高一数学教案

时间:2023-01-27 15:31:31 教案 我要投稿

高一数学教案(汇编15篇)

  作为一位杰出的老师,有必要进行细致的教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编为大家整理的高一数学教案,仅供参考,大家一起来看看吧。

高一数学教案(汇编15篇)

高一数学教案1

  教学目标

  1.理解分数指数幂的含义,了解实数指数幂的意义。

  2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

  教学重点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算性质的理解。

  3.有理数指数幂的运算和化简。

  教学难点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算和化简。

  教学过程

  一.问题情景

  上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

  二.学生活动

  1.说出下列各式的意义,并指出其结果的指数,被开方数的'指数及根指数三者之间的关系

  (1)=(2)=

  2.从上述问题中,你能得到的结论为

  3.(a0)及(a0)能否化成指数幂的形式?

  三.数学理论

  正分数指数幂的意义:=(a0,m,n均为正整数)

  负分数指数幂的意义:=(a0,m,n均为正整数)

  1.规定:0的正分数指数幂仍是0,即=0

  0的负分数指数幂无意义。

  3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.数学运用

  例1求值:

  (1)(2)(3)(4)

  例2用分数指数幂的形式表示下列各式(a0)

  (1)(2)

  例3化简

  (1)

  (2)(3)

  例4化简

  例5已知求(1)(2)

  五.回顾小结

  1.分数指数幂的意义。=(0,m,n)

  无意义

  2.有理数指数幂的运算性质

  3.整式运算律及乘法公式在分数指数幂运算中仍适用

  4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

  练习P47-48练习1,2,3,4

  六.课外作业

  P48习题2.2(1)2,4

高一数学教案2

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学生状况分析

  本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

  教材简析

  使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。

  必修1,主要涉及两章内容:

  第一章 集合

  通过本章学习,使学生感受到用集合表示数学内容时的.简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;新-课-标-第-一-网

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章 函数的概念与基本初等函数Ⅰ

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4,主要涉及三章内容:

  第一章 三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章 平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章 三角恒等变换

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

  1.掌握两角和与差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式 ;

  3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

  三、教学任务

  本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。

  四、教学质量目标新 课 标

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  五、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。

  加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

  6、重视数学应用意识及应用能力的培养。

  7、加强学生良好学习习惯的培养

  六、教学时间大致安排

  集合与函数概念 13 课时

  基本初等函数 15

  课时

  函数的应用 8

  课时

  三角函数 24

  课时

  平面向量 14

  课时

  三角恒等变换 9

  课时

高一数学教案3

  学 习 目 标

  1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;

  2 能够在空间直角坐标系中求出点坐标

  教 学 过 程

  一 自 主 学 习

  1平面直角坐标系建立方法,点坐标确定过程、表示方法?

  2一个点在平面怎么表示?在空间呢?

  3关于一些对称点坐标求法

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于 轴对称点 ;

  关于 对轴称点 ;

  关于 轴对称点 ;

  二 师 生 互动

  例1在长方体 中, , 写出 四点坐标

  讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?

  变式:已知 ,描出它在空间位置

  例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标

  练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标

  练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标

  三 巩 固 练 习

  1 关于空间直角坐标系叙述正确是( )

  A 中 位置是可以互换

  B空间直角坐标系中点与一个三元有序数组是一种一一对应关系

  C空间直角坐标系中三条坐标轴把空间分为八个部分

  D某点在不同空间直角坐标系中坐标位置可以相同

  2 已知点 ,则点 关于原点对称点坐标为( )

  A B C D

  3 已知 三个顶点坐标分别为 ,则 重心坐标为( )

  A B C D

  4 已知 为平行四边形,且 , 则顶点 坐标

  5 方程 几何意义是

  四 课 后 反 思

  五 课 后 巩 固 练 习

  1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标

  2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系

  ⑴求 坐标;

  ⑵求 坐标;

