷,则直接影响到本章的学习.老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明.
(4)在画反比例函数的图象时充分发挥“自主探索—合作学习” 这种学习方式的作用.在按课本顺序指导学生画完图后,让学生回顾画图的全过程.体现课标要求“性质的探索过程——根据图象和解析表达式探索并理解其性质”.引导学生分清:①两个分支是一个函数的图象,不是函数有两个图象.②画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结.③在图象所在的每个象限内,当k0时,函数值y随自变量x的增大而减小;当k0时,函数值y随自变量x的增大而增大.
(5)在教学中应充分利用,注意各章节之间的内在联系.在这里就尽量用图形变换的思想叙述性质、用图形变换的角度观察、分析图形之间的联系.如反比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;的图象与的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象.
(6)本章还渗透了建模的思想.具体过程可概括为:由实验获得数据---用描点法画出图象---根据图象和数据判断或估计函数的类别---用待定系数法求出函数的关系式---用实验数据验证.随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流.中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击.中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用.通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美.同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作.通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决.解决问题过程中充分体现高度的协作精神.教科书中的渗透正是体现了这种思想.
九年级下册数学教学计划 篇6
一、课程学习目标
1、了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA三个锐角三角函数表示直角三角形中两边的比;记忆 、 、 的正弦、余弦、正切的函数值,并会由一个特殊的三角函数值说出这个特殊角。
2、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题。
3、通过锐角三角三角形的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的应用,并结合实际问题对微积分的思想有所感受。
二、本章知识结构图
三、本章内容安排
1、主要内容:本章内容可分为两节,第一节主要学习锐角三角函数的概念,第二节主要是研究直角三角形的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。锐角三角函数为解直角三角形提供了有效地工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
2、本章的重点:锐角三角函数的概念和解直角三角形的解法。
3、本章的.难点:锐角三角函数的概念。
4、本章的中考的地位和作用:①《锐角三函数》是各地中考的热点之一,分值一般占10分左右,由于解直角三角形的应用广泛,更容易提升学生的解决事实问题的能力,所以分值比例还呈上升的趋势,仅以我市近三年的中考卷足以说明,详见下面统计表:
时间
分值08年09年10年
题号11、1911、15、188、11、14、20
分值99.510.5
比例7.5%7.9%8.6%
②本章内容与学过“相似三角形”“勾股定理”等内容联系密切,并为高中数学中三角函数等知识的学习做好准备。
四、课时安排
1、本章教学时间按照义务教育课程标准试验教科书数学九年级下册《教师教学教学用书》是12课时,但是,根据我镇教育中心统一安排了第十周的周四、周五(即20xx年4月21、22日)进行全镇第一次的模拟考的要求,再结合我校的实际情况,经备课组研究制定出中考备考计划,根据计划确定初步安排7节课,详见如下:
28.1 锐角三角函数 ……3课时
(1) 28.1锐角三角函数---正弦 ……1课时;
(2) 28.1锐角三角函数---余弦和正切 ……1课时;
(3) 281锐角三角函数---特殊角的三角函数值 ……1课时。
28.2 解直角三角形 ……4课时。
(1)28.2解直角三角形 ……1课时;
(2)28.2解直角三角形的应用(1)---测量问题 ……1课时;
(3)28.2解直角三角形的应用(2)---方向角和坡度问题 ……1课时;
(4)《锐角三角函数 》的单元复习课 ……1课时。
2、单元测试卷是否要讲评或是否要进行补考要看学生测试成绩作最后的决定,如果成绩不好,那么就统一去级补考,确保单元过关,每个模块过关。
五、教学中应注意问题:
1、狠抓预习习惯。
