《三角形内角和》教学设计

时间:2024-04-22 12:08:53 教学设计 我要投稿

[热]《三角形内角和》教学设计范文5篇

  作为一名教职工,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的《三角形内角和》教学设计范文,欢迎阅读与收藏。

[热]《三角形内角和》教学设计范文5篇

《三角形内角和》教学设计范文1

  【教材内容】:

  北师大版四年级数学下册。

  【教学目标】:

  1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  【教学重点和难点】:

  重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

  【教材分析】

  《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的'、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

  【教学过程】

  一、创设情境,激发兴趣。

  出示课件,提出两个两个疑问:

  1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

  2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?

  二、初建模型,实际验证自己的猜想

  在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

  三、再建模型,彻底的得出正确的结论

  因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

  四、应用新知,巩固练习

  1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)

  2、试一试,在直角三角形中已知其中的一个角求另一个角的度数

  3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

  4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?

  五、拓展与延伸

  通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

《三角形内角和》教学设计范文2

  教学目标:

  1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  3、经历三角形内角和的研究方法,感受数学研究方法。

  教学重点:

  1、探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  教学难点:

  掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

  教学用具:

  表格、课件。

  学具准备:

  各种三角形、剪刀、量角器。

  一、创设情境揭示课题。

  1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

  生1:大三角形大(个子大)

  生2:小三角形大(有钝角)

  (教师不做判断,让学生带着问题进入新课)

  2、什么是三角形的内角和?(板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题:

  1、你认为谁说得对?你是怎么想的?

  2、你有什么办法可以比较一下这两个三角形的内角和呢?

  生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

  生3:用折一折的办法把三个角折到一起看它们能不能组成平角

  (二)探索与发现

  活动一:量一量

  (1)①了解活动要求:(屏幕显示)

  A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

  B、把测量结果记录在表格中,并计算三角形内角和。

  C、讨论:从刚才的测量和计算结果中,你发现了什么?

  (引导生回顾活动要求)

  ②小组合作。

  ③汇报交流。

  你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

  (引导学生发现每个三角形的三个内角和都在180°,左右。)

  (2)提出猜想

  刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

  活动二:拼一拼,验证猜想

  这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

  引导:180°,跟我们学过的`什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

  (2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  (3)分组汇报,讨论质疑

  (4)课件演示,验证结果

  活动三:折一折

  师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

  (把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

  讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

  提问:还有没有其它的方法?

  3、回顾两种方法,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?”

  学生答:“180°!”

  (2)总结方法,齐读结论

  我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  (3)解释测量误差

  为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

  (三)回顾问题:

  现在你知道这两个三角形谁说得对了吗?(都不对!)

  为什么?请大家一起,自信肯定的告诉我。

  生:因为三角形内角和等于1800180°。(齐读)

  三、巩固深化,加深理解。

  1、试一试:数学书28页第3题

  ∠A=180°—90°—30°

  2、练一练:数学书29页第一题(生独立解决)

  ∠A=180°—75°—28°

  3、小法官:数学书29页第二题

  四、回顾课堂,渗透数学方法。

  1、总结:猜想—验证—归纳—应用的数学方法。

  2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

《三角形内角和》教学设计范文3

  【教学目标】

  1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

  2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  【教学难点】

  对不同探究方法的指导和学生对规律的灵活应用。

  【教具准备】

  课件、表格、学生准备不同类型的三角形各一个,量角器。

  【教学过程】

  一、激趣引入。

  1、猜谜语

  师:同学们喜欢猜谜语吗?

  生:喜欢。

  师:那么,下面老师给大家出个谜语。请听谜面:

  形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

  生:三角形

  2、介绍三角形按角的分类

  师:真聪明!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

  师分别出示卡片贴于黑板。

  3、激发学生探知心里

  师:大家会不会画三角形啊?

  生:会

  师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

  生:试着画

  师:画出来没有?

  生:没有

  师:画不出来了,是吗?

  生:是

  师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

  二、探究新知。

  1、认识三角形的'内角

  看看这三个字,说说看,什么是三角形的内角?

  生:就是三角形里面的角。

  师:三角形有几个内角啊?

  生:3个。

  师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

  师:你知道什么是三角形“内角和”吗?

