六年级数学教案

时间:2024-08-27 19:28:36 教案 我要投稿

六年级数学教案

  作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?下面是小编为大家收集的六年级数学教案,希望能够帮助到大家。

六年级数学教案

六年级数学教案1

  稍复杂的分数除法应用题

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题

  题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的.几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新知探究

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:

  买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。

  解:设买来大米X千克。

  x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

  (3)学生试画出线段图。

  (4)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (5)根据等量关系式解答问题。

  (6)解:设航模小组有χ人。

  χ+χ=25

  (1+)χ=25

  χ=25÷

  χ=20

  答:航模小组有20人。

  三、课堂小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、当堂测评

  练习十第4、12、14题。

  学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

  设计意图:

  继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

  教学后记

六年级数学教案2

  【教学内容】

  解比例。(教材第42页例2、例3及练习八的习题)。

  【教学目标】

  1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。

  2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。

  3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

  【重点难点】

  1、使学生掌握解比例的方法,学会解比例。

  2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。

  【教学准备】

  多媒体课件。

  【情景导入】

  上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  学生在小组中议一议,再汇报。

  师:这节课,我们还要继续学习有关比例的知识,就是解比例。

  板书课题:解比例。

  【新课讲授】

  1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?

  学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。

  师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。

  2、教学例2。

  教师用多媒体课件出示例2。

  指名读题,根据题意,描述两个相等的比。

  =110或模型高度:实际高度=1∶10。

  让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?

  教师板书∶320=1∶10,你能试着计算出来吗?

  请一名学生板演,其余的学生在练习本上做。

  做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。

  教师说明:这样解比例就变成解方程了,利用以前学过的.解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。

  师:怎样解这个方程?

  生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。

  小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。

  3、教学例3。

  解比例:

  过程要求:学生独立练习,求出未知项。

  同学之间互相交流,发现问题,及时解决。请一位学生上台板演。

  解:2、4x=1、5×6

  x=

  x=3、75

  提问:还可以用其他的知识解比例吗?

  学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。

  4、总结解比例的方法。

  教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?

  学生回忆解比例的过程。

  教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?

  学生:根据比例的基本性质把比例转化成方程。

  【课堂作业】

  1、完成教材第42页“做一做”第1题。

  学生独立练习,教师指名板演,集体订正。

  2、完成教材第43~44页第6、7、8、9、10、11、12、13题。

  答案:1、x=7、5x=x=0、6

  2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。

  第7题:组织学生独立练习。指名板演,集体订正。

  第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。

  第9题:组织学生阅读题目,理解题意,并独立练习。

  第10题:组织学生小组合作完成,指名汇报。

  第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。

  第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。

  第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。

  【课堂小结】

  通过这节课的学习,你在哪些方面得到了提高?

  【课后作业】

  完成练习册中本课时的练习。

六年级数学教案3

  本册教学目标

  一板书设计:

  二教后反思:

  (1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示 ×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的`积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  三、作业

  练习二第1、2、4题。个人修改

六年级数学教案4

  “空间与图形”领域的内容分图形的认识、测量、图形与变换、图形与位置三节编排复习,其中第一节里的形、体知识以及测量知识都比较多,又分平面图形、面积计算、立体图形、体积计算四段编排。

  (1)分层复习图形知识,沟通平面图形间的联系。

  复习图形知识按“线—角—形”的线索进行。

  学生已经认识的线有直线、射线和线段。线段是二年级教学的,只是联系线段的图形描述了它是直的,有两个端点,长度是可以度量的。直线和射线是四年级教学的,通过线段向一端无限延长或向两端无限延长分别形成射线和直线的概念。复习直线、射线和线段的特征,一方面要突出它们都是直的线,另一方面要清楚它们的区别在于有、无端点和有几个端点。整理直线、射线和线段的关系,可以按以前的认知线索,通过线段的端点无限延长沟通联系,体会线段是直线或射线的一部分。四年级(上册)教学的平行与相交,是同一平面内两条直线的常见位置关系。如果两条直线相交成直角,则这两条直线互相垂直,垂直是特殊的相交。学生举例说说同一平面内两条直线的位置关系,有可能只说出平行与垂直,也有可能说成平行、相交、垂直。如果出现这些情况,应适当予以纠正。

