高一数学教学计划 15篇
时间过得太快,让人猝不及防,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻需要为接下来的工作做一个详细的计划了。相信大家又在为写计划犯愁了?以下是小编为大家收集的高一数学教学计划 ,欢迎大家分享。
高一数学教学计划 1
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;
第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;
第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;
第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;
第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;
第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的.提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一数学教学计划 2
、
Ⅰ.教学内容解析
本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.
这是指数函数在本章的位置.
指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.
指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.
Ⅱ.教学目标设置
1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.
2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.
3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.
4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.
Ⅲ.学生学情分析
授课班级学生为南京师大附中实验班学生.
1.学生已有认知基础
学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.
2.达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.
3.难点及突破策略
难点:1. 对研究函数的一般方法的认识.
2. 自主选择底数不当导致归纳所得结论片面.
突破策略:
1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.
2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.
3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.
Ⅳ.教学策略设计
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.
学生的自主学习,具体落实在三个环节:
(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.
(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.
(3)性质应用阶段,学生自主举例说明指数函数性质的应用.
研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.
Ⅴ.教学过程设计
1.创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?
[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.
[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.
方案1:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5x,y= x,y=(-2)x,y=1x…
师:板书学生举例(停顿),好像有不同意见.
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了.
师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.
(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)
师:这些函数有什么共同特点?
生:都有指数运算.底数是常数,自变量在指数位置.
(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)
师:具备上述特征的函数能否写成一般形式?
生:可以写成y=ax(a>0).
师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
方案2:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5x,y= x,…
师:这些函数的自变量是什么?它们有什么共同特点?
生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.
师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了.
师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.
[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的`做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.
2.实验探索汇报交流
(1)构建研究方法
师:我们定义了一个新的函数,接下来,我们研究什么呢?
生:研究函数的性质.
〖问题2你打算如何研究指数函数的性质?
[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.
[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.
[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.
师:(稍等片刻)我们一般要研究哪些性质呢?
生:变量取值范围(定义域、值域)、单调性、奇偶性.
师:(板书学生回答)怎样研究这些性质呢?
生:先画出函数图象,观察图象,分析函数性质.
生:先研究几个具体的指数函数,再研究一般情况.
师:板书“画图观察”,“取特殊值”
(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)
(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))
[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.
(2)自主探究汇报交流
师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.
〖问题3选取数据,画出图象,观察特点,归纳性质.
[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.
由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.
数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.
[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.
[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.
生:自主选择数据,在坐标纸上列表作图,列出函数性质.
师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)
生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.
师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?
师:(用彩笔描粗图象,故意出错)错在哪里?为什么?
生:指数函数是单调递增的,过定点(0, 1).
师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).
师:指数函数还有其它性质吗?
师:也就是说值域为(0, +∞).
生:指数函数是非奇非偶函数.
师:有不同意见吗?
生:当0
(其它预设:
(1)当a>1时,若x>0,则y>1;若x<0,则y<1.
当00,则y<1;若x<0 y="">1.
(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.
(3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)
师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0
[阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:
①定义域为R.
②值域为(0, +∞).
③图象过定点(0, 1).
④非奇非偶函数.
⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;
当0
⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.
⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:
x∈(-∞, 0)时,y=ax图象在y=bx图象下方;
x=0时,两图象相交;
x∈(0,+∞)时,y=ax图象在y=bx图象上方.
[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.
3.新知运用巩固深化
(方案一)(分析函数性质的用途)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小.
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)
生:(举例并判断大小.)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)
(方案二)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:(口述并板书)你能比较32与33的大小吗?
生:直接计算比较.
师:那比较30.2与30.3的大小呢?能不能不计算呢?
生:利用函数y=3x的单调性.
师:能具体说明吗?(引导学生规范表达)我们再试一试.
(出示例1)
【例1】比较下列各组数中两个值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.
[师生活动]学生板演,教师组织学生点评.
[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.
师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)
生:它们都过点(0, 1).
师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?
生:比较1.50.3,0.81.2和1的大小.
