七年级数学《多边形的内角和》说课稿

时间:2024-10-08 02:54:59 说课稿 我要投稿
  • 相关推荐

人教版七年级数学《多边形的内角和》说课稿

  作为一位杰出的教职工,可能需要进行说课稿编写工作,是说课取得成功的前提。那么你有了解过说课稿吗?下面是小编为大家整理的人教版七年级数学《多边形的内角和》说课稿,仅供参考,大家一起来看看吧。

人教版七年级数学《多边形的内角和》说课稿

  七年级数学《多边形的内角和》说课稿1

各位评委、老师:

  早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和” 。说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。

  一、 教材分析

  1、教学内容

  “多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。

  2、本章及本节的地位与作用

  本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。

  本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础, 公式的运用还充分地体现了图形与客观世界的密切联系。

  3、重点与难点

  多边形内角和的公式及公式的推导和运用是本节课的重点; 因为公式的得出可以用多种不同的方法推导, 所以我确定本节课的难点是如何引导学生通过自主学习, 探索多边形内角和的公式。

  二、教学目标

  根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:

  知识目标:

  ① 识别多边形的顶点、边、内角及对角线;

  ② 理解多边形内角和公式的推导过程;

  ③ 掌握多边形内角和公式的内涵及其运用。

  能力目标:

  ① 培养学生类比归纳、转化的能力;

  ② 培养学生观察分析、猜想和概括的能力。

  思想情感目标:

  通过体会数学图形的美感,提高审美能力, 树立认识数学来源于生活,又服务于实践的观点。

  三、教法分析

  在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察----分析----猜想----概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。

  学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。

  教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。

  四、过程设计

  1、创设问题情境,引入新课

  我是这样设计问题的:

  在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定, 又围成什么图形?……不断地向外拉,结果围成什么图形?

  如果上述情况不是往外拉而是往里推,那是什么图形?

  在学生的回答中引出主题:今天我们来学习多边形的.有关知识.

  (板书: 多边形的内角和)。

  因为前面已经学过三角形的有关知识, 从学生熟悉的情境入手引入新知识, 更能引起学生的学习兴趣, 启发思考: 多边形与三角形有什么密切的联系呢? 渗透了互为转化的思想。

  2、新课学习:

  (1)基本概念

  我把新课的引入过程作为本节课一条主线,各环节都围绕着这条主线展开。

  首先告诉学生:我们往外拉得到的这些图形称为凸多边形,你能给往里推得到的多边形起个名字吗?怎样区别这两种图形呢?把凹多边形与凸多边形从分割的角度来区别,指出暂时研究的只是凸多边形。

  帮助学生复习三角形的有关概念,类比得出四边形、五边形、… n边形的定义,识别多边形的顶点、边及内角,并会表示出一个多边形。

  引入特殊多边形之前, 先欣赏生活中常见到的丰富多彩的图案, 让学生体会数学图形的美,提高审美情趣. 称这样的多边形为正多边形,说明这种规则的、对称的图形非常重要,为下一节学习用正多边形铺设地板作好铺垫。

  在多边形的对角线这一概念的认识和理解上,应突出它的作用,引导学生观察、发现,由于这种特殊的线段,把多

  边形分割成了最基本的图形——三角形,目的是为多边形内角和公式的推导埋下伏笔。

  (2)知识探究

  为了加深对概念的理解,领会其运用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这一部分,我采取以下两个探究活动充分调动全体学生主动探索多边形的内角和公式:

  探究活动1:多边形的对角线

  先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。

  思考并分小组讨论以下两个问题:①从多边形的一个顶点出发能画出几条对角线?②这样的画法把多边形分成了多少个三角形?

  因为多边形内角和公式的推导就是从对角线和三角形入手的,因此,这两个问题就显得尤其重要。引导学生回想课前引入的过程, 图形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。

  探究活动2:多边形的内角和

  这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?

  四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是2×180°……在肯定正确的答案和各种想法的同时,让学生寻找出最优办法。

  七年级数学《多边形的内角和》说课稿2

  各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。

  我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

  一, 教材分析

  从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

  二, 学生情况

  学生上节课刚刚学完三角形的内角和,对内角和的'问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

  三, 教学目标及重点,难点的确定

  新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点

  【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

  【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

  【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

  【教学重点】多边形内角和及外角和定理

  【教学难点】转化的数学思维方法

  四, 教法和学法

  本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

  【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

  【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

  【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

  五, 教学过程设计

  整个教学过程分五步完成。

  1, 创设情景,引入新课

  首先解决四边形内角的问题,通过转化为三角形问题来解决。

  2,合作交流,探索新知。

  更进一步解决五边形内角和,乃至六边形,七边形直到N边形的内角和,都能用同样的方法解决。学生分组讨论。

  3, 归纳总结,建构体系。

  多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

  4, 实际应用,提高能力。

  "木工师傅可以用边角余料铺地板的原因是什么 "这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫

  5, 分组竞赛,升华情感

  四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

  六, 板书设计

  板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

  七, 创意说明

  本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

【七年级数学《多边形的内角和》说课稿】相关文章:

数学说课稿《多边形内角和》12-25

多边形内角和说课稿08-27

《多边形的内角和》说课稿03-28

《多边形的内角和》说课稿(精选10篇)05-14

《多边形及其内角和》说课稿08-24

《多边形的内角和与外角和》说课稿 (精选11篇)10-28

《多边形的内角和》的说课稿(通用12篇)10-17

《多边形的内角和》数学教案02-09

初一数学上册多边形的内角和说课稿12-10

多边形的内角和公式07-19