高一数学教学计划

时间:2024-08-13 17:01:47 教学计划 我要投稿

【热门】高一数学教学计划

  时间流逝得如此之快,又将迎来新的工作,新的挑战,是时候开始写计划了。那么你真正懂得怎么写好计划吗?以下是小编为大家收集的高一数学教学计划,仅供参考,希望能够帮助到大家。

【热门】高一数学教学计划

高一数学教学计划1

  一、具体目标:

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

  5、提高学习数学的`兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

  6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学……

  二、本学期要到达的教学目标

  1、双基要求:

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其资料反映出来的数学思想和方法。在基本技能方面能按照必须的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  2、本事培养:

  能运用数学概念、思想方法,辨明数学关系,构成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  3、思想教育:

  培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

  三、进度授课计划及进度表

  (略)

高一数学教学计划2

  (一)教学目标

  1.知识与技能

  (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

  (2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

  (3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

  2.过程与方法

  通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

  3.情感、态度与价值观

  通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

  (二)教学重点与难点

  重点:交集、并集运算的含义,识记与运用.

  难点:弄清交集、并集的含义,认识符号之间的区别与联系

  (三)教学方法

  在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

  (四)教学过程

  教学环节 教学内容 师生互动 设计意图

  提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理数},

  B = {x | x是无理数},

  C = {x | x是实数}.

  师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

  生:集合A与B的元素合并构成C.

  师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

  导入新知

  形成

  概念

  思考:并集运算.

  集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

  定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

  师:请同学们将上述两组实例的共同规律用数学语言表达出来.

  学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

  应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 设集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  师:求并集时,两集合的相同元素如何在并集中表示.

  生:遵循集合元素的.互异性.

  师:涉及不等式型集合问题.

  注意利用数轴,运用数形结合思想求解.

  生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

  固化概念

  提升能力

  探究性质 ①A∪A = A, ②A∪ = A,

  ③A∪B = B∪A,

  ④ ∪B, ∪B.

  老师要求学生对性质进行合理解释. 培养学生数学思维能力.

  形成概念 自学提要:

  ①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

  ②交集运算具有的运算性质呢?

  交集的定义.

  由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn图表示

  老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

  生:①A∩A = A;

  ②A∩ = ;

  ③A∩B = B∩A;

  ④A∩ ,A∩ .

  师:适当阐述上述性质.

  自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

  应用举例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新华中学开运动会,设

  A = {x | x是新华中学高一年级参加百米赛跑的同学},

  B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

  例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

  例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

  (1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

  (2)直线l1,l2平行可表示为

  L1∩L2 = ;

  (3)直线l1,l2重合可表示为

  L1∩L2 = L1 = L2. 提升学生的动手实践能力.

  归纳总结 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性质:①A∩A = A,A∪A = A,

  ②A∩ = ,A∪ = A,

  ③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

  老师点评、阐述 归纳知识、构建知识网络

  课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华

  备选例题

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范围;

  (2)若A∪B = {x | x<1},求a的取值范围.

  【解析】(1)如下图所示:A = {x | –1

  ∴数轴上点x = a在x = – 1左侧.

  ∴a≤–1.

  (2)如右图所示:A = {x | –1

  ∴数轴上点x = a在x = –1和x = 1之间.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

  当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

  例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

  当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

  当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

  综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一数学教学计划3

  本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过三角函数求值与化简问题的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  二、教学要求

  (一)三角函数

  1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.

  2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.

  3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力

  4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).

  5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义.

  6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。

  (二)平面向量

  1理解向量的概念,掌握向量的几何表示,了解共线问量的概念

  2掌握向量的加法与减法

  3掌握实数与向量的积,理解两个向量共线的充要条件

  4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

  5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件

  6掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式

  7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力

  8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力

  9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.

  三、教学重点

  1、掌握同角三角函数的基本关系式

  2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。

  4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的`积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形

  四、教学难点

  1.函数y=Asin(ωx+φ)的简图

  2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象

  3.掌握正弦定理、余弦定理,并能运用它们解斜三角形

  五、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。

  (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。

  课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  (1)加强数学数学竞赛的指导,提高学习兴趣。

  (2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

  (2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

  3、搞好单元考试、阶段性考试的分析。

  学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、进度安排.