  从一点向不同方向画两条射线,组成的图形是角。把一条射线绕它的端点旋转,能形成大大小小的角。复习角的认识把这两种认识结合起来,“围绕角的顶点旋转角的一条边”要先出现角的图形,指出它的顶点和两条边,然后使角的顶点和一条边固定不动,另一条边旋转,让学生体会角的大小发生了变化,从而理解角的大小是它两条边的_开程度。复习角的分类可以分三步进行,第一步随着活动角从小到大地变化依次回忆锐角、直角、钝角、平角与周角。第二步分别说出直角、平角和周角的度数,整理这三类角的大小关系。第三步描述锐角和钝角,突出钝角大于90°、小于180°。

  复习平面图形,先把学过的图形分成由线段围成的和由曲线围成的两类,又把线段围成的图形按边的数量分成三角形、四边形、五边形……然后着重整理三角形、四边形、圆的知识。

  回忆三角形的知识时,出现了两张集合图。左边的图表示了三角形的分类,曾经在四年级(下册)出现过,可以利用这幅图让学生说说三角形是怎样分类的,以及各类三角形的特征。右边的图第一次在教材中出现,表示等腰三角形是特殊的三角形,等边三角形是特殊的等腰三角形。因为等腰三角形具有三角形的基本特征(三条边、三个角),又有一般三角形不具备的特征(两条边长度相等),所以它是特殊的三角形。而等边三角形具有等腰三角形的主要特征(两边长度相等),还有它独有的特征(另一边的长度和两腰也相等),所以等边三角形是特殊的等腰三角形。教材让学生思考,讨论“等边三角形也是等腰三角形吗”,体会右图里的一般与特殊、整体与部分的关系,进一步理解三角形、等腰三角形、等边三角形这些概念的联系和区别,建立正确的认知结构。教材还提出两个讨论题,在问题(1)里“任意两边的长度之和大于第三边”是三角形的三边关系,也是三条线段能够围成三角形的必备条件。要引导学生注意“任意”的含义,并应用到练习与实践第8题的解答中去。提出问题(2)有两个目的:一是进一步理解三角形的分类,在直角三角形和钝角三角形里也都有两个锐角;二是复习三角形的内角和180°,用内角和的知识可以解释一个三角形里最多有一个直角或一个钝角。

  以前教学的四边形都是特殊的四边形,先认识长方形和正方形,再认识平行四边形与梯形,这是从学生生活经验和认知水平出发的安排。现在整理四边形的知识,设计了一张反映这些特殊四边形的关系图,从图中可以看到,如果四边形的两组对边分别平行就是平行四边形;如果只有一组对边平行就是梯形。如果平行四边形的角都是直角就是长方形,如果长方形的长与宽相等就是正方形。学生说出各个图形的名称和特征并不难,要把教学精力放在理解图形间的关系上,深入地认识四边形。

  第98页练习与实践第2、3、4题分别复习两点确定一条直线,两点间所有连线中线段最短,以及点到直线的距离等知识。要通过解决实际问题再次体会这些内容,但不要求学生记忆这些知识。第6、7题是动手操作,如果学生使用量角器有困难,应给予帮助。在画长方形的时候,要复习画已知直线的垂线与平行线的方法,要求学生规范地使用画图工具。在画图形底边上的高时,要加强对底与高相对应的体验。