我国教育家叶圣陶曾说过一句名言:“教育就是培养习惯”。培养良好的学习习惯是提升教育质量的重要手段,教学实践证明,凡是学得好的同学都有预习的好习惯,用学生的话来说,预习了,上课就像复习,先人一步,一步领先,步步领先。因此,我们必须狠抓学生的预习习惯。怎样才能把预习环节落到实处?《花城中学精品课程教学案》是一个很好的抓手,我们必须花大量的时间去抓学生课前做教学案的预习导学部分,我们还用了一根斜纹的横格线的标志来区分它:“ ”,要求每个同学都要努力完成,老师开始在课堂上检查,及时反馈预习情况,促进学生养成预习习惯。预习就像数学的运算问题,成败在运算。如果在条件许可的情况下,最好自已在上课前批阅学生的预习成果,使自已心中更有数,教学案的内容呈现可以根据自已学生的实际情况灵活变通,而不是一成不变,教学案强调学生必须课前预习。
2、要转变教学理念,坚持新课程倡导的“自主、合作、探究”的教学模式。我们编写的《花中精品课程教学案》的原则就是落实“自主、合作、探究”的教学理念,其中,学生的自主体现在预习,预习强调就是独立完成,而在课堂上想方设法创造合作交流的机会,师生互动、生生互动,特别是生生互动,根据教育心理学规律,学生的同伴互助的影响比老师单独教的效果更大,因此,我们还在学生的座位安排上也考虑异组同质的分法,方便学生在课堂上能开展小组合作,这样,才能适应当前的课程改革,才能应对考试的变化。
3、注重发展学生的思维能力
①突出重点,突破难点。从过去的经验来看,以前这个模块是叫《解直角三角形》,而现在是叫《锐角三角函数》,为什么把名字更换呢?个人认为是因为本章重难点之一都是锐角三角函数的概念,是为了突出重点,突破难点,而锐角三角函数又是一种超越函数,是一个抽象的概念,学生不好理解,怎样才能突破这个重难点呢?我们首先先让学生回忆学过哪些函数?什么叫函数?接着我们就设计了三个探究活动,让学生通过计算、探索、归纳、证明,就可以让学生对变量的性质以及变量之间的对应关系有深刻的认识,加深对函数观念的理解,这样的编写方式就是为学生提供了更加广阔的探索空间,开阔思路,进一步发展学生的思维能力,有效地改变学生的学习方式。
②特别注意通法和通解的训练。由于中考一般把角变成特殊角处理,这样往往会使一些题目出现特殊的解法,如果忽略了一般的解法,那么会防碍了思维能力的发展。比如,教材P88的例4的解法是属于通法,不过例中的条件把两个方向角 、 分别取值为 和 后,则出现 ,所以△PAB是一个直角三角形了,这样很容易利用特解求出PB的距离了,而不用联合两个直角三角形的通解来求解。如果我们不注重通法的训练,那么特解会在更多的情况下是解决不了通解的题目,因此,我们可以通过一题多解培养学生思维的广度和深度。
③重视数学思想方法的运用。爱因斯坦曾说过,“方法是最有价值的知识”,本章有几个十分重要的思想方法是需要强化运用的,比如,转化思想、建构直角三角形的建模思想以及化曲为直的微积分的基本思想等等。
4、注重应用的意识和加强与实际的联系,学以致用。
数学源于生活,是实际的需要。这章书在前言提出意大利的斜塔问题和后面的铺设水管的长度问题、测量中的仰俯角问题、方向角问题及斜面的坡度问题等等,从不同的角度展示了解直角三角形在实际中的广泛应用,我们必须提高学生的基本知识和基本技能、方法的归纳能力,比如,测量问题的一些专用的术语等等,首先必须准确理解,其次根据题意把实际问题抽象出数学问题,通过解决数学问题得到数学问题的答案,再将数学问题的答案回到实际问题上。活学活用,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。
5、注意加强知识间的纵向联系,使所学知识更加系统化、网络化。
全等三角形的有关的理论对理解本章内容有积极的作用。例如,在研究解直角三角形的可解性时,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个边),这个三角形就确定下来,因此,这个直角形就可解了,事实上,我们还可以把直角三角形的边、角、边角关系式中从方程的角度去理解它,加强知识间的纵向联系,使所学知识更加系统化、网络化。
6、不要急于结束新课,确保堂堂清。
我校从20xx年开始实行真正的双休日制度,再加上我们在初三阶段数学课每周只安排了6节,因此,我们在今年2月24日(开学第二周末)才开始讲授《锐角三角函数》,本章的内容虽不多,不过很多的实际应用题,更需要学生能够理解题意后才能建模,而这个恰好我们的学生的学习的难点所在,因此,在讲授新课时,一定要讲清概念,专用的术语等,让学生在练习中切实掌握数学知识和数学的方法,不要急于赶进度,避免积重难返,使学生失去学习的兴趣。此外,由于我校每节课时是四十分钟,如果大家是每节课是四十五分钟的话,建议在每节课的最后五分钟进行当堂过关测试就更好了。
九年级下册数学教学计划 篇7
一、教学目标:
使学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、教材分析:
本册书的4章内容涉及《数学课程标准》中数与代数空间与图形和实践与综合应用三个领域的内容,其中第26章二次函数和第28章锐角三角函数的内容,都是基本初等函数的基础知识,属于数与代数领域。
第27章相似的内容属于空间与图形领域,其内容以相似三角形为核心,此外还包括了位似变换。第29章投影与视图也属于空间与图形领域,这一章是应用性较强的内容,它从由物画图和由图想物两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。本册书的第29章安排了一个课题学习制作立体模型,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的实践与综合应用方面的要求。
三、教法和学法:
(1)指导学生形成能力.