  第四章三角函数

  §4.1角的概念的推广………………………………………………………………………………2课时

  §4.2弧度制…………………………………………………………………………………………2课时

  §4.3任意角的三角函数……………………………………………………………………………2课时

  §4.4同角三角函数的关系…………………………………………………………………………2课时

  §4.5诱导公式………………………………………………………………………………………2课时

  §4.6两角和与差三角函数…………………………………………………………………………7课时

  §4.7二倍角公式……………………………………………………………………………………3课时

  §4.8三角函数的图象与性质………………………………………………………………………4课时

  §4.9函数y=sin(ωx+φ)的图象…………………………………………………………………3课时

  §4.10正切函数的图象与性质………………………………………………………………………3课时

  §4.11给值求角………………………………………………………………………………………4课时

  第五章平面向量…………………

  §5.1向量……………………………………………………………………………………………1课时

  §5.2向量的加法及减法……………………………………………………………………………2课时

  §5.3实数与向量的积………………………………………………………………………………2课时

  §5.4平面向量的坐标运算…………………………………………………………………………2课时

  §5.5线段的定比分点………………………………………………………………………………2课时

  §5.6平面向量的坐标运算…………………………………………………………………………2课时

  §5.7平面向量的数量积及运算律…………………………………………………………………2课时

  §5.8平面向量数量积的坐标表示…………………………………………………………………2课时

  §5.9正弦定理、余弦定理…………………………………………………………………………2课时

  §5.10解斜三角形应用举例…………………………………………………………………………2课时

  §5.11实习作业………………………………………………………………………………………2课时

  第六章不等式…………………

  §6.1不等式的性质…………………………………………………………………………………3课时

  §6.2均值定理………………………………………………………………………………………2课时

  §6.3不等式的证明…………………………………………………………………………………6课时

  §6.4不等式的解法…………………………………………………………………………………3课时

  期末复习20课时

高一数学教学计划4

日期





周次





学时





内容





重点、难点





9.1-9.7





1





5





集合的含义与表示、





集合间的基本关系、





集合的基本运算





会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算。难点:理解概念





9.8-9.14





2





5





函数的概念、





函数的表示法





会求一些简单函数的定义域和值域;能简单应用





9.15-9.21





3





5





函数的基本性质、





学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义





9.22-9.28





4





3





本章复习、测试






9.29-10.5





5






国庆放假






10.6-10.12





6





5





指数与指数幂的运算、





指数函数及其性质





掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念





10.13-10.19





7





5





对数与对数运算、





对数函数及其性质





理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数





10.20-10.26





8





5





幂函数,复习、测试





从五个具体的幂函数(y=x,y=x2,y=x3,y=x-1,y=x1/2)图象中认识幂函数的一些性质





10.27-11.2





9





5





方程的根与函数零点,





二分法求方程近似解,





几类不同增长的.模型、函数模型应用举例





能够借助计算器用二分法求相应方程的近似解;





