高二数学单元复习难点突破

练习题 时间:2020-01-10 我要投稿

高二数学单元复习难点突破

  一、周期函数

  1、周期函数的定义:

  对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.

  2、最小正周期:

  如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

  1、求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.

  2、求解涉及三角函数的值域(最值)的题目一般常用以下方法:

  (1)、利用sin x、cos x的值域;

  (2)、形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));

  (3)换元法:把sin x或cos x看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).

  二、正弦函数、余弦函数、正切函数的图象和性质

  1、求三角函数的单调区间时,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式,再根据三角函数的单调区间,求出x所在的区间.应特别注意,考虑问题应在函数的定义域内.

  2、周期性是函数的整体性质,要求对于函数整个定义域内的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.如果只有个别的x值满足f(x+T)=f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.

  三角函数的奇偶性

  1、三角函数的`奇偶性的判断技巧

  首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.

  2、求三角函数周期的方法

  (1)、利用周期函数的定义;

  (2)、利用公式:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为|ω|(2π),y=tan(ωx+φ)的最小正周期为|ω|(π);

  (3)、利用图象.

  三角恒等变换

  (1)两角和与差的三角函数公式

  ① 会用向量的数量积推导出两角差的余弦公式.

  ② 会用两角差的余弦公式导出两角差的正弦、正切公式.

  ③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.

  (2)简单的三角恒等变换

  能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).

【高二数学单元复习难点突破】相关文章:

1.《整理与复习》单元测试

2.第八单元总复习:复习空间和图形

3.单元复习的方法介绍

4.Understanding each other单元复习学案

5.小学单元总复习参考

6.小升初语文的单元复习法

7.英语第七单元复习指南

8.The universal language单元复习学案