(2)指导学生学会学习能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.
(3)指导学生学习的方法.
(4)指导学生总结,使他们能够把知识梳理。.
(5)指导学生有效的记忆方法和温习教材的方法.
(6)学习能力的指导: 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.
(7)应考方法的指导: 教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的`次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.
(8)良好学习心理的指导: 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.
四、阶段性测试或检查方式及辅导措施:
(1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(5)积极与其它老师沟通,加强教研教改,提高教学水平。
(6)经常听取学生良好的合理化建议。
(7)以两头带中间战略思想不变。
五、教学进度安排:
2.233.1 第一周: 讲评期末试卷 27.2 相似三角形
3.23.8 第二周: 二十八章 锐角三角函数
3.93.15 第三周: 28.1 锐角三角函数
3.163.22 第四周: 28.2 解直角三角形
3.233.29 第五周: 第二十九章 视图与投影(11)29.1 三视图
3.304.5 第六周: 小复习 单元测试及讲评
4.64.12 第七周: 期中考试 讲评试题
4.134.19 第八周: 29.1 三视图 29.2 展开图 4.204.26 第九周: 28.2 解直角三角形
4.275.3 第十周: 28.3 课题学习 测量 小复习 单元测试及讲评
5.45.10 第十一周: 第二十九章 视图与投影(11)29.1 三视图
5.115.17 第十二周: 29.1 三视图 29.2 展开图
5.185.24 第十三周: 29.2 展开图 29.3 课题学习 图纸与实物模型小复习 单元测试及讲评
5.255.31 第十四周: 综合复习一
6.16.7 第十五周: 综合复习二
6.86.14 第十六周: 综合复习三
6.156.21 第十七周: 综合复习四
九年级下册数学教学计划 篇8
一、学情分析
本人今年任九年级(1)、(2)班数学教学,两班共计93人,通过对上期末检测和入学考试分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上把握了学习的数学的方法和技巧,对学习数学爱好浓厚。另一方面是部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。
二、指导思想
以《初中数学新课程标准》为准绳,以提高学生中考成绩为出发点,以洋思中学教学模式为学习标准,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。同时通过本学期的课堂教学,在完成九年级上册数学教学任务的同时适当完成九年级下册新授教学内容。
三、教材分析
一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及详细方法,本章的难点是解一元二次方程。
证明(三):本章经历探索、猜想、证明的过程,进一步发展学生的推理论证能力。进一步掌握综合的证明方法,能够证明与平行四边形、等腰梯形、矩形、菱形等有关性质及判定,并能证明其他相关结论。
视图与投影:引导学生对实物进行合理抽象、想象物体的形状,对生活中的物体进行合理抽象,关注学生的活动过程,关注学生直观思考的水平,开展多种形式的活动。
反比例函数:函数是探索具体问题中数量关系和变化规律的基础上抽象出的重要概念。本章要求结合具体情境领会反比例函数作为数学模型的意义,通过图象理解反比例函数的`性质,逐步提高观察归纳能力。
频率与概率:通过活动发展学生合作交流意识和能力,理解事件发生的频率与概率之间的关系,初步感受统计推断的合理性,体会频率与概率之间的关系。
四、教学措施
1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。
2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。
3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。
五、进度安排
第一大周:一元二次方程
第二大周:证明(三)
第三大周:视图与投影
第四大周:反比例函数
第五大周:期中考试、频率与概率
第六大周:九年级下学期课程
第七大周:九年级下学期课程
第八大周:九年级下学期课程
第九大周:单元复习,迎接考试
九年级下册数学教学计划 篇9
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级仍是81和85,85班是普通班,基础知识水平较差,从期末考试的成绩来看,及格人数占20%;81班的总体水平比85班较好,但是从本次的考试成绩来看,成绩较为一般。及格人数只占到60%。这与我之前的计划相差还有一截儿。85班差生较多,期末成绩单位数的就有4人,针对这些情况,分析他们的知识漏洞及缺陷,及时进行查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了 “课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、个单元章节:
第26章 二次函数
本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。