对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义





日期





周次





学时





内容





重点、难点





11.3-11.9





10






期中复习及考试






11.10-11.16





11





5





讲评试卷





分析知识点的掌握情况





11.17-11.23





12





5





任意角和弧度制,





任意角的三角函数





了解任意角的概念和弧度制,能进行弧度与度的互化,借助单位圆理解任意角三角函数的定义。





11.24-11.30





13





5





三角函数的诱导公式,





三角函数的图象与性质





借助单位圆中的三角函数推导出诱导公式,能画出








的图象,理解三角函数的周期性、单调性、最值等性质

12.1-12.7





14





5





函数








的图象,

三角函数模型的简单应用





了解函数








的实际意义,能借助计算器画出函数




的图象,并观察参数对图象的影响。会用三角函数解决一些简单实际问题。

12.8-12.14





15





5





复习、测试





平面向量的实际背景及基本概念





通过力的分析,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示





12.15-12.21





16





5





平面向量的线性运算,





平面向量的基本定理及坐标表示





掌握向量加、减法的运算,数乘运算,并理解其几何意义以及两个向量共线的含义。了解向量的基本定理、运算性质及其几何意义。掌握平面向量的正交分解及其坐标表示





12.22-12.28





17





5





平面向量的数量积





平面向量的应用举例





本章复习、测试





理解向量数量积的含义及其物理意义,会进行数量积的运算,会用数量积判断两个平面向量的垂直关系。用向量解决某些简单的几何问题。





12.29-1.4





18





5





两角和与差的正弦、余弦和正切公式





用向量的数量积推导出两角差的余弦公式,并能用两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式





1.5-1.11





19





5





简单的三角恒等变换,期末复习





能运用上述公式进行简单的恒等变换。进行知识的梳理。





1.12-1.18





20






复习及期未考试






高一数学教学计划5

  一、教学内容

  本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。

  二、教学目标与要求

  认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。

  1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。

  2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。

  3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的'。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。

  4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。

  5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。

高一数学教学计划6

  一、教学目标

  1.知识与技能目标

  (1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.

  (2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.

  2.过程与方法目标

  ①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

  ②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

  情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

  2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

  集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

  在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

  第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

  3、学情分析

  学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

  生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

  二、方法与手段

  本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

  3、教学重难点

  重点:列举法、描述法。

  难点:运用集合的三种常用表示方法正确表示一些简单的集合

  4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

  5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

  6、教学思路:

  7、教学过程

  7.1创设情境,引入课题

  【活动】多媒体展示:1、草原一群大象在缓步走来。

  2、蓝蓝的天空中,一群鸟在飞翔

  3、一群学生在一起玩。

  引导学生举出一些类似的例子问题

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

  7.2步步探索,形成概念

  【活动1】观察下列对象:

  ①1~20以内的所有质数;

  ②我国从1991—20xx年的13年内所发射的所有人造卫星

  ③金星汽车厂20xx年生产的所有汽车;

  ④20xx年1月1日之前与我国建立外交关系的所有国家;

  ⑤所有的正方形;

  ⑥到直线l的距离等于定长d的所有的点;

  ⑦方程x2+3x—2=0的所有实数根;

  ⑧新华中学20xx年9月入学的所有的高一学生。

  师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。

  【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

  【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

  如:

  1)A={1,3},3、5哪个是A的元素?

  2)B={身材较高的人},能否表示成集合?

  3)C={1,1,3}表示是否准确?

  4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

  5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

  【分析】1)1,3是A的元素,5不是

  2)我们不能准确的规定多少高算是身材较高,即不能确定集合的`元素,

  所以B不能表示集合

  3)C中有二个1,因此表达不准确

  4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

  5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

  通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

  1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.

  2)互异性:同一集合中不应重复出现同一元素.

  3)无序性:集合中的元素没有顺序

  4)集合相等:构成两个集合的元素完全一样

  【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

  7.3集合与元素的关系

  【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

  高一(5)班的同学,a、b与A分别有什么关系?

  引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

  ②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

  再让学生举一些例子说明这种关系。

  【设计意图】使学生发挥想象,明确元素与集合的关系。

  【活动】熟记数学中一些常用的数集及其记法

  引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

  【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

  7.4集合的表示方法

  【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

  7.4.1集合的列举法表示

  【活动】尝试用列举法第4页例1中的集合:

  1)小于10的所有自然数组成的集合;

  2)方程x2?x的所有实数根组成的集合;

  3)由1到20以内的所有素数组成的集合;

  并思考列举法的特点。

  引导学生阅读教科书,自主学习列举法,得出答案:

  1)A={0,1,2,3,4,5,6,7,8,9}

  2)A={0,1}

  3)A={2,3,5,7,11,13,17,19}

  通过上述讲解请同学说说列举法的特点:

  1)用花括号{}把元素括起来

  2)集合的元素可以具体一一列出

  【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

  7.4.2集合的描述法表示

  【活动1】提出教科书中的思考题:

  1)你能用自然语言描述集合{2,4,6,8}吗?

  2)你能用列举法表示不等式x—7<3的解集吗?

  学生讨论,师生总结:

  1)从2开始到8的所有偶数组成的集合

  2)这个集合中的元素不能一一列出,因此不可以用列举法表示

  引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

  引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

  例如2)可以用描述法表示为:A={x?R|x<10}

  【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

  【活动2】引导学生完成第5页例2

  1) 方程x2?2?0的所有实数根组成的集合

  2) 由大于10小于20的所有整数组成的集合

  讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

  1)描述法:A={ x?R|x2?2?0}

  列举法:

  2)描述法:A={ x?Z|10

  列举法:A={11,12,13,14,15,16,17,18,19}

  【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

  7.5课堂小结,学习反思

  【问题】1)集合与元素的含义?

