反正弦函数说课稿

时间:2024-10-04 00:00:33 说课稿 我要投稿
  • 相关推荐

反正弦函数说课稿范文

  作为一位杰出的教职工,常常要根据教学需要编写说课稿,是说课取得成功的前提。那么应当如何写说课稿呢?下面是小编为大家收集的反正弦函数说课稿范文,希望能够帮助到大家。

反正弦函数说课稿范文

  一、说教材

  1、地位与重要性

  “反正弦函数”一节属高中代数(必修本)第一册中的选学内容,但属高考测试范围。这一节课与反函数的基本概念、性质有着紧密的联系,通过对这一节课的学习,既可以让学生掌握反正弦函数的概念和题型的解法,又可使学生加深对反函数概念的理解,而且为其它反三角函数的学习做了充分准备,起到承上启下的重要作用。

  2、教学目标

  根据“反正弦函数”一节在高中代数教学中的地位与作用,我制订了如下教学目标:

  (1)使学生理解反正弦函数的概念,能由正弦函数图象得出反正弦函数的定义及性质;

  (2)用反正弦函数的概念解决相关问题;

  (3)培养学生发现问题、观察问题、解决问题的能力。

  3、教学重难点

  重点是反正弦函数的意义及基本性质,反正弦函数概念的简单运用。掌握反正弦函数概念和题型解法是学习其它反三角函数的基础,它是整个反三角函数内容的“龙头”,重中之重。另外,掌握了反正弦函数,学生对于反函数中相关问题也有了更深刻的认识。

  难点是反正弦函数概念的理解与接受,以及怎样用反正弦函数概念与性质来具体运用。在由正弦函数得到反正弦函数的过程中,为什么只取[—π/2,π/2]这一段来得到反函数概念,这是学生较难理解的。为什么出现这些难点呢?根子在于对反函数概念的真正理解上。授课时采取以反函数复习来引入就是为突破难点做准备。

  二、说教法

  根据本节课的内容及学生的实际水平,我采取引导发现法和多媒体辅助教学的方法。

  引导发现法作为一种启发式教学方法,体现了认知心理学。在教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不再成为教师注入知识的“容器”。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  电脑辅助教学(cai)是电化教学的一种重要手段,还处在发展中,我希望通过抛砖引玉,促进我市电化教学的发展。

  三、说学法

  在教学过程中,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。学生作为教学主体随时对所学知识产生有意注意,努力思索解决疑问的方式,这才使自己的能力通过教师的点拨得到发挥。体现了素质教育中学习能力的培养问题,达到了教学的目的。

  四、说过程

  在课堂导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,发挥学生作为教学主体的作用,以启发、引导为教师的责任。

  (一)导入阶段

  利用反函数和反三角函数的继承关系,我以复习反函数关系来进行课程的导入。首先通过学生对反函数概念问题的回答来了解学生对该问题的掌握程度,也为下一步教学作铺垫。再利用投影指明反函数的来历及反函数与原函数的内在联系。投影采取动画的形式,从视觉上刺激学生对事物的接受。

  再出示投影,让学生完成练习:

  (1)y=x2

  (x≥0)的反函数是

  (2)y=x2(x<0)的反函数是

  (3)y=x2(x∈r)的反函数 (由学生回答)

  从以上问题可以引导学生发现:定义域的不同会导致反函数的存在与否。这时教师设问:“既然如此,正弦函数这种函数有没有反函数,如果有,又是怎样呢?”,板书课题 反正弦函数。这就为反正弦函数的新授做了铺垫,学生的心理中对新知识的学习有了期待,为顺利完成教学任务做了思维上的准备。

  (二)讲授阶段

  1、 借助函数图像(多媒体形式),巧妙“设疑”。

  在导入的的基础上,利用三角函数的图象来进行反三角函数的研究。“数形结合”是高中数学教学的重要一环,通过三角函数图象来得到函数的概念与性质,符合从感性到理性的认识规律。具体作法是:抓住函数中“对应”这一实质,从图形上去观察这种“对应”,从而使学生发现,当自变量取全体实数时,正弦函数不具有反函数。利用电脑多媒体技术的优势,以鲜艳的色彩、生动的动画来激起学生了解新知识的兴趣,进而达到了“设疑”的目的。正弦函数在定义域内没有反函数,那么这里的.反正弦函数概念是怎样得到的呢?