  生:三角形里面的角加起来的度数。

  2、研究特殊三角形的内角和

  师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

  生:算一算:90°+60°+30°=180°90°+45°+45°=180°

  师:180°也是我们学习过的什么角?

  生:平角

  师:从刚才两个三角形的内角和的计算中,你发现了什么?

  3、研究一般三角形的内角和

  师:猜一猜,其它三角形的内角和是多少度呢?

  生:

  4、操作、验证

  师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

  要求:

  (1)每4人为一个小组。

  (2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

  (3)验证的方法不只一种,同学们要多动动脑子。

  师:好,开始活动!

  师:巡视指导

  师:好!请一组汇报测量结果。

  生:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

  生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

  师:好!非常好!

  师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

  生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

  师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

  现在老师问同学们,三角形的内角和是多少?

  生:180度。

  师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  三、解决疑问

  师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

  生:没有

  师:那你能用这节课的知识解释一下为什么画不出来吗?

  生:两个直角是180度,没有第三个角了。

  师:如果想画出有两个角是钝角的三角形你能画出来吗?

  生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

  师:学会了知识,我们就要懂得去运用。

  四、巩固提高。

  1、填空。

  (1)三角形的内角和是()度。

  (2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

  2、求下面各角的度数。

  (1)∠1=27°∠2=53°∠3=()这是一个()三角形。

  (2)∠1=70°∠2=50°∠3=()这是一个()三角形。

  3、判断每组中的三个角是不是同一个三角形中的三个内角。

  (1)80°95°5°()

  (2)60°70°90°()

  (3)30°40°50°()

  4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

  对学生进行思品教育。

  5、思考延伸。

  根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

《三角形内角和》教学设计范文4

  【教学内容】

  《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》

  【教学目标】

  1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

  2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

  3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

  一、激趣导入,提炼学习方法

  1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3、选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4、导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

  二、动手操作,探索交流新知

  1、分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2、多方互动,交流新知

  师:请我的大徒弟(量一量组)的.同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3、思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

  四、走进生活,提升运用能力

  1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

  2、给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

《三角形内角和》教学设计范文5

  教学内容:

  本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

  教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

  教学目标:

  1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

  2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

  3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

  教学重点:

  理解并掌握三角形的内角和是180°。

  教学难点:

  验证所有三角形的'内角之和都是180°。

  教具准备:

  多媒体课件、各种三角形等。

  学具准备:

  三角形、剪刀、量角器等。

  教学过程:

  一、出示课题,复习旧知

  1、认识三角形的内角。

  (1)复习三角形的概念。

  (2)介绍三角形的“内角”。

  2、理解三角形的内角“和”。

  【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

  二、动手操作,探究新知

  1、通过预习,认识结论,提出疑问

  2、验证三角形的内角和

  (1)用“量一量、算一算”的方法进行验证

  ①汇报测量结果

  ②产生疑问:为什么结果不统一?

  ③解决疑问:因为存在测量误差。

  (2)用“剪一剪、拼一拼”的方法进行验证

  ①指导剪法。

  ①分别拼:锐角三角形、直角三角形、钝角三角形。

  ③验证得出:三角形的内角和是180°。

  (3)用“折一折”的方法进行验证

  ①指导折法。

  ①分别折:锐角三角形、直角三角形、钝角三角形。

  ③再次验证得出:三角形的内角和是180°。

  3、看书质疑

  【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

  三、实践应用,解决问题:

  1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  2、求出三角形各个角的度数。(图略)

  3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

  70°,它的顶角是多少度?

  4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

  5、数学游戏。

  【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

  四、总结全课、延伸知识:

  1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

  2、知识延伸:给学生介绍一种更科学的验证方法——转化。

  【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

  板书设计:三角形的内角和是180°

  方法:①量一量拼角(略)

  ②拼一拼

  ③折一折

  【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

【《三角形内角和》教学设计】相关文章:

三角形内角和教学设计03-09

《三角形的内角和》教学设计03-14

《三角形的内角和》教学设计05-08

《三角形内角和》教学设计04-07

《三角形内角和》教学设计03-08

《三角形内角和》教学设计06-08

三角形内角和教学设计02-13

三角形内角和教学设计教案09-08

三角形内角和教学设计最新05-26

三角形内角和教学设计优秀02-13