高一数学教案4

  教学目标

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学重难点

  1、应用正弦余弦定理解斜三角形应用题的.一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学过程

  一、知识归纳

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  二、例题讨论

  一)利用方向角构造三角形

  四)测量角度问题

  例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。

高一数学教案5

  一、教学目标

  1、知识与技能

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2、过程与方法

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3、情感态度与价值观

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点、难点

  重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪 四、教学思路

  (一)创设情景,揭示课题

  1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

  2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

  (二)、研探新知

  1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

  2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

  3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

  (1)有两个面互相平行;

  (2)其余各面都是平行四边形;

  (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

  5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

  请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的'概念以及相关的概念及圆柱的表示。

  8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、课本P8,习题1.1 A组第1题。

  4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  四、巩固深化

  练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理

  由学生整理学习了哪些内容 六、布置作业

  课本P8 练习题1.1 B组第1题

  课外练习 课本P8 习题1.1 B组第2题

高一数学教案6

  一、教材分析

  1、 教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的`来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二. 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

  3. f表示对应关系,在不同的函数中f的具体含义不一样。

  4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5. 集合a中的数的任意性,集合b中数的唯一性。

  66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三.讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0*x+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四.课时小结:

  1. 映射的定义。

  2. 函数的近代定义。

  3. 函数的三要素及符号的正确理解和应用。

  4. 函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本p51 习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:

  2.函数近代定义: 例题练习

  二、函数的定义 [注]1—5

  1.函数传统定义

  三、作业:

高一数学教案7

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的`坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案8

  一:【课前预习】

  (一):【知识梳理】

  1.直角三角形的边角关系(如图)

  (1)边的关系(勾股定理):AC2+BC2=AB2;

  (2)角的关系:B=

  (3)边角关系:

  ①:

  ②:锐角三角函数:

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函数值是一个比值.

  2.特殊角的三角函数值.

  3.三角函数的关系

  (1) 互为余角的三角函数关系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函数关系.

  平方关系:sin2 A+cos2A=l

  4.三角函数的大小比较

  ①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.

  ②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。

  (二):【课前练习】

  1.等腰直角三角形一个锐角的余弦为( )

  A. D.l

  2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

  3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

  4.已知A为锐角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【经典考题剖析】

  1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.

  2.先化简,再求其值, 其中x=tan45-cos30

  3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比较大小(在空格处填写或或=)

  若=45○,则sin________cos

  若45○,则sin cos

  若45,则 sin cos.

  5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;

  ⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.

  三:【课后训练】

  1. 2sin60-cos30tan45的结果为( )

  A. D.0

  2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

  A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

  3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

  4.cos2+sin242○ =1,则锐角=______.

  5.在下列不等式中,错误的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()

  7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.

  8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的'值

  9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)

  10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)

高一数学教案9

  本文题目:高一数学教案:对数函数及其性质

  2.2.2 对数函数及其性质(二)

  内容与解析

  (一) 内容:对数函数及其性质(二)。

  (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.

  一、 目标及其解析:

  (一) 教学目标

  (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;

  (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..

  (二) 解析

  (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.

  (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.

  二、 问题诊断分析

  在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

  三、 教学支持条件分析

  在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

  四、 教学过程

  问题一. 对数函数模型思想及应用:

  ① 出示例题:溶液酸碱度的'测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

  (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

  (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.

  ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

  问题二.反函数:

  ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .

  那么我们就说指数函数 与对数函数 互为反函数

  ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

  ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

  ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

  由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

  ⑦练习:求下列函数的反函数: ;

  (师生共练 小结步骤:解x ;习惯表示;定义域)

  (二)小结:函数模型应用思想;反函数概念;阅读P84材料

  五、 目标检测

  1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

  2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,选B.

  3. 求函数 的反函数

  3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

高一数学教案10

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的`一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

高一数学教案11

  学习目标 1.函数奇偶性的概念

  2.由函数图象研究函数的奇偶性

  3.函数奇偶性的判断

  重点:能运用函数奇偶性的定义判断函数的奇偶性

  难点:理解函数的奇偶性

  知识梳理:

  1.轴对称图形:

  2中心对称图形:

  【概念探究】

  1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。

  2、 求出 , 时的函数值,写出 , 。

  结论: 。

  3、 奇函数:___________________________________________________

  4、 偶函数:______________________________________________________

  【概念深化】

  (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

  (2)、奇函数偶函数的定义域关于原点对称。

  5、奇函数与偶函数图像的对称性:

  如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

  如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。

  6. 根据函数的奇偶性,函数可以分为____________________________________.