  (2)复习平面图形的周长、面积,突出概念和思想方法。

  与周长、面积有关的知识包括周长和面积的意义、计量长度和面积的单位、计算周长与面积的公式。复习这些知识按“概念与计量单位—计算方法或公式—实际应用”的线索进行。

  周长与面积的概念在三年级初步形成,第二学段教学多边形和圆的时候又多次再认了周长与面积的意义,多数学生对周长与面积的体验是比较充分的。复习周长与面积的'意义,以回忆和辨认为主要教学活动,让学生说说对周长与面积的理解,可以联系实例进行解释。练习与实践第5题分别比较方格纸上两组图形的周长与面积,进一步体会周长与面积是存在于封闭图形上的两个不同的概念。复习长度单位和面积单位,让每个学生都用学过的单位描述身边的事物,在交流时就能整理出常用的长度单位千米、米、分米、厘米、毫米,整理出常用的面积单位平方千米、公顷、平方米、平方分米、平方厘米。练习与实践第2题以用纸折出1平方分米的正方形顺带复习其他面积单位的意义,通过1平方分米的正方形最多能分成几个1平方厘米的正方形,复习相邻单位间的进率。复习长度单位和面积单位要重视两点:一是让学生选择用手比画、语言描述、实物演示等方法表达1个单位是多长或多大,如1米大约是多长,1平方米是多大;二是要整理并记住相邻单位间的进率,下图就是一种整理方式。复习周长与面积计算公式的教学活动主要是回忆和整理。要联系周长的意义,从图形一周的边的长度总和解释长方形、正方形与圆的周长公式。如,长方形的四条边分别是两条长、两条宽,它的周长是(长+宽)×2。又如,圆的周长是直径的3倍多一些,即C=πd。要回忆各个面积公式的推导过程,进一步理解公式的含义,体验数学思想与方法。长方形、正方形的面积公式是在图形里摆面积单位推导的,长×宽(或边长×边长)的积是长方形(或正方形)里可以摆的面积单位的个数,也就是图形的面积。平行四边形是转化成长方形推导面积公式的,而三角形、梯形的面积公式又是转化成平行四边形后推导出来,因此,长方形的面积公式是基础,转化是重要的思想方法。练习与实践第9题画面积相等的图形,理解并记忆面积公式。依据先画出的长方形画面积相等的平行四边形,递推了平行四边形转化成长方形的步骤,加强了等积变换的体验。依据平行四边形画面积相等的三角形,可以使底的长度相同,把三角形的高画成平行四边形的2倍;也可以使高的长度相同,把三角形的底画成平行四边形的2倍。在画三角形的时候,能体验等底等高的平行四边形与三角形的面积的倍数关系。依据平行四边形画梯形,可以使高的长度不变,把平行四边形的底缩短,把对边延长,缩短与延长的长度相等。通过画梯形,对梯形的面积公式会有新的体会。学生解答这道题,还会有不同的思考方法,要组织交流,进一步体验各个面积公式。

  应用面积知识解决实际问题的内容很丰富,有利用面积公式列算式求面积,也有按面积公式列方程算长度。还要结合求面积进行估计和测量,对不同单位的面积进行换算,并探索规律。

  (3)整合立体图形的知识,发展空间观念。

  立体图形是六年级教学的,圆柱、圆锥还是本册教材的新授内容。因此,立体图形的知识容易回忆,复习的目的不局限于回忆,还要整合知识,进一步精简和优化原有的认知结构。首先理解“正方体是特殊的长方体”,体会正方体具有长方体的全部特征。接着从意义和算法两个方面把长方体、正方体、圆柱的表面积联系起来,体会它们的表面积是所有面的面积总和,都是侧面积与两个底面积的总和,而且侧面积都可以通过“底面周长×高”计算。最后还用“底面积×高”概括长方体、正方体和圆柱的体积计算公式。通过这些整合,学生对立体图形的认识能提升一个层次,不再孤立地理解、记忆各个立体图形的表面积、体积的计算方法。

  教材安排了许多有利于发展空间观念的学习活动,有观察几何体,把从正面、上面、侧面看到的图形画下来,或者根据给定的视图想像和做出立体;把平面图形绕它的一条边旋转,体会形成的立体;补充长方体的表面展开图,设计正方体的表面展开图;还要解答开放的实际问题。有些活动在以前学习时曾经开展过,多数活动是新的要求,富有挑战性。要重视活动的过程,让学生在独立解答以后进行充分的交流,体会知识的应用是灵活的,策略与方法是多样的。如第104页第4题,可以先从正面看到的图形和上面看到的图形得到长方体的长、宽、高各是多少,然后确定这个长方体的侧面图形;也可以在想像中把这个物体搭起来,体会侧面图形的形状,空间观念在推理和想像中得到了发展。再如第107页第12题,规格①、②、③的三种铁皮各选2张或1张,5张铁皮就能焊成一个无盖的长方体水箱。每种规格的铁皮都可以做水箱的底,因而焊成的水箱有三种尺寸,分别为长0.6米、宽0.4米、高0.5米,长0.6米、宽0.5米、高0.4米,长0.5米、宽0.4米、高0.6米。1张规格④的铁皮和4张规格①或4张规格③的铁皮都能焊成无盖的长方体水箱,这些水箱的底面是正方形,高分别是0.6米或0.5米。可见,平面图形(铁皮)的长、宽与长方体(水箱)的长、宽、高的转化是解决问题的关键,也是发展空间观念的极好机会。

