四年级数学《三角形内角和》教学设计

时间:2024-08-26 13:42:34 教学设计 我要投稿
  • 相关推荐

四年级数学《三角形内角和》教学设计

  作为一名人民教师,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计要怎么写呢?下面是小编为大家收集的四年级数学《三角形内角和》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

四年级数学《三角形内角和》教学设计

四年级数学《三角形内角和》教学设计1

  教学内容:

  义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.

  教学目标:

  1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备:

  多媒体课件、学具。

  教学过程:

  一、激趣引入

  (一)认识三角形内角

  1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

  2.请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

  (二)设疑,激发学生探究新知的心理

  1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  学生安要求画三角形.

  2.问:有谁画出来啦?

  (课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

  学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

  这个三角形各角的度数。它们的和是多少?

  学生回答:是180°。

  追问:你是怎样知道的?

  生:90°+45°+45°=180°。

  把三角形三个内角的度数合起来就叫三角形的内角和。

  板题:三角形内角和

  2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  90°+60°+30°=180°。

  3.从刚才两个三角形内角和的计算中,你发现什么?

  这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1.猜一猜。

  猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

  2.操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

  2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示

  组长负责填写表格,组员每人负责量一个三角形的.每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.

  量一量,完成表格.

  三角形的名称

  内角和的度数

  锐角三角形

  直角三角形

  (2)小组汇报结果。

  请各小组汇报探究结果。

  (三)继续探究

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  1.用拼合的方法验证。

  小组内完成,活动的要求同上.

  拼一拼,完成表格.

  三角形的名称

  是否可以拼成平角

  锐角三角形

  直角三角形

  对角三角形

  2.汇报验证结果。

  先验证锐角三角形,我们得出什么结论?

  (锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  直角三角形的内角和也是180°。

  钝角三角形的内角和还是180°)。

  3.课件演示验证结果。

  请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的结果呢?

  (量的不准。有的量角器有误差。)

  三、解决疑问。

  现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  四、应用三角形的内角和解决问题。

  1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2.85页做一做:

  在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.

  3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

  4.89页16题.思考题

  板书设计:

  三角形内角和

  180°180°180°

  三角形内角和180°

四年级数学《三角形内角和》教学设计2

  课题

  三角形的内角和

  手

  教学目标

  1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  重点难点

  重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

  难点:探索、验证三角形内角和是180°的过程。

  过程

  资

  体验目标

  “学”与“教”

  创设问题情境

  课件出示:两个三角板

  遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

  这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

  生: 45°、90°、45°。

  生: 30°、90°、60°。

  师:仔细观察,算一算这两个三角形的内角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

  生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

  师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

  构建

  模型

  每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

  课件

  学生自己剪的一个任意三角形

  大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

  让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

  这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

  师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

  学生动手操作验证

  师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?

  学生汇报:

  生1:③号三角形是直角三角形,内角和是180°。

  生2:②号三角形是锐角三角形,内角和是180°。

  生3:⑤号三角形是钝角三角形,内角和是180°。

  生4:④号三角形是直角三角形,内角和是180°。

  生5:①号三角形是钝角三角形,内角和是180°。

  生6:⑥号三角形是锐角三角形,内角和是180°。

  师:除了量的方法外,还有其他方法验证三角形内角和吗?

  生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

  生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

  生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

  这些方法都验证了:三角形的.内角和是180°。

  师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

  师:有没有人质疑,用什么方法验证?

  生用自己剪的任意三角形再次验证三角形内角和是否180°。

  生:得出内角和还是180°。

  师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

  师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

  生:三角形的内角和是180°。

  师:看来我们的猜想是正确的。

  师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

  解释

  运用拓展

  课件

  正方形纸

  让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度数。

  ⑴∠1=42°,∠2=38°,∠3=?

  ⑵∠1=28°,∠2=62°,∠3=?

  ⑶∠1=80°,∠2=56°,∠3=?

  师:你是怎样算的?这三个三角形各是什么三角形?

  提问:在一个三角形中最多有几个钝角?

  在一个三角形中最多有几个直角?

  3.游戏:将准备的正方形纸对折成一个三角形?

  师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

  说明:三角形大小变了,内角和不变。

  4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  说明:三角形形状变了,内角和不变。

  5.根据所学知识,你能想办法求出下面图形的内角和吗?

  板书

  设计

  三角形内角和

  ①号 钝角三角形 内角和180°

  ②号 锐角三角形 内角和180°

  三角形内角和是180°

  ③号 直角三角形 内角和180°

  ④号 直角三角形 内角和180°

  ⑤号 钝角三角形 内角和180°

  ⑥号 锐角三角形 内角和180°

  学具教具准备

  课件三角形纸片量角器正方形纸

四年级数学《三角形内角和》教学设计3

  设计思路

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教材分析

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

  因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的'形成、发展和应用的全过程。

  教学准备

  多媒体课件、学具。

  教学过程

  一、激趣引入

  (一)认识三角形内角

  师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  生1:三角形是由三条线段围成的图形。

  生2:三角形有三个角,……

  师:请看屏幕(课件演示三条线段围成三角形的过程)。

  师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:只能画长方形。

  师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

  生:想。

  师:那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

  生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

  师:也就是这个三角形各角的度数。它们的和怎样?