师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.
【例2】
①已知3x≥30.5,求实数x的取值范围;
②已知0.2x<25,求实数x的取值范围.
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.
4.概括知识总结方法
〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.
[师生活动]学生发言总结,交流所得.
[教学预设]
通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:
①指数函数的定义与性质;
②研究函数的一般方法和步骤.
师:本节课我们学习了什么知识?
生:指数函数的定义和性质.
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.
师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.
[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.
5.分层作业,因材施教
(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、
高一数学教学计划 3
一、 指导思想:
在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。 二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的.观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。
三、学情分析:
本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。
四、教学策略、教研活动:
1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课
题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。
2、做到课后教学反思
上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。
3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。
4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。
3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
4、扎实基础的同时重视数学应用意识及应用能力的培养。
5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透 6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。
高一数学教学计划 4
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。
数学目标要求
1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。
2、理解角的概念的推广和三角函数的定义,掌握基本的三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性
3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。
4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。
5、掌握空间几何直线、平面之间的位置关系及其判定方法。
6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的`内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。
2、准确吧握新大纲。新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。根据材料个章节的重难点制定教学专题,积累教学经验。
6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
三、教学进度
高一上学期
高一下学期
周次内容
周次内容
1-4复习初中知识和集合1-3数列
5充要条件
4-6平面向量
6-7不等式7-9直线的方程
8-10
函数10期中考试
11
期中考试11-12圆的方程
12-14指数函数与对数函数13-15
立体几何
15-18三角函数16-18概率与统计初步
19-20期末、总复习、考试19-20
总复习与期末考试
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
高一数学教学计划 5
一、学情分析
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上进取创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二、教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都能够看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了进取探索数学课程与信息技术的整合,帮忙学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不一样需求,为不一样学生供给不一样的发展空间,促进学生个性和潜能的发展供给了很好的平台。例如教材经过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生供给了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化提高中的作用。
5、新教材注重数学史渗透,异常是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三、教学任务与目的
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依靠关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不一样需要选择恰当的方法表示函数。
经过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,经过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
理解对数的概念及其运算性质,明白用换底公式能将一般对数转化成自然对数或常用对数;经过阅读材料,了解对数的发现历史以及对简化运算的作用。经过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的'图象,探索并了解对数函数的单调性与特殊点。明白指数函数y=ax与对数函数y=logax互为反函数(a》0,a≠1)。经过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情景。
3、结合二次函数的图象,确定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不一样函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察很多空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
经过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不一样表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。经过对很多图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维本事,并用来解决一些简单的推理论证及应用问题、
6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。
根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四、教学措施和活动
1、加强团体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的本事,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和本事。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
高一数学教学计划 6
一、设计理念
新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
二、教材分析
本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。
三、学情分析
【年龄特点】:
假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。
【认知优点】
一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。
【学习难点】
但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。
四、教学目标
? 知识与技能:
1. 理解子集、V图、真子集、空集的概念。
2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。
3. 能够区分集合间的包含关系与元素与集合的属于关系。
? 过程与方法:
1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、
分析、归纳的能力。
2. 培养学生用数学符号语言、图形语言进行交流的能力。
? 情感态度与价值观:
1.激发学生学习的兴趣,图形、符号所带来的魅力。
2.感悟数学知识间的`联系,养成良好的思维习惯及数学品质。
五、教学重、难点
重点:
集合间基本关系。
难点:
类比实数间的关系研究集合间的关系。
六、教学手段
PPT辅助教学
七、教法、学法
? 教法:
探究式教学、讲练式教学
遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。
? 学法:
自主探究、类比学习、合作交流
教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。
八、课型、课时
课型:新授课
课时:一课时
九、教学过程
(一)教学流程图
(二)教学详细过程
1..回顾就知,引出新知
问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?
2.合作交流,探究新知
问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?
(1)A={1,2,3},B={1,2,3,4,5};
(2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;
(3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}
【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.
在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:
问题三:你能举出几个集合,并说出它们之间的包含关系吗?