  (4)在方格纸上画图形,复习图形与变换的知识。

  在图形与变换这一节里,复习的内容有轴对称图形、平移、旋转以及图形的放大与缩小等。

  先回忆学过的图形变换,整理成图形位置变化和图形大小变化两类。理解平移、旋转都是改变图形位置的方法,不改变图形的大小;图形按比例放大、缩小,是改变图形大小的方法,不改变图形的形状。这些都是关于图形变换的基础知识。轴对称图形是一类特殊的平面图形,它的对称轴的两边形状、大小完全相同,而且沿对称轴对折图形,对称轴的两边能完全重合。

  练习与实践让学生在方格纸上画图形,进一步体会图形的变换。其中第2题集中了小学阶段教学的图形变换的全部内容,在前面的教学中进行过这些画图活动。第3题综合应用平移与轴对称两个知识。圆是轴对称图形,经过圆心的直线都可以看作圆的对称轴。把圆与线段组合成轴对称图形,应着重思考线段的对称轴的位置。第(3)个问题引导学生观察画成的轴对称图形和它的对称轴,体会对称轴通过圆心并和已知线段垂直,而且把这条线段平均分成两段。第4题把图形按比例缩小后,计算新图形与原来图形的面积的比,再次体会“按1∶2的比缩小”是把图形每条边的长度变成原来的1/2,这个比不是面积缩小的比,进一步理解图形按比例放大或缩小的含义。

  (5)在确定位置的活动中,复习图形与位置的知识。

  确定位置的方法是逐渐教学的,先是联系个体经验,用上、下、前、后、左、右描述位置;再是联系生活常识,用东、南、西、北等八个方向词描述位置;然后既要描述方向,又要描述距离,比较准确地描述位置。另外,还可以用数对表示位置。

  复习图形与位置,在具体情境中应用知识,进一步体会确定位置的常用方法。练习与实践在第1题的问题(1)里复习方向知识,应先确定平面图上的东、南、西、北,再确定东北、东南、西北、西南,动物园里任何两个景点的位置关系都可以用这些方向词描述。问题(2)用数对表示位置,要提醒学生遵照“横排是行、竖排是列”的规定,先写出各景点所在的列数,再写所在的行数。如孔雀园在第6列第4行,表示它所在位置的数对是(6,4)。第2题用方向和距离确定位置,要引导学生注意两点:一是描述方向只能用北偏东(西)或南偏东(西)若干度,不能随意改变说法;二是把比例尺1∶50000转化成“图上1厘米表示实际500米”,容易进行图上距离与实际距离的相互换算。第3题描述行走路线,进一步掌握方向知识。一般应要求学生口述,不必以书面形式回答。如果要求学生写出行走的方向与路线,应该用填空的形式。如从东园向()偏( )( )°方向行到兴民巷。另外,这题不宜要求学生说出从淮定桥到红梅新村的行走方向。

六年级数学教案5

  【教学目标】

  1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2.初步学会用负数表示一些日常生活中的实际问题。

  3.能借助数轴初步理解正数、0和负数之间的关系。

  【重点难点】

  负数的意义和数轴的意义及画法。

  【教学内容】

  负数的'初步认识(1)(教材第2页例1)。

  【教学目标】

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  【重点难点】

  体会负数的重要性。

  【教学准备】

  多媒体课件。

  【情景导入】

  1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)

  引出课题并板书:负数的初步认识(1)

  【新课讲授】

  教学教材第2页例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在

  数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

  【课堂作业】

  完成教材第4页的“做一做”第1题。

  组织学生独立完成,指名回答。

  答案:-18℃温度低。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

六年级数学教案6

  【教学设计】

  教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69页例2。

  教学目标:

  1.认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。

  2.学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。

  3.培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的良好习惯。

  教学重点:探究圆环面积的计算方法。

  教学难点:理解环形的形成过程,掌握环形面积的计算方法。

  教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。

  【教学过程】

  一、复习旧知,引入新知

  1.计算圆的面积

  (1)半径是5厘米

  (2)直径8厘米

  2.说一说圆的面积计算公式

  二、自主探究,掌握方法

  1.认识环形

  (1)我们来欣赏一组美丽的图片。

  (课件演示:环形花坛、奥运五环标志、光盘等环形图案)