  2)集合的特点?

  3)集合的不同表示方法

  引导学生整理概括这一节课所学的知识

  【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

  8、作业布置,巩固新知

  课后作业:习题1.1A组第4题

  课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

  ②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

  9、板书设计

  1.1.1集合的含义与表示

  1、元素的含义:把研究对象统称为元素

  2、集合的含义:一些元素组成的总体。

  3、集合元素的三个特性:确定性,互异性,无序性,集合相等

  4、元素与集合的关系:a?A,a?A

  5、常用数集与记法

  6、列举法

  7、描述法

  8、课堂小结

高一数学教学计划7

  一、设计理念

  新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。

  二、教材分析

  本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。

  三、学情分析

  【年龄特点】:

  假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。

  【认知优点】

  一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。

  【学习难点】

  但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。

  四、教学目标

  ? 知识与技能:

  1. 理解子集、V图、真子集、空集的概念。

  2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。

  3. 能够区分集合间的'包含关系与元素与集合的属于关系。

  ? 过程与方法:

  1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、

  分析、归纳的能力。

  2. 培养学生用数学符号语言、图形语言进行交流的能力。

  ? 情感态度与价值观:

  1.激发学生学习的兴趣,图形、符号所带来的魅力。

  2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。

  五、教学重、难点

  重点:

  集合间基本关系。

  难点:

  类比实数间的关系研究集合间的关系。

  六、教学手段

  PPT辅助教学

  七、教法、学法

  ? 教法:

  探究式教学、讲练式教学

  遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。

  ? 学法:

  自主探究、类比学习、合作交流

  教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。

  八、课型、课时

  课型:新授课

  课时:一课时

  九、教学过程

  (一)教学流程图

  (二)教学详细过程

  1..回顾就知,引出新知

  问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?

  2.合作交流,探究新知

  问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;

  (3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}

  【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.

  在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:

  问题三:你能举出几个集合,并说出它们之间的包含关系吗?

  【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。

  问题四:对于题目中的第3小题中的集合,你有什么发现吗?

  【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。

  用集合的概念对相等做进一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。

  强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B

  【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。

  【师生活动】?,并规定空集是任何集合的

  4.思维拓展,讨论新知

  问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明

  【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是

  问题七:经过以上集合之间关系的学习,你有什么结论?

  【师生活动】:师生讨论得出结论:

  (1)任何一个集合都是它本身的子集,即A?A

  5.练习反馈,培养能力

  例1写出集合{a,b}的所有子集,并指出哪些是真子集

  例2用适当的符号填空

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.课堂小结,布置作业

  这节课你学到了哪些知识?

  小结 知识上:

  能力上:

  情感上:

  作业:必做题:P8,3

  思考题:实数间有运算,那集合呢?

  十、板书设计

  十一、教学反思

高一数学教学计划8

  一、具体目标:

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的.能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

  二、本学期要达到的教学目标

  1.双基要求:

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  2.能力培养:

  能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  3. 思想教育:

  三、进度授课计划及进度表(略)

  高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。

高一数学教学计划9

  为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:

  一、学生基本状况:

  (1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。

  (2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。

  (3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。

  (4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  二、教学内容任务:

  本学期完成数学人教A版《必修1》和《必修2》两册内容。

  三、教学措施要求:

  (1)注意研究学生,做好初、高中学习方法的衔接工作;加强自我学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《20xx年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。

  (2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  (3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的教学,为进一步的'学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

  (4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。

  (5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结总结总结总结经验,找出不足,做好充分的准备。

  (6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。

高一数学教学计划10

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。

  数学目标要求

  1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。

  2、理解角的概念的推广和三角函数的定义,掌握基本的三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性

  3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的.和。

  4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。

  5、掌握空间几何直线、平面之间的位置关系及其判定方法。

  6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。

  二、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。

  2、准确吧握新大纲。新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、加强课堂研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。根据材料个章节的重难点制定教学专题,积累教学经验。