  生:是180°。

  师:你是怎样知道的?

  生:90°+60°+30°=180°。

  师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

  师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  生:90°+45°+45°=180°。

  师:从刚才两个三角形内角和的计算中,你发现什么?

  生1:这两个三角形的内角和都是180°。

  生2:这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1、猜一猜。

  师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

  师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

  (2)小组汇报结果。

  师:请各小组汇报探究结果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)继续探究

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?

  生:把它们剪下来放在一起。

  1、用拼合的方法验证。

  师:很好,请用不同的三角形来验证。

  师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

  2、汇报验证结果。

  师:先验证锐角三角形,我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  3、课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

四年级数学《三角形内角和》教学设计4

  教学目标:

  1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

  2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

  3、能运用三角形内角和知识解决一些简单的问题。

  教学重点:

  探索和发现“三角形内角和是180°”。

  教学难点:

  验证“三角形内角和是180°,以及对这一知识的灵活运用。”

  教具准备:

  三角形,多媒体课中。

  教学过程设计:

  一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

  二、探究新知:

  (一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

  你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

  (二)、拼一拼

  引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

  引导学生得出:三角形内角和等于180°

  (三)折一折

  引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

  回答大小三角形的.争论:大三角形与小三角形的内角形谁大?并说出理由。

  三、巩固拓展

  1、填一填

  ①直角形三角形的两个锐角和是()度。

  ②直角三角形的一个锐角是45°,另一个锐角是()度。

  ③钝角三角形的两上内角分别是20°,60°;则第三个角是()

  2、火眼金晴

  ①钝角三角形的两个钝角和大于90°()。

  ②直角三角形的两个锐角之和正好等于90°()。

  ③淘气画了一个三个角分别是50°,70°,50°的三角形()

  ④两个锐角是60°的三角形是等边三角形()

  ⑤长方形的内角和等于360°()。

  3、猜一猜:四边形的内角和是多少度?

  五边形的内角和是多少度?

  四、小结,今天学习了什么?你有什么收获?

四年级数学《三角形内角和》教学设计5

  【教学目标】

  1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

  2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

  3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

  【教学重、难点】

  教学重点:引导学生发现三角形内角和是180°。教学难点:用不同方法验证三角形的内角和是180°。

  【教学过程】

  一、创设情景,提出问题

  小游戏:猜一猜藏在信封后面的是什么三角形。(课件出示)

  师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

  【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】

  二、动手实践、自主探究

  师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

  1.从特殊入手——计算直角三角板的内角和。

  (1)师生拿出30度直角三角板

  师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

  (2)再拿出45度直角三角板。

  师:这是什么三角形?这个角是多少度?它的内角和是多少度?

  (3)师:通过刚才的计算,你有什么发现?

  生:这两个三角形内角和都是180°。

  【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】

  2、由特殊到一般——猜想验证,发现规律。

  (1)提出猜想

  师:其他所有三角形的内角和是否也是180°?

  生:是、不是……

  师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。

  (课件出示小组调查表。)

  (2)验证猜想(生测量计算,师巡视指导,收集回报的素材)

  师:哪个小组愿意将您们组的发现与大家分享一下?

  生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是度度度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

  师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

  【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】

  (3)揭示规律

  师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的.内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。

  注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

  师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

  (4)方法提升。

  师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

  【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】

  3、剪拼法再次验证——转化思想的运用。

  师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

  生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)

  班内交流,汇报撕拼法、折叠法。

  师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

  【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】

  4.课件展示——再次强化。

  师:现在大家知道这几个三角形的内角和是多少度吗?

  师:我们可以请电脑来给我们验证一下。

  (引入白板,通过拖动演示三角形从小到大度数的不断变化)

  结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

  【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】

  三、巩固应用,内化提高

  1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

  2.练习

  (1).做一做:在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  (2).求出下列三角形中各个角的度数。(书88页第9题)

  (3).算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

  【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】

  四、课后思考、拓展延伸

  同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(课件出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

【四年级数学《三角形内角和》教学设计】相关文章:

《三角形的内角和》教学设计05-08

《三角形内角和》教学设计04-07

《三角形内角和》教学设计03-08

《三角形的内角和》教学设计03-14

《三角形内角和》教学设计06-08

三角形内角和教学设计02-13

三角形内角和教学设计03-09

《三角形内角和》教学设计10-01

《三角形内角和》的教学设计10-27

三角形内角和教学设计优秀02-13