  (2)图片的形状和我们学过的什么图形很相似?(圆)

  (3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)

  (4)学生找生活中的环形。

  2.建立环形表象

  (1)利用手边的工具自己做出一个圆环。

  (2)学生可利用工具剪出环形或画出环形。

  3.发现环形特点

  老师拿着学生制作的环形提问:

  “这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)

  (1)解释什么叫外圆半径和内圆半径。

  (2)求环形面积是求哪部分面积?

  (3)你怎样求这个环形的面积?

  (要求学生先独立思考,再在小组内交流)

  (4)师:谁能总结一下环形的面积是怎样计算的?

  (学生讨论、交流、总结,教师点拨、总结,板书:环形的.面积=外圆面积—内圆面积:S=πR2-πr2)

  师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?

  4.教学例2内容

  光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生讨论。

  (3)学生试做,指生演板。

  (4)交流算法,学生将列式板书:

  3.14×(6×6) -3.14×(2×2)

  =113.04- 12.56

  =100.48(平方厘米)

  3.14×(6×6 -2×2 )

  =3.14×32

  =100.48 (平方厘米)

  (5)比较两种算法的不同。

  三、应用新知,解决问题

  1.计算阴影部分的面积

  (半个环形:R=10厘米,r= 6厘米)

  2.判断正误

  (1)在圆内剪去一个小圆就得到一个圆环。( )

  (2)环宽=外圆半径-内圆半径。( )

  3.一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?

  四、反思体验,总结提高

  学生畅谈本节课的学习收获,教师适当总结归纳。

六年级数学教案7

  难点名称:理解“满100减50”与“五折”的区别

  难点分析:

  从知识角度分析为什么难。

  打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

  从学生角度分析为什么难。

  学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

  难点教学方法:

  在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

  教学过程:

  一、复习旧知,引入新课。

  1、提问“一件物品打九折出售”表示什么意思?

  2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

  3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)

  二、教学新知。

  (一)出示例5:某品牌的裙子搞促销活动,在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

  1、根据这些信息,学生提问题。

  教师板书:

  (1)在A、B两个商场买,各应付多少钱?

  (2)哪个商场省钱?

  2、分析问题,理解题意。

  (1)结合题目给出的数学信息,哪些是关键的`?

  (2)怎样理解“满100元减50元”?

  (3)不足100元的部分呢?怎么办?

  3、独立思考,尝试解决。

  师:请同学们独立思考,看能否解决黑板上的这两个问题?

  4、交流并汇报方法。

  师:谁来说说自己的解决方法?

  学生展示自己的算式,并解释。

  5、启发思考,辨析原因。

  (1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

  (2)什么情況下两种优惠是一样的呢?

  6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

  (1)“满100减50”,就是够100才能减50,不够则不减。

  (2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

  (3)售价刚好是整百元的时候,两种优惠结果才是一样的。

  三、练习巩固,提高能力。

  1、做一做。

  某品牌的旅游鞋搞促销活动,在A商场“每满100元减40元”的方式销售,在B商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

  (1)在A、B两个商场买,各应付多少钱?

  (2)选择哪个商场更省钱?

  小结:

  同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

六年级数学教案8

  教案点评:

  采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。

  教学目标

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点

  理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点

  理解圆上的概念,归纳圆的特征.

  教学过程

  一、铺垫孕伏

  (一)教师用投影出示下面的图形

  1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

  2.教师指出:我们把这样的图形叫做平面上的.直线图形.

  (二)教师演示

  一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.

  1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

  2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)

  二、探究新知

  (一)教师让学生举例说明周围哪些物体上有圆.

  (二)认识圆的各部分名称和圆的特征.

  1.学生拿出圆的学具.

  2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

  教师说明:圆是平面上的一种曲线图形.

  3.通过具体操作,来认识一下圆的各部分名称和圆的特征.

  (1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次.

  教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

  仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

  教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.

  教师板书:圆心

  (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  (圆心到圆上任意一点的距离都相等)

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )

  教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

  在同一个圆里可以画多少条半径?