  6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

  三、教学进度

  高一上学期

  高一下学期

  周次内容

  周次内容

  1-4复习初中知识和集合1-3数列

  5充要条件

  4-6平面向量

  6-7不等式7-9直线的方程

  8-10

  函数10期中考试

  11

  期中考试11-12圆的方程

  12-14指数函数与对数函数13-15

  立体几何

  15-18三角函数16-18概率与统计初步

  19-20期末、总复习、考试19-20

  总复习与期末考试

  总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

高一数学教学计划11

  指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的'运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  教学进度安排:

  周 次 时 内 容 重 点、难 点

  第1周

  9.2~9.6 5 集合的含义与表示、

  集合间的基本关系、

  会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念

  第2周

  9.7~9.13 5 集合的基本运算

  函数的概念、

  函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

  第3周

  9.14~9.20 5 单调性与最值、

  奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

  第4周

  9.21~9.27 5 指数与指数幂的运算、

  指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

  第5周

  9.28~10.4 5 (9月月考?、国庆放假)

  第6周

  10.5~10.11 5 对数与对数运算、

  对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

  第7周

  10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

  第8周

  10.19~10.25 5 方程的根与函数零点,

  二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;

  第9周

  10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

  第10周

  11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试

  第11周

  11.9~11.15 5 任意角和弧度制

  任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

  第12周

  11.16~11.22 5 三角函数的诱导公式

  三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

  第13周

  11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

  第14周

  11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

  第15周

  12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

  第16周

  12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

  第17周

  12.21~12.27 5 平面向量应用举例,

  小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

  第18周

  12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

  第19周

  1.4~1.10 5 简单的三角恒等变换

  期末复习

高一数学教学计划12

  教学计划可以帮助教师理清教学思路,提高课堂效率。

  ●教学目标

  (一)教学知识点

  1.了解全集的意义.

  2.理解补集的概念.

  (二)能力训练要求

  1.通过概念教学,提高学生逻辑思维能力.

  2.通过教学,提高学生分析、解决问题能力.

  (三)德育渗透目标 渗透相对的观点.

  ●教学重点 补集的概念.

  ●教学难点

  补集的有关运算.

  ●教学方法 发现式教学法 通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.

  ●教具准备

  第一张:(记作1.2.2 A)

  ●教学过程 Ⅰ.复习回顾

  1.集合的'子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?

  Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.

  请同学们由下面的例子回答问题: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分

  由此借助上图总结规律如下: 投影片:(1.2.2 B)

  Ⅳ.课时小结

  1.能熟练求解一个给定集合的补集.

  2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业

高一数学教学计划13

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形。重点是正弦定理与余弦定理。难点是正弦定理与余弦定理的应用。第二章:数列。重点是等差数列与等比数列的前n项的和。难点是等差数列与等比数列前n项的和与应用。第三章:不等式。重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式。难点是二元一次不等式(组)与简单的线性规划问题及应用。

  必修2第一章:空间几何体。重点是空间几何体的三视图和直观图及表面积与体积。难点是空间几何体的三视图。第二章:点、直线、平面之间的位置关系。重点与难点都是直线与平面平行及垂直的判定及其性质。第三章:直线与方程。重点是直线的倾斜角与斜率及直线方程。难点是如何选择恰当的直线方程求解题目。第四章:圆与方程。重点是圆的方程及直线与圆的位置关系。难点是直线与圆的位置关系。

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2、通过日常生活中的.实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数。理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3、理解不等式(组)对于刻画不等关系的意义和价值。掌握求解一元二次不等式的基本方法,并能解决一些实际问题。能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法。再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一。上好每一节课,及时对学生的思想进行观察与指导。课后进行有效的辅导。进行有效的课堂反思。

高一数学教学计划14

  教学目标 :

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义,

  (3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力.

  教学重点:子集、补集的概念

  教学难点 :弄清元素与子集、属于与包含之间的区别

  教学用具:幻灯机

  教学过程 设计

  (一)导入 新课

  上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

  【提出问题】(投影打出)

  已知 , , ,问:

  1.哪些集合表示方法是列举法.

  2.哪些集合表示方法是描述法.

  3.将集M、集从集P用图示法表示.

  4.分别说出各集合中的元素.

