直角三角形全等的判定说课稿

时间:2021-11-02 16:31:06 说课稿 我要投稿

直角三角形全等的判定说课稿

  作为一位不辞辛劳的人民教师,常常要写一份优秀的说课稿,借助说课稿可以让教学工作更科学化。那么写说课稿需要注意哪些问题呢?以下是小编为大家整理的直角三角形全等的判定说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

直角三角形全等的判定说课稿

  一、教材分析

  (一)、教材的地位与作用

  HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。

  (二)、教学目标

  1、会已知直角三角形的一条直角边和斜边,作直角三角形

  2、掌握直角三角形全等的判定方法----“HL”定理

  3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题

  4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。

  (三)、教学重难点:

  重点:直角三角形全等的判定方法

  难点:运用全等直角三角形的判定方法“HL”解决问题

  二、说教学方法:自主学习、合作讨论、交流展示

  通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。

  三、说教学过程

  (一)、创设情境,引入新课

  1、复习思考

  (1)、判定两个三角形全等的方法

  (2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB

  设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。

  2、新课引入(情境)

  (课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。

  (1)你能帮他想个办法吗?

  方法一:测量斜边和一个对应的锐角.(AAS)

  方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)

  ……

  学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。

  教师活动:引导学生发现,对有困难的同学提供帮助。

  设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。

  ⑵如果他只带了一个卷尺,能完成这个任务吗?

  设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的'注意力,学生乐于学习。

  师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?

  设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。

  下面让我们一起来验证这个结论。

  (二)、合作交流,探索新知

  1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?

  (1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,CB=3cm.

  按照步骤做一做:

  ①作∠MCN=90°

  ②在射线CM上截取线段CB=3cm

  ③以B为圆心,5cm为半径画弧,交射线CM于点A;

  ④连接AB.△ABC就是所求作的三角形

  学生活动:按老师的要求画出图形

  教师活动:规范作图,及时解决学生作图时遇到的困难

  设计意图:培养学生的动手操作能力

  探索交流

  (2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?

  (3)交流之后,你发现了什么?

  学生交流,发现。已知什么前提,满足什么条件,得到什么结论。

  (4)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法

  定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)

  (5)用数学语言表述上面的判定方法

  ∵∠B=∠E=90°

  ∴在Rt△ABC和Rt△DEF中

  或

  ∴Rt△ABC≌Rt△DEF(HL)

  教师规范板书,提醒学生规范书写。

  (6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”

  设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。

  (7)练习:判断满足下列条件的两个三角形是否全等?为什么?

  ①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)

  ②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)

  ③两直角边对应相等的两个直角三角形(全等,SAS)

  ④有两边对应相等的两个直角三角形.

  分三种情况考虑:两个直角边对应相等,全等(SAS);一条直角边和斜边对应相等,全等(HL);一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。

  设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。

  (三)、尝试应用,解决问题

  例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC

  分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边

  证明:∵∠BAC=∠CDB=90°

  ∴△BAC,△CDB都是直角三角形

  在Rt△BAC和Rt△CDB中

  ∵AC=DB

  BC=CB

  ∴Rt△ABC≌Rt△DCB(HL)

  ∴AB=DC(全等三角形的对应边相等)

  (四)、当堂检测,及时反馈

  1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,

  你能说明BC与BD相等吗?

  2、如图,两根长度为10米的绳子,一端系在旗杆上,

  另一端分别固定在地面两个木桩上,

  两个木桩离旗杆底部的距离相等吗?请说明你的理由。

  (五)、收获分享,感悟困惑

  学生谈谈本节课的收获,以及还有哪些疑问。

  一般三角形全等的判定方法有SAS,ASA,AAS,SSS

  直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL

  灵活运用各种方法证明直角三角形全等

  (六)、课后作业,应用提高

  课本109页练习1、2、3

  板书设计

  14.2.5两个直角三角形全等的判定

  ∵∠B=∠E=90°

  ∴在Rt△ABC和Rt△DEF中

  或

  ∴Rt△ABC≌Rt△DEF(HL)

  投影区

  SAS、ASA、AAS、SSS

  例证明:∵∠BAC=∠CDB=90°

  ∴△BAC,△CDB都是直角三角形

  在Rt△BAC和Rt△CDB中

  ∵AC=DB

  BC=CB

  ∴Rt△ABC≌Rt△DCB(HL)

  ∴AB=DC

【直角三角形全等的判定说课稿】相关文章:

1.三角形全等的判定说课稿

2.三角形全等的判定说课稿

3.三角形全等的判定说课稿5篇

4.全等三角形说课稿11篇

5.全等三角形复习课说课稿

6.利用三角形全等测距离说课稿

7.学年判定总结

8.初二数学说课稿-全等三角形的识别

9.关于高考的试卷怎么判定