  所有半径的长度都相等吗?

  教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.

  (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )

  教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

  在同一个圆里可以画出多少条直径?

  自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

  教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.

  (4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的

  长度都相等;有无数条直径,所有直径的长度也都相等.

  (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

  如何用字母表示这种关系?

  反过来,在同一个圆里,半径的长度是直径的几分之几?

  教师板书:在同一个圆里,直径的长度是半径的2倍.

六年级数学教案9

  单元教材分析:

  有关统计图的认识,小学阶段主要是认识条形统计图、折线统计图和扇形统计图。扇形统计图原义务教材是作为选学内容,考虑其在日常生活中的广泛应用,《标准》把它作为必学内容。

  学情分析:

  本单元是在前面学习了条形统计图、折线统计图的基础上教学,主要通过熟悉的事例使学生体会扇形统计图特点和作用。

  教学的目标:

  认识扇形统汁图的特点和作用,能看懂并能简单地分析扇形统汁图所反应的情况;

  培养学生的收集信息和处理信息的能力。

  教学重点:

  认识扇形统汁图的特点和作用,能看懂并能简单地分析扇形统汁图所反应的情况;

  教学过程

  题:统计上课时间年月日

  教学设计备注

  活动(一)情景导入,激发兴趣

  1、(投影出示主题图)谈话:同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况呢?

  2、数据收集和整理:请一名学生做主持人,统计全班最喜欢的各项运动项目的人数。

  活动(二)对比分析,生成新知

  观察条形统计图,你从中得到哪些有用信息?

  从条形统计图中,还有哪些信息不容易表示出来?

  引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系。

  生成扇形统计图引导学生观察从扇形统计图中,你得到哪些数学信息?(学生根据直观观察,发表见解)

  根据统计图上表示的`情况,你对我班同学有哪些建议?

  回顾知识生成,归纳扇形统计图的特点和作用。

  做一做:(投影出示)自主看图,说一说,你从图中得到哪些有价值的数学信息?

  根据题意自主计算,全班订正。

  活动(三)知识应用,解决问题

  练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出那些合理化建议。

  练习二十五第2题:自主看图,说一说,你得到哪些信息?自主根据给出的条件计算出各项支出金额。

  活动(四)总结概括,拓展应用

  1、请同学们总结扇形统计图产生的原因及特点和作用。

  2、多媒体展示收集到的扇形统计图,拓展学生视野,培养创新精神。

六年级数学教案10

  教学内容:

  义务教育新课程六年级小学数学第十一册第89——90页例1、及相应的做一做。

  学情分析:

  学生已经认识了周长的含义,并学习了长方形正方形的周长的计算。教学圆的周长可通过化曲为直的方法进行教学。并且知道圆是日常生活中常见的图形,可通过直观演示.实际操作帮助学生解决问题。但圆是曲线图形,是一种新出现的平面几何图形,这在平面图形的周长计算教学上又深了一层。特别是圆周率这个概念也较为抽象,探索圆周率的含义以及推导圆周长计算公式是教学难点,学生不易理解。

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:

  推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:

  理解圆周率的意义。

  教具准备:

  圆片、铁圈、绳子、直尺。

  教学方法:

  观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:兔子和乌龟进行赛跑比赛,(如图)兔子绕着直径为1KM的圆跑一圈,乌龟绕着边长1KM的正方形跑一圈,你认为它们谁跑的`路程长?正方形的周长是多少呢?圆的周长又该怎么计算呢?今天我们就一起来学习圆的周长。(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)什么是圆的周长呢?围成圆的曲线的长叫做圆的周长,怎样测量圆的周长呢?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示水杯(指底面),你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“绕线法”和“滚动法”)

  (3)学校外面的操场,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  ㈠圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  ㈡圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)

  小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用绕线法或滚动法的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

  利用圆的周长计算公式,计算下面各圆的周长

  1.d=4cm2.r=1.5m

  五、应用圆周长计算公式,解决简单的实际问题。

  多媒体出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)指名读题,自己列式解答(1生板演)

  六、巩固新知。

  1、请学生说说怎样计算圆的周长?用字母又怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

  2、尝试练习:

  ①.有一个半径是5米的圆形花坛,在它周围每隔1.57米放一盆花,一共要准备多少盆花?