第26.1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数 开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函数的基础知识,它们为后面两节的学习打下理论基础。第26.2节“用函数观点看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。第26.3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教科书从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。本章教学结束之后,学生在已经学习了一次函数(包括正比例函数)、反比例函数和二次函数,这些都是代数函数,即解析式中只涉及代数运算(加、减、乘、除、乘方、开方)的函数。至此,学生对函数的认识已告一段落。
第27章 相似
本章的主要内容包括相似图形的概念和性质,相似三角形的判定,相似三角形的应用举例和位似变换等。此前学习的全等是图形之间的一种特殊关系,而本章学习的相似是比全等更具一般性的图形之间的关系。全等可以被认为是特殊的相似(相似比为1),对于全等的认识是学习相似的重要基础。
第27.1节“图形的相似”从学生熟悉的一些实际问题说起,引出相似图形的概念,以及相似多边形的概念、性质等,使学生对相似先有一个一般性的认识。第27.2节“相似三角形”的内容是讨论最基本的多边形──三角形的相似关系,这是认识相似关系的基础,也是本章的重点内容。教科书首先安排了证明了“过三角形一边中点且平行于另一边的直线,截出的`三角形与原三角形相似”,然后将其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教科书安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教科书对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教科书通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。第27.3节“位似”讨论一种图形变换──位似变换。位似是一种特殊的相似,它的特殊性表现在“两个相似图形的对应点的连线都交于一点(位似中心)”。教科书安排了利用坐标描述位似变换的内容,这是数形结合方法的体现。本套教科书中先后共出现了四种图形变换:平移、轴对称、旋转和位似,本节最后安排了一幅包含这四种变换的图案,学生通过思考图案中的问题,可以对四种变换进行综合回
第28章锐角三角函数
本章主要内容包括:锐角三角函数(正弦、余弦和正切),解直角三角形。锐角三角函数是自变量为锐角时的三角函数,即缩小了定义域的后的三角函数。解直角三角形在实际当中有着广泛的应用,锐角三角函数为解直角三角形提供了有效的工具。相似三角形的知识是学习锐角三角函数的直接基础,勾股定理等内容也是解直角三角形时经常使用的数学结论,因此本章与第18章“勾股定理”和第27章“相似”有密切关系。
第28.1节“锐角三角函数”中,教科书从沿山坡铺设水管的问题谈起,通过讨论直角三角形中直角边与斜边的比,使学生感受到锐角的大小确定后相应边的比也随之确定,而且不同的角度对应不同的比值,这种对应正是函数关系。教科书设置了“探究”栏目,让学生通过自主探究,利用相似三角形得出结论,由此引出正弦函数的概念。在此基础上,引导学生类比对正弦函数的讨论,得出余弦函数和正切函数的定义。接着教科书讨论了“已知角的大小求它的三角函数值”和“已知角的三角函数值求角”这两种问题,这样就从两个相反方向再次强调了锐角与其三角函数值之间的一一对应关系。现在计算器已经成为学习和运用三角函数的有力工具,教科书在本节最后介绍了如何使用计算器求三角函数值以及如何由三角函数值求对应的角。第28.2节“解直角三角形”中,教科书借助实际问题背景,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,并归纳出解直角三角形常用的知识和方法。接着教科书又结合四个实际问题介绍了解直角三角形在实际中的应用,这些问题的已知条件分别属于几种不同类型,解决方法具有典型性,体现了正弦、余弦和正切这几个锐角三角函数在解决实际问题中的作用。本节最后通过对比测量大坝的高度与测量山的高度,直观形象地介绍了“化整为零,积零为整”“化曲为直,以直代曲”的数学基本思想。
第29章 投影与视图
本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动。全章分为三节。
第29.1 节“投影”中,首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。整个讨论过程是按照一维、二维和三维的顺序发展的。第29.2节“三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。第29.3节“课题学习 制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重的学习内容。进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。六、教法和学法指导方案:
(1)指导学生形成拟定自学计划的能力.(2)指导学生学会预习的能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.(3)指导学生读书的方法.(4)指导学生做笔记、写心得、绘图表的方法,使他们能够把自己的思想表达出来.(5)指导学生有效的记忆方法和温习教材的方法.3.学习能力的指导 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.4.应考方法的指导 教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.5.良好学习心理的指导 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.对不同层次学生的数学学习能力的培养提出不同的要求;根据不同学习能力结合数学教学采取多种方法进行培养;根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;通过课外活动和参加社会实践,促进数学学习能力的发展. 总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.