  至此,“设疑”成功,下面的工作是调动学生的积极性,观察图象和练习,找出解决的办法,制造“一一对应”。

  2、 借助动画,解决疑问,为突出重点、突破难点作准备。

  引导学生再次注意函数的图象,提出问题:在(—∞,+∞)内正弦函数没有y→x的一一对应存在,但在定义域的局部会不会存在这种对应呢?如果有,又应找出哪一段呢?学生可能指出[—π/2, π/2]区间,也可能指出[π/2, 5π/2]区间……,在这些区间中,哪一个是正确答案呢?这时出示电脑投影,将学生选择的区间在屏幕上扩大显示,由学生逐个分析(在出示的局部图形中应包括[0, 5π/2]这样的区间),学生自己讨论,应该选取怎样的区间来得到y→x的一一对应。最终,学生逐渐会得到结论:(1)[0, 5π/2]这部分不符合要求,因为在这一区间内,有y→x的一对二的对应存在。(2)[—π/2,0] [0, π/2]不符合要求,因为它们的函数值不能取到[—1,1]内所有值,这会导致反函数的定义域不符合要求。(3)[—π/2, π/2],[π/2, 5π/2]这两个区间哪一个可以呢?引导学生发现:从利于研究问题的角度看,以[—π/2, π/2]这一部分来得到反正弦函数最好。在这一部分中,有y→x的一一对应存在,有正负锐角这种比较容易处理的自变量,而且y取到[—1,1]的全体值,确保反函数的定义域是原函数的值域。这就突破了难点,同时突出了重点

  反正弦函数概念。

  教师板书反正弦函数的表达式并指明定义域,值域。并强调:①反正弦函数的函数值是一个角,②反三角函数值的范围必须是[—π/2, π/2]。

  这一部分的教学设计,主要是发挥学生作为教学主体的主动性,自己去寻找解决问题的方案,通过积极的双边活动来达到教学目标。多媒体的形式也为这种想法提供了很好的解决方案。

  3、利用对称性作出反正弦函数的图像,找出反正弦函数的性质。

  既然学生已了解了函数的概念,进一步揭示其性质就成为必然而且必须。

  利用投影、动画,根据对称性很容易作出反正弦函数的图像(必须提醒学生回忆反函数图像与性质),图像有了,函数的基本性质也就得到了。这时,出示投影,指明函数的几个性质,作一个初步的归结。

  4、 通过例题使学生巩固概念,初步具备解决问题的能力。

  动口还需动手,通过例题,使学生巩固概念,加深认识,初步具备解决相关问题的能力,同时也突出重点,进而突破难点。

  例1、 求下列反正弦函数值:

  (1)arcsin√2 /2 ; (2)arcsin(—1/2); (3)arcsin(—1)

  教师引导学生分析题目,使学生认识到:①反正弦函数的函数值是一个角,②反三角函数值的范围必须在[—π/2, π/2]内。教师示范板书第一小题,其余两道题由学生上台完成。通过练习巩固概念,突出重点。

  例2、若а∈[π/2,π],且sinа=1/2,则а的正确表示法是( )

  (a)π/2 +arcsin(1/2) (b) π/2—arcsin(1/2)

  (c)π—arcsin(1/2) (d) π+arcsin(1/2)

  对于这道题,教师应引导学生注意:arcsin(1/2)的值是特殊角300,它应在[0,π/2]内,怎样用这样一个角去表达[π/2,π]范围内的一个角呢?由学生自己思考完成。通过这道题,加深学生对反正弦函数的理解,并为下节课的提高做好准备。

  (三)终结阶段

  1、进行课堂练习,巩固概念,强化学生对这节课的掌握。

  学生完成两道练习题。这两道题都采取了客观题的形式,难度中等,使学生接受概念并能简单运用,同时为下节课的进一步提高做个铺垫。教师等学生完成后,叫成绩中等的学生起立回答,如果有错误,让其它学生起立纠正。

  2、课堂小结

  通过对反正弦函数概念和性质的小结,使学生理清这节课的重难点。

  3、布置作业。

  让学生做课本p284习题十九1、2,通过作业反馈对所学知识掌握的效果,以利课后解决学生尚有疑难的地方。

【反正弦函数说课稿】相关文章:

正弦函数是奇函数还是偶函数05-18

正弦函数公式总结09-19

正弦函数、余弦函数图像教案及反思02-26

正弦函数的对称轴09-30

正弦定理说课稿05-20

正弦定理说课稿07-12

正弦函数的性质与图像的教学反思09-18

锐角三角函数正弦说课稿(通用9篇)12-06

高中优秀教案范例:正弦函数、余弦函数的图象05-31

正弦定理说课稿范文06-03