【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。
问题四:对于题目中的第3小题中的集合,你有什么发现吗?
【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。
用集合的概念对相等做进一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。
强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B
【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。
【师生活动】?,并规定空集是任何集合的
4.思维拓展,讨论新知
问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明
【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是
问题七:经过以上集合之间关系的学习,你有什么结论?
【师生活动】:师生讨论得出结论:
(1)任何一个集合都是它本身的子集,即A?A
5.练习反馈,培养能力
例1写出集合{a,b}的所有子集,并指出哪些是真子集
例2用适当的符号填空
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.课堂小结,布置作业
这节课你学到了哪些知识?
小结 知识上:
能力上:
情感上:
作业:必做题:P8,3
思考题:实数间有运算,那集合呢?
十、板书设计
十一、教学反思
高一数学教学计划 7
一、教学目标:
1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.
2.培养广泛联想的能力和热爱数学的态度.
二、教学重点:
在于让学生领悟生活中处处有变量,变量之间充满了关系
教学难点:培养广泛联想的能力和热爱数学的态度
三、教学方法:
探究交流法
四、教学过程
(一)、知识探索:
阅读课文P25页。实例:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?
2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?
问题小结:
1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的`变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念
1.初中关于函数的定义:
2.从集合的观点出发,函数定义:
给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;
此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。
定义域,值域,对应法则
4.函数值
当x=a时,我们用f(a)表示函数y=f(x)的函数值。
高一数学教学计划 8
一、学生状况分析
学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习进取性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。
二、教材分析
使用北师大版《普通高中课程标准实验教科书·数学》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可理解性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。
三、教学任务
本期授课资料为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。
四、教学质量目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本本事。
3、提高学生提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。
5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。
6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要资料,坚持“抓两头、带中间、整体推进”,使每个学生的数学本事都得到提高和发展。
教学方法及推进措施
六、相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的.衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。
(4)让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)重视数学应用意识及应用本事的培养。
(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
(9)加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。
(10)抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。
(11)自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。
七、教学进度安排:
(略)
高一数学教学计划 9
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的.生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次
时
内 容
重 点、难 点
第1周
9.2~9.6
集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;
难点:理解概念
第2周
9.7~9.13
集合的基本运算
函数的概念、
函数的表示法
能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20
单调性与最值、
奇偶性、实习、小结
学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27
指数与指数幂的运算、
指数函数及其性质
掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4
(9月月考国庆放假)
第6周
10.5~10.11
对数与对数运算、
对数函数及其性质
理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18
幂函数
从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25
方程的根与函数零点,
二分法求方程近似解,
能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1
几类不同增长的模型、函数模型应用举例
对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
11.2~11.8
期中复习及考试
分章归纳复习+1套模拟测试
第11周
11.9~11.15
任意角和弧度制
任意角的三角函数
了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22
三角函数的诱导公式
三角函数的图像和性质
借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29
函数y=Asin(wx+q)的图像
借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6
三角函数模型的简单应用 单元考试
会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13
平面向量的实际背景及基本概念,平面向量的线性运算
掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20
平面向量的基本定理及坐标表示,平面向量的数量积,
理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27
平面向量应用举例,
小结
用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3
两角和与差点正弦、余弦和正切公式
能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10
简单的三角恒等变换
期末复习
高一数学教学计划 10
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的'问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立.
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确.空集是任何非空集合的真子集;
(3)不正确. 与 表示同一集合;
(4)不正确. 的所有子集是 ;
(5)正确
(6)不正确.当 时, 与 能同时成立.
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的补集 可用右图中阴影部分表示.
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系.