  题型一:判定函数的奇偶性。

  例1、判断下列函数的奇偶性:

  (1) (2) (3)

  (4) (5)

  练习:教材第49页,练习A第1题

  总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

  题型二:利用奇偶性求函数解析式

  例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的'解析式。

  练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

  已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式

  题型三:利用奇偶性作函数图像

  例3 研究函数 的性质并作出它的图像

  练习:教材第49练习A第3,4,5题,练习B第1,2题

  当堂检测

  1 已知 是定义在R上的奇函数,则( D )

  A. B. C. D.

  2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )

  A. 增函数且最小值为-7 B. 增函数且最大值为7

  C. 减函数且最小值为-7 D. 减函数且最大值为7

  3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函数 为奇函数,若 ,则 -1

  5 若 是偶函数,则 的单调增区间是

  6 下列函数中不是偶函数的是(D )

  A B C D

  7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函数 的图像必经过点( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )

  A 0 B 1 C 2 D 4

  10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__

  11若f(x)在 上是奇函数,且f(3)_f(-1)

  12.解答题

  用定义判断函数 的奇偶性。

  13定义证明函数的奇偶性

  已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数

  14利用函数的奇偶性求函数的解析式:

  已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。

高一数学教案12

  【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

  本文题目:空间几何体的三视图和直观图高一数学教案

  第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

  教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

  教学重点:画出三视图、识别三视图.

  教学难点:识别三视图所表示的空间几何体.

  教学过程:

  一、新课导入:

  1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

  2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

  三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

  直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

  用途:工程建设、机械制造、日常生活.

  二、讲授新课:

  1. 教学中心投影与平行投影:

  ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

  ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

  ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

  讨论:点、线、三角形在平行投影后的结果.

  2. 教学柱、锥、台、球的'三视图:

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

  讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

  结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.

  ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

  ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

  正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

  (试变化以上的三视图,说出相应几何体的摆放)

  3. 教学简单组合体的三视图:

  ① 画出教材P16 图(2)、(3)、(4)的三视图.

  ② 从教材P16思考中三视图,说出几何体.

  4. 练习:

  ① 画出正四棱锥的三视图.

  画出右图所示几何体的三视图.

  ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

  5. 小结:投影法;三视图;顺与逆

  三、巩固练习: 练习:教材P17 1、2、3、4

  第二课时 1.2.3 空间几何体的直观图

  教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

  教学重点:画出直观图.

高一数学教案13

  经典例题

  已知关于 的方程 的实数解在区间 ,求 的取值范围。

  反思提炼:1.常见的四种指数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  (4)方程 的解法:

  2.常见的三种对数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  3.方程与函数之间的转化。

  4.通过数形结合解决方程有无根的问题。

  课后作业:

  1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的'公式是

  [答案] 2n+1-2

  [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

  f ′(2)=-n2n-1-2n=(-n-2)2n-1.

  在点x=2处点的纵坐标为=-2n.

  ∴切线方程为+2n=(-n-2)2n-1(x-2).

  令x=0得,=(n+1)2n,

  ∴an=(n+1)2n,

  ∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

  2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________

  解析:设 则 ,过点P作 的垂线

  ,所以,t在 上单调增,在 单调减, 。

高一数学教案14

  学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

  (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

  (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

  (3)由数列的通项公式写出数列的前几项是简单的`代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

  (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  上述提供的高一数学教案:数列希望能够符合大家的实际需要!

高一数学教案15

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的.图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

【高一数学教案】相关文章:

高一数学教案12-21

高一数学教案06-20

高一数学教案07-20

高一必修五数学教案04-10

高一必修四数学教案04-13

人教版高一数学教案12-23

高一数学教案【热】01-20

【荐】高一数学教案01-20

【热门】高一数学教案01-20

高一数学教案【推荐】01-20