高中数学说课稿

时间:2024-09-30 00:58:19 说课稿 我要投稿

关于高中数学说课稿(通用13篇)

  作为一名无私奉献的老师,可能需要进行说课稿编写工作,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写才好呢?以下是小编帮大家整理的高中数学说课稿,欢迎阅读,希望大家能够喜欢。

关于高中数学说课稿(通用13篇)

  高中数学说课稿 篇1

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的'问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, 然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

  高中数学说课稿 篇2

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为

  教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

  二、说教法和学法

  接下来则是说教法、学法

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究

  让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线 的距离等于定长 的所有的点;

  (4)方程 的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的.心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作aA

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作 N

  正整数集:

  整数集:记作 Z

  有理数集:记作 Q 实数集:记作 R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移 变式训练

  1.下列指定的对象,能构成一个集合的是

  ① 很小的数

  ② 不超过30的非负实数

  ③ 直角坐标平面内横坐标与纵坐标相等的点

  ④ π的近似值

  ⑤ 所有无理数

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题 课本习题1.1—1、2、3.

  2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。

  设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示

  4.范例研究

  高中数学说课稿 篇3

  一、说教材

  1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的.情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

  好学教育:

  因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  高中数学说课稿 篇4

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是平面向量的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一说教材

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二说教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三说教学方法的`选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段———提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

  ①向量与是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形的充要条件是=;

  ⑤模为0是一个向量方向不确定的充要条件;

  ⑥共线的向量,若起点不同,则终点一定不同.

  [练习2]下列命题正确的是( )

  A.a与b共线,b与c共线,则a与c也共线

  B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

  C.向量a与b不共线,则a与b都是非零向量

  D.有相同起点的两个非零向量不平行

  Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

  在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

  例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

  具体教学安排如下:

  (1)分析解决问题

  先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

  (2)归纳解题方法

  主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相

  等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

  Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

  本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

  具体的教学安排如下:

  (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

  在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

  类比,数形结合,等价转化等进行强调。

  (2)布置课后作业

  阅读教材96至97页内容,整理课堂笔记,习题5.1第1,2,3题。

  高中数学说课稿 篇5

  一、教学目标

  (一)知识与技能

  1、进一步熟练掌握求动点轨迹方程的基本方法。

  2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

  (二)过程与方法

  1、培养学生观察能力、抽象概括能力及创新能力。

  2、体会感性到理性、形象到抽象的思维过程。

  3、强化类比、联想的方法,领会方程、数形结合等思想。

  (三)情感态度价值观

  1、感受动点轨迹的动态美、和谐美、对称美

  2、树立竞争意识与合作精神,感受合作交流带来的'成功感,树立自信心,激发提出问题和解决问题的勇气

  二、教学重点与难点

  教学重点:运用类比、联想的方法探究不同条件下的轨迹

  教学难点:图形、文字、符号三种语言之间的过渡

  三、、教学方法和手段

  【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

  【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

  【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

  高中数学说课稿 篇6

  我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  "简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。

  2教学的重点和难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  二、教学目标分析

  1.知识与技能目标:

  正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2.过程与方法目标:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3.情感,态度和价值观目标

  通过对现实生活和其他学科中统计问题的.提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性

  三、教学方法与手段分析

  为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。

  四、教学过程分析

  (一)设置情境,提出问题

  例1:请问下列调查是"普查"还是"抽样"调查?

  A、一锅水饺的味道B、旅客上飞机前的安全检查

  c、一批炮弹的杀伤半径D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有"抽样"

  「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。

  (二)主动探究,构建新知

  例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。

  「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。

  例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。

  请一位同学说说例2采用"抽签法"的实施步骤。

  「设计意图」

  1、反馈练习,落实知识点,突出重点。

  2、体会"抽签法"具有"简单、易行"的优点。

  〈屏幕出示〉

  例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验

  提问:这道题适合用抽签法吗?

  让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例2采用"随机数表法"的实施步骤。

  「设计意图」

  1、体会随机数表法的科学性

  2、体会随机数表法的优越性:避免制签、搅拌。

  3、反馈练习,落实知识点,突出重点。

  ㈢课堂小结:

  1.简单随机抽样及其两种方法

  2.两种方法的操作步骤

  (采用问答形式)

  「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

  ㈣布置作业

  课本练习2、3

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

  高中数学说课稿 篇7

  各位评委老师,大家好!