高一数学教学计划 11
本学期的数学教学内容是必修4包括第一章《三角函数》和第二章《平面向量》。按照数学教学大纲的要求,必修4教学需要36个课时(不包含考试与测验 的时间);第五章的教学需要22个课时,共计需要58个课时。必修3需要30个课时。 本学期有两次月考和五一长假,实际授课时间为18周,按每周5.5课时计算,数学课时达到93课时左右,时间比较充足。这为我们数学组全面贯彻低切入、 慢节奏的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。
教学计划:
依据年级备课组的高一数学教学进度安排,本学期的期中考试(5月上旬进行)涵盖的内容为必修3与三角函数前面内容,三角函数将在上半学期讲授,这样下半个学期的教学任务为38个课时,完成三角剩内容与平面向量的教学,及整个学期的复习。
一、指导思想
本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真 备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,为来年高考作 好充分的准备,争取优异的成绩。
二、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究三角函数的.性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示三角函数有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过算法初步,1算法步骤2程序框图(起始框,判断框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、 具体措施
1.期中考前上好第一册(必修3),期中考后完成好必修4
2.抓好数学补差,培优活动 各班在星期1或星期4的下午
3.立足于教材。
4.要求学生完成课后练习及每一章课后习题
5、继续学习《现代教育技术》,努力学习多媒体课件的制作。
6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。
7、抓好竞赛辅导,
8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次;
9、响应学校教务处的备课计划安排,督促组员落实工作;
10、抓好集体备课
高一数学教学计划 12
一、教材教法分析
本节课是x教版普通高中课程标准实验教科书数学必修(x)的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《xx》的学习和掌握将对今后学习本节内容《xx》和选修内容《xx》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
二、学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的`方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
三、教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性。
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程。
③感受类比思想在探究新知识过程中的作用。
2、过程与方法
①结合具体问题引入,诱导学生探究。
②类比学习,循序渐进。
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
4、教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
5、教学难点
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
高一数学教学计划 13
本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2.判断下列各式是否成立?并说明理由。
( 1 )若x-4=12, 则x=16()
( 2 )若3x=12, 则 x=4()
( 3 )若x-4>12 则 x>16()
( 4 )若3x>12则 x>4()
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。
教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的`性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?
同桌同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
【设计意图】猜想作为教学的出发点,启发学生积极思维,探索规律,让学生在“做”数学中学数学,真正成为学习的主人。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a
【设计意图】把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识,对培养学生的思维能力有十分重要的意义。
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。
2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。
3.小明的困惑:
小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?
小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。
【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。
4.火眼金睛
①a>2, 则3a___2a
②2a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题:你来决策
咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。
高一数学教学计划 14
一、制定的依据
随着高一新教材的全面实施,本年级数学学科的教学进入了新课程改革实际阶段。本计划制定的依据主要是以下三个:
(1)二期课改的理念:一个为本、三类课程、三维目标
(2)新数学课程标准(详见《广州市中小学数学课程标准》)
(3)三本书:课本、教参、练习册
(4)本校教研组对本学期学科的要求
二、基本情况分析
高一(3)全班共52人,男生24人,女生28人。上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。高一(4)全班共53人,男生26人,女生27人。上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。
从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。
优势是:
1、有潜力;
2、师生关系比较融洽,互相信任,配合默契。
存在的不足是:
1、聪明有余,而努力不足;
2、男生聪明,上课积极,但不够勤奋、踏实;女生认真,但上课效率不高,学得不够灵活。
3、从期末统测来看,差生的比重大;
4、个别学生懒惰成性,学习态度、学习习惯极差;
5、平时学习不够用心,自觉,专心思考、钻研的时间太少;
6、一些同学学习成绩起伏大,不稳定;
7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;
8、学习兴趣,动力,上进心不足。
三、本学期力争达到的目标
1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。
2、完成新数学课程标准规定的教学目标。
3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。