  ②.已知一棵大树的周长是9.42米,你能算出它的直径吗?

  3、完成判断选择题。

  七、小结:

  这节课你有什么收获?

  八、布置作业:

  练习二十五3、4、5题。

  板书设计

  圆的周长

  围成圆的曲线的长,叫做圆的周长。

  圆的周长和直径的比值,叫做圆周率。π≈3.14

  c=πd或c=2πr

  例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

  c=πd

  =3.14×0.95

  =2.983

  ≈2.98(米)

  答:这张圆桌面的周长是2.98米。

  圆形物

  周长(C)(毫米)

  直径?(d)(毫米)

  周长与直径的比值(保留两位小数)

  圆的周长与直径的关系实验记录单

六年级数学教案11

  教学内容:

  教材第9页例5、练一练,练习二第5~9题。

  教学要求:

  使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算圆柱形容器的容积,井能应用于实际求出所容物体的重量。

  教学重点:

  计算圆柱形容器的容积。

  教学难点:

  根据不同的条件求圆柱的体积。

  教学过程:

  一、复习旧知

  1.求下列圆柱的体积(口答列式)。

  (1)底面积3平方分米,高4分米;

  (2)底面半径2厘米,高2厘米;

  (3)底面直径2分米,高3分米。

  追问:圆柱的体积是怎样计算的?(板书:V=Sh)

  2.复习容积。

  提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

  3.引入新课。

  我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

  二、教学新课

  1.教学例5。

  出示例5,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的`。

  2.新课小结。

  提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

  三、巩固练习

  1.做练一练第1题。

  指名两人板演,其余学生分两组,每组题做在练习本上。集体订正。

  2.做练一练第2题。

  让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。

  3.口答练习二第6题。

  让学生默读题目。提问:第(1)题怎样想?求出了容积怎样求第(2)题?为什么?

  4.做练习二第9题。

  让学生做在练习本上:指名口答算式或方程,并让学生说既怎样想的。

  四、布置作业

  课堂作业:练习二第7、8题。

  家庭作业:练习二第5、6题。

六年级数学教案12

  【教材分析】

  这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的.分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

  【学情分析】

  学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

  【教学目标】

  1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

  2、培养学生的分析能力与表达能力。

  【教学重点】掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

  【教学难点】正确地确定单位1

  教学过程备注

  活动一:分析题意,理解数量关系。

  教师出示例1:20xx年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的。我国人均耕地面积是多少平方米?

  教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

  教师然后让学生试着画一画线段图,分析题意。

  全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

  列式为:2500=

  学生独立完成。

  集体订正。

  活动二:巩固练习。

  1、教师出示做一做。

  这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

  然后再独立解答。

  2、完成练习四中的部分练习。

  活动三:课堂小结。

  板书:

六年级数学教案13

  教学内容:教材第32页例2、例3,练一练和试一试练习六第6-11题,练习六后的思考题。

  教学要求:

  1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

  2、使学生进一步巩固比和比例的'意义,进一步认识比例的基本性质。

  教学过程:

  一、复习引新

  1、做第32页复习题。

  让学生先思考可以怎样想。根据思考的方法在括号里填上数。

  2、根据比例的基本性质把下面的比改写成积相等的式子。(日答)

  4:3=2:1.5X:4=1:2

  3、引入新课

  在上面两题里,第1题是求比例里的未知项。从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例里另外一个未知数,这种求比例里的未知项,就叫做解比例。

  现在,我们就应用比例的基本性质来解比例。

  二、教学新课。

  1、教学例2

  提问:你能用比例的基本性质来解比例,求出未知项X吗?自己先想一想,有没有办法做,再试着做做看。

  指名一人板演,其余学生做在练习本上。

  2、教学例3

  出示例题,让学生用比例形式读一读。

  让学生解答在自己的练习本上。

  指名口答解比例过程,老师板书。

  3、教学试一试

  出示例3,提问已知数都是怎样的数。

  让学生自己解答。

  4、小结方法。

  三、巩固练习。

  1、做练一练

  指名四人板演。

  2、做练习六第8题。

  让学生做在课本上,指名口答。

  3、做练习六第10题。

  学生做在练习本上。

  4、做练习六第11题。

  学生口答,老师板书,看能写出多少个比例。

  四、讲解思考题。

  提问:根据题意,两个外项正好互为倒数,你想到什么?