  我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

  一、教材分析

  1、教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  2、教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的.积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、例题讲解,学以致用

  例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1、3A组1、2、3 ,二组 习题1、3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

  以上就是我对本节课的设计,谢谢!

  高中数学说课稿 篇8

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.

  4、重点与难点

  教学重点

  (1)函数单调性的概念;

  (2)运用函数单调性的'定义判断一些函数的单调性.

  教学难点

  (1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性.

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.

  高中数学说课稿 篇9

  一、说教材

  1、从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

  2、从学生认知角度看

  从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  3、学情分析

  教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨。

  4、重点、难点

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法和公式的灵活运用。

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

  二、说目标

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

  过程与方法目标:

  经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维本事和逆向思维的本事。

  情感与态度价值观:

  经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

  三、说过程

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1、创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性。故事资料紧扣本节课的主题与重点。

  此时我问:同学们,你们明白西萨要的`是多少粒小麦吗引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍。同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。

  2、师生互动,探究问题

  在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机。

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

  3、类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感。

  对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

  再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式)

  设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事。这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

  4、讨论交流,延伸拓展

  (略)

  高中数学说课稿 篇10

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的.情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。

  高中数学说课稿 篇11

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

  高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

  (二)过程与方法

  经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

  (三)情感态度价值观

  经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

  (一)教学重点

  由正弦函数的图象得到正弦函数的性质。

  (二)教学难点

  正弦函数的周期性和单调性。

  五、说教法和学法

  此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的.主人。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。

  (一)新课导入

  首先是导入环节,在这一环节中我将采用复习的导入方法。

  我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

  这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

  (二)新知探索

  接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

  让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

  学生一边看投影,一边思考如下问题:

  (1)正弦函数的定义域是什么

  (2)正弦函数的值域是什么

  (3)正弦函数的最值情景如何

  (4)正弦函数的周期

  (5)正弦函数的奇偶性

  (6)正弦函数的递增区间

  给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

  1、定义域:y=sinx定义域为R

  2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]

  3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。

  4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

  5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

  6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

  在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

  (三)课堂练习

  第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

  经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的主动的探索中显得更有味道。

  (四)小结作业

  最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

  在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

  经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

  七、说板书设计

  我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:

  (略)

  高中数学说课稿 篇12

  一、说设计理念

  《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

  基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

  二、教材分析:

  (一)教材的地位和作用

  有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

  (二)教学目标

  1、联系生活情境了解扇形统计图的特点和作用

  2、能读懂扇形统计图,从中获取有效的信息。

  3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

  (三)教学重点:

  1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

  2、认识折线统计图,了解折线统计图的特点。

  (四)教学难点:

  1、能从扇形统计图中获得有用信息,并做出合理推断。

  2、能根据统计图和数据进行数据变化趋势的分析。

  二、学情分析

  本单元的教学是在学生已有统计经验的基础上,学习新知的.。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

  三、设计理念和教法分析

  1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

  2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

  四、说学法

  《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  五、说教学程序

  本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

  六、说教学过程

  (一)复习引新

  1、复习旧知

  提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

  2、引入新课

  (二)自主探索,学习新知

  新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

  第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断

  三、课堂总结

  四、布置作业。

  五、板书设计:

  高中数学说课稿 篇13

  一、教材分析(说教材):

  1. 教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。

  2. 教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)知识目标:

  (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

  3. 重点,难点以及确定依据:

  下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

  二、教学策略(说教法)

  1. 教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。

  2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的.潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  3. 学情分析:(说学法)

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  4. 教学程序及设想:

  (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  (2)由实例得出本课新的知识点

  (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

  (7)板书

  (8)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  教学程序:

  (一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

  高中数学集合教学反思

  集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

  第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

  第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

  第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

【高中数学说课稿】相关文章:

高中数学经典说课稿03-12

高中数学的说课稿06-13

高中数学说课稿07-23

高中数学说课稿[精选]06-10

高中数学说课稿06-25

高中数学获奖说课稿03-12

高中数学的说课稿【精】06-13

高中数学说课稿06-12

高中数学说课稿【热门】01-10

高中数学说课稿【热】01-07