4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。
5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。
四、具体措施
1、从期末统测来看,学困生的比重大,优秀率没有。为此要进行分层教学,学困生要注重基本题、常规题的反复操练,增强他们对数学学习的信心和兴趣。好学生要避免无谓失分的情况,注重数学思想、方法、能力的培养,着眼于高三。总而言之,学困生还是继续注重双基的训练,将做过,讲过的题目再反复操练。另外也不能忽略了高分学生的培养,给好学生布置一些有质量的`课外题,定期查阅,批改,答疑。这样,通过抓两头,促中间,带动整体水平的提高。
2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。
3、从期末统测看学生应用能力明显不足。教师要通过平时教学培养学生阅读审题、数学建模的能力。让学生熟悉一些常见的实际问题的背景,及解决这些问题的相关数学知识。
4、期末统测中选择题普遍得分不高,应引起我们的重视。由于选择题只有唯一答案,所以解答选择题的策略是:合理、迅速、检验,要善于转化,避免机械套用公式、定理和“小题大做,舍近求远,简单问题复杂化”的不良习惯。另外,由填空题的错误表达和解答题的计算粗心、考虑不全面而造成的无谓失分,导致了分数上不去和好学生考不出高分。所以,为保证得到该得的分数,要求必须认真审题,明确要求,弄清概念,思考全面,正确表达。
5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。
五、保障措施和可行性
1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;
2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;
3、注重加强知识之间的联系和综合,内容和方式要更新,有层次推进,多角度理解,反思总结,重视教与学的方式多样化;
4、激发兴趣,重视过程教学,重视错误分析型学习;
5、重视开放性、研究性问题的教学,关注主观评判性问题的学习,研究新题型,真正发展学生的数学素质,培养其数学能力。
6、结合二期课改新课程标准、教参,扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
7、加大课堂教改力度,培养学生的自主学习能力。
8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
9、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解,过关。
10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题,每人在课本留白处做好课堂笔记。另外,我自己有充足的时间与资料,进行习题精选与练习补充。
六、总目标达成度与现阶段教学目标达成度的相关分析
本学期一定要在如何提高课堂效率上下功夫,同时抓平时的学习习惯,学习规范,作业质量等细节问题,切实提高学习的有效性。另外,在上学期的基础上,本学期力争消灭不及格,并使那些因无谓失分而导致分数起伏不定的学生能稳定下来,从而进一步提高优秀率。
目前,我班面临的困难与问题还非常多,好在学生的学习势头保持良好。我和我们班的全体学生,将尽我们所能,力争在本学期能有所收获,更进一步。
七、课堂教学改革与创新、信息技术的应用与整合
1、结合二期课改,将“接受式学习”变为“主动式学习”,“启发式学习”,将“要我学”变为“我要学”,并积极开展拓展性课程,研究性课程,培养学生的创新精神和实践能力。
2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。
3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。
4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。
5、利用“Bb”系统建设e课堂,建设网络学习包。
6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。
7、对不同层次的学生进行分层辅导,分层补充课外练习。
8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。
高一数学教学计划 15
一、教学内容
本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求
(一)前半期完成《数学①》主要涉及三章内容:
第一章集合与函数的概念(约13学时)
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;
2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3.理解补集的含义,会求在给定集合中某个集合的补集;
4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;
5.渗透数形结合、分类讨论等数学思想方法;
6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章函数的概念与基本初等函数Ⅰ(约14学时)
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的'概念和性质,能借助函数的知识表述、刻画事物的变化规律;
2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
第三章函数的应用(约9学时)
结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。
1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(二)后半期完成《数学④》主要涉及三章内容:
第一章三角函数(约16学时)
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3.了解三角函数的周期性;
4.掌握三角函数的图像与性质。
第二章平面向量(约12学时)
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、减法和向量数乘的运算;
3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章三角恒等变换(约8学时)
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。
1.掌握两角和与差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式;
3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。
三、教学常规要求及建议(要点)
根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。
1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。
2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。
3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。
3、每节课应有教学目标、重点,突出解决的问题和方法、过程。
4、做好教学反思(每周至少有一次)
【高一数学教学计划 】相关文章:
高一的数学教学计划04-17
数学高一教学计划01-14
数学高一教学计划03-10
高一数学的教学计划01-19
高一数学教学计划10-25
新高一数学教学计划03-12
高一数学教学计划【精】12-24
高一数学教学计划【荐】12-24
高一数学教学计划【热】12-24
【推荐】高一数学教学计划12-24