  两个外项的积已知是1,你能求另一个内项吗?

  五、课堂小结

  这堂课学习的什么内容?应用比例的基本性质怎样解比例?

  六、课堂作业。

  练习六第6题(1)-(4)题,第7题。

  家庭作业:练习六第6题(5)、(6)题,第9题和思考题。

六年级数学教案14

  【教学内容】

  北师大版小学数学六年级(上册)第四单元第51~53页化简比。

  【教学目标】

  1)在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  【教学重点】

  会运用商不变的性质或分数的基本性质化简比。

  【教学难点】

  能解决一些简单的实际问题。

  【教具准备】

  蜂蜜、水、量筒、水杯和自制课件

  【教学设计】

  教学过程

  教学过程说明

  一. 制蜂蜜水的活动:哪一杯更甜?

  同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。

  各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。

  [课件出示]课本P51图片,同时配上画外音:

  一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。

  一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。

  师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。

  我们先分别写出它们的比。

  40:360

  10:90

  就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。

  40:360===1:9

  10:90===1:9

  得出结论:两杯水一样甜。

  二.化简比。

  分数可以约分,比也可以化简。

  0.7:0.8:

  师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。

  0.7:0.8:

  =0.70.8=

  =78=4

  =7:8=

  =8:5

  完成书上试一试化简下面各比。

  15:210.12:0.4:1:

  请学生独立完成后,说说化简比的方法,全班集体订正。

  三.课堂练习。

  [课件出示]课本P52第1题:连一连

  在学生中开展比赛,鼓励学生独立完成。

  [课件出示]课本P52第2题:写出各杯子中糖与水的质量比。

  1)写出四个杯子中糖和水的质量比。

  2)这几杯糖水有一样甜的'吗?

  3)还能写出糖与糖水的质量比吗?

  [课件出示]课本P52第3题:

  (1)(2)题自己独立完成;

  (3)题投球命中率同学讨论完成。

  四、总结

  师:同学们一起来总结本节课学习的内容:

  阅读数学课本P51比的化简。

  我们是根据什么来化简比的呢?

  是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。

  我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题

  四、独立完成课本P53第4题和第5题。

  五、扩展练习

  1、大小圆的半径分别是7厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?

  2、杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?

  让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。

  体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。

  这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。

  进一步巩固化简比的方法。

  巩固化简比。

  这几杯糖水有一样甜的吗?这个问题需要化简比或求出比值后才能确定

  投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。

  这个实践活动不仅仅能巩固学生对比的认识,提高学生的测量技能,还可以鼓励学生从中发现身高与影长的关系,了解一些天文知识。学生通过亲自测量实践,可以发现:在同一时刻,不同人的身高与影长的比可以看成是一样的;在不同时刻,由于太阳照射点的变化,一个人身高和影长的比一般是不一样的。测量时由于误差可能影响发现,教师要向学生解释说明。这一活动也为以后学习正比例积累了经验。

  【教学反思】

  在实际情境中,体会了化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。但还有少数同学对求比值和化简比混淆不清;

六年级数学教案15

  一、教学内容

  化简比。(教材第50~51页例1)

  二、教学目标

  1、能运用比的基本性质化简比。

  2、理解求比值和化简比的区别。

  3、理解知识间的内在联系,渗透类比思想。

  三、重点难点

  重点:掌握化简比的方法。

  难点:理解化简比与求比值的`区别。

  教学过程

  一、复习引入

  1、把下面的分数化为最简分数。(课件出示题目)

  4/8 6/30 12/18 14/56

  点名学生回答,并说一说什么是最简分数。

  2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)

  3、师:比的基本性质是什么?

  4、引出新课。

  师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。

  二、学习新课

  1、认识最简单的整数比。

  师:谁知道什么样的比可以称作最简单的整数比?

  引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。

  教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。

  指名学生举出几个最简单的整数比。

【六年级数学教案】相关文章:

六年级数学教案12-12

六年级人教版数学教案12-02

六年级数学教案07-06

六年级上册数学教案01-12

人教版六年级数学教案12-08

六年级数学教案【推荐】01-07

【推荐】六年级数学教案01-08

六年级数学教案【精】01-12

六年级下册数学教案01-04