七、阶段性测试或检查方式及辅导措施:
(1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(5)积极与其它老师沟通,加强教研教改,提高教学水平。
(6)经常听取学生良好的合理化建议。
(7)以“两头”带“中间”战略思想不变。
(8)深化两极生的辅导。
八、教学进度安排:
3.1---3.8 第一周:讲评期末试卷 第二十六章 二次函数(12)
26.1 二次函数及其图象、性质
3.9---3.15 第二周: 26.2 二次函数的应用
3.16—3.22 第三周: 26.2 二次函数的应用 26.3 课题学习建立函数模型
3.23—3.29 第四周: 综合小复习 单元测试及讲评
3.30—4.5 第五周: 第二十七章 相似(13) 27.1 相似形
4.6—4.12 第六周: 27.2 相似三角形
4.13—4.19 第七周: 27.2 相似三角形 27.3 相似多边形
4.20—4.26 第八周: 27.3相似多边形第
4.27—5.3 第九周: 小复习 单元测试及讲评
5.4—5.10 第十周: 期中考试 讲评试题
5.11—5.17 第十一周: 二十八章锐角三角函数(12) 28.1 锐角三角函数
5.18—5.24 第十二周: 28.2 解直角三角形
5.25—5.31 第十三周: 28.2 解直角三角形 28.3 课题学习测量 小复习 单元测试及讲评
6.1—6.7 第十四周: 第二十九章视图与投影(11)29.1 三视图
6.8—6.14 第十五周: 29.1 三视图 29.2 展开图
6.15—6.21 第十六周: 29.2 展开图 29.3 课题学习 图纸与实物模型小复习单元测试及讲评
6.22—6.28 第十七周: 综合复习一
6.29—7.5 第十八周: 综合复习二
7.6—7.12 第十九周: 综合复习三
7.13—7.19第二十周: 期末考试
九年级下册数学教学计划 篇10
教学目标
【知识与技能】
使学生能利用描点法作出函数y=ax2+k的图象.
【过程与方法】
让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.
【情感、态度与价值观】
培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.
重点难点
【重点】
会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.
【难点】
正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.
教学过程
一、问题引入
1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.
2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?
3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?
二、新课教授
问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?
(画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)
问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?
师生活动:
学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.
教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.
解:(1)列表:
x…-3-2-10123…
y=x2…9410149…
y=x2+1…105212510…
(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
师生活动:
教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?
学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.
教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.
学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的`图象上的相应点向上移动了一个单位.
问题4:函数y=x2+1和y=x2的图象有什么联系?
学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.
问题5:现在你能回答前面提出的第2个问题了吗?
生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).
问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?
生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.
问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.
师生活动:
教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.
解:先列表:
x…-2-1.5-1-0.500.511.52…
y=2x2+1…95.531.511.535.59…
y=2x2-1…73.51-0.5-1-0.513.57…
然后描点画图,得y=2x2+1,y=2x2-1的图象.
教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.
问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?
师生活动:
教师让学生观察y=x2-1的图象.
学生动手画图,观察、讨论、归纳.
学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.
三、巩固练习
1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的图象.
(1)填表:
x… …
y=x2… …
y=x2+2… …
y=x2-2… …
(2)描点,连线:
【答案】略
2.观察第1题中所画的图象,并填空:
(1)抛物线y=x2+2的开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;
(2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;
(3)对于函数y=x2,当x=时,函数取最值,为.
对于函数y=x2+2,当x=时,函数取最值,为.
对于函数y=x2-2,当x=时,函数取最 值,为 .
【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2
四、课堂小结
1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.
2.抛物线y=ax2+k(a≠0)的性质.
(1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).
(2)当a0时,抛物线开口向上,并向上无限伸展;
当a0时,抛物线开口向下,并向下无限伸展.
(3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.
当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.
教学反思
通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.
以上就是数学网为大家整理的九年级下册数学教学计划:第6章第2节二次函数的图象和性质(2课时),怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!
【九年级下册数学教学计划】相关文章:
数学下册的教学计划10-08
数学下册的教学计划03-26
数学下册教学计划10-07
下册数学教学计划09-25
数学下册单元教学计划03-11
下册数学教学计划11-29
初中数学下册教学计划04-28
数学下册的教学计划(15篇)10-16
数学下册的教学计划15篇09-16
数学下册教学计划(15篇)07-25