  5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

  6.集M中元素与集N有何关系.集M中元素与集P有何关系.

  【找学生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(笔练结合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (笔练结合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

  (二)新授知识

  1.子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作: 读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

  性质:① (任何一个集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

  【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的`.

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例: ,可见,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

  【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

  【提问】

  (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2) 判断下列写法是否正确

  ① A ② A ③ ④A A

  性质:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

  (2)如果 , ,则 .

  例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集与真子集符号的方向。

  (2)易混符号

  ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

  ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

  如: {0}。不能写成 ={0}, ∈{0}

  例2 见教材P8(解略)

  例3 判断下列说法是否正确,如果不正确,请加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 与 不能同时成立.

  解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确.空集是任何非空集合的真子集;

  (3)不正确. 与 表示同一集合;

  (4)不正确. 的所有子集是 ;

  (5)正确

  (6)不正确.当 时, 与 能同时成立.

  例4 用适当的符号( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)设 , , ,则A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

  【练习】教材P9

  用适当的符号( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提问:见教材P9例子

  (二) 全集与补集

  1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

  .

  A在S中的补集 可用右图中阴影部分表示.

  性质: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

  (2)若A={0},则 NA=N*;

  (3) RQ是无理数集。

  2.全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

  注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

  例如:若 ,当 时, ;当 时,则 .

  例5 设全集 , , ,判断 与 之间的关系.

高一数学教学计划15

  不论从事何种工作,如果要想做出高效、实效,务必先从自身的工作计划开始。有了计划,才不致于使自己思想迷茫。下文为您准备了高一数学第一章函数及其表示教学计划。

  一、教材内容分析

  函数是高中数学的重要内容,函数的表示法是“函数及其表示”这一节的主要内容之一。学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)学会根据问题需要选择表示方法的重要过程。

  学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

  二、教学目标分析

  根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、能力和情感三个方面制订教学目标。

  1、明确函数的三种表示方法(图象法、列表法、解析法),通过具体的实例,了解简单的分段函数及其应用。

  2、通过解决实际问题的过程,在实际情境中能根据不同的需要选择恰当的方法表示函数,发展学生思维能力。

  3、通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。

  三、教学问题诊断分析

  (1)初中已经接触过函数的三种表示法:解析法、列表法和图象法、高中阶段重点是让学生在了解三种表示法各自优点的.基础上,使学生会根据实际情境的需要选择恰当的表示方法。因此,教学中应该多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是可以写出解析式的。

  (2)分段函数大量存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还可以通过动画模拟,让学生体验到,分段函数的问题应该分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。

  四、本节课的教法特点以及预期效果分析

  (一)本节课的教法特点

  根据教学内容,结合学生的具体情况,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的能力。

  (二)本节课预期效果

  1、通过具体的实例,让学生体会函数三种表示法的优、缺点。

  创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:

  (1)炮弹发射时,距离地面的高度随时间变化的情况;

  (2)用图表的形式给出臭氧层空洞的面积与时间的关系;

  (3)恩格尔系数的变化情况。

  指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不同的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自己去发现各自的优劣。这为第一道例题打下基础。

  例1通过具体例子,让学生用三种不同的表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自己检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表。

  由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不同。通过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体、函数y=5x不同于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点。由此认识到:“函数图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等。”并明确:如何判断一个图形是否是函数图象方法?

  2、让学生会根据不同的实例选择恰当的方法表示函数

  例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,因此需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,可以让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数、通过比较各种不同的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的能力。

  学生经过观察、思考获得结论、比如总体水平(朱启南成绩好)变化趋势(刘天佑的成绩在逐步提高)与运动员的平均分的比较,等等。培养学生的观察能力、获取有用信息的能力。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情况,加以比较。

  3、通过具体的实例,了解分段函数及其表示

  生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。通过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情况的模拟。可以使函数在数与形两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合的数学思想方法。

【高一数学教学计划】相关文章:

高一的数学教学计划04-17

数学高一教学计划01-14

数学高一教学计划03-10

高一数学的教学计划01-19

高一数学教学计划10-25

新高一数学教学计划03-12

高一数学教学计划【精】12-24

高一数学教学计划【荐】12-24

高一数学教学计划【热】12-24

【推荐】高一数学教学计划12-24