五年级数学教案:航空中的圆

时间:2024-06-05 16:41:48 教案 我要投稿
  • 相关推荐

五年级数学教案:航空中的圆

  作为一名教职工,可能需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。教案应该怎么写呢?下面是小编为大家整理的五年级数学教案:航空中的圆,欢迎阅读与收藏。

五年级数学教案:航空中的圆

  1、教学内容:圆的面积

  2、信息窗介绍:该信息窗呈现了杨利伟和“神舟”五号飞船的图片;并用文字出示了飞船预设降落范围的半径和实际降落范围的半径。从而引导学生提出问题。

  降落范围:不妨把降落地看作一个耙,我们的飞船降落的就是在几环的耙上,神舟飞船的落点范围精确在了正负10公里左右,这相当于打靶发十环的水平,而俄罗斯的水平是30多公里。

  例题的设置。

  第一个红点部分:学习圆面积的计算方法。

  第二个红点部分:学习环形面积的计算方法。

  3、信息窗教学建议:

  第一,结合情境图,谈话导入。

  课始,教师可以用谈话的方式让学生回忆20xx年10月15日,我们国家在航天领域发生了一件令国人振奋、自豪和骄傲的大事。相信很多学生一定会马上想到“神舟五号”的成功发射。教师可以顺势引出情境图,并结合提供的文字信息,引导学生提出有关降落范围的问题。

  第二,教师引导学生经历探究过程,体会数学的思想方法。

  圆面积公式的推导是教材中的重点和难点.对此,教材提供了以下的教学思路:

  (1)由现实问题转到数学问题,即求神五预先设定的降落范围其实就是求以降落点为圆心,以10千米为半径的圆的面积。

  (2)联想。联系已经过的探索的一些方法,想到可以把圆转化成已学过的图形来研究。

  (3)实验。第一个框中,学生受圆认识窗后第11题的启发,会在圆里面或外面画一个正方形,发现圆的外面画一个正方形,圆的面积比正方形面积小一些;在圆内画一个正方形,圆的面积比正方形面积大一些。(可能会发现圆的面积是在2rr_4rr之间).第二个框是承接第一个框的思路,思维进一步,如果将外面的正多边形一点点地缩进去,将里面的正多边形一点点地扩出来,不是与圆的面积越来越接近吗?渗透了极限的思想,使学生体会到多边形的边数越多,正多边形的面积就会无限地接近于圆的面积。但是这里不容易推导出圆的面积。第三个框是在第二个框的基础上,将分割成的一个个的小扇形进行拼接,形成近似的长方形。

  (4)推导。利用拼成的图形与圆的面积等关系,推导出圆面积计算公式。

  (5)应用。利用推导出的面积公式,计算出神五的预定降落范围。

  第三,教学第二个红点标示的问题时,可让学生独立画图,独立解决,集体交流。让学生借助图明确所求问题实际就是求环形的面积。也就是求两个圆面积之差。在计算时学生会出现两种情况:一种是3.14×102-3.14×52,另一种是3.14×(102-52);第二种情况,学生往往出错较多,列式为3.14×(10-5)2,应及时给予纠正.

  教学中注意问题:

  学生在探索圆面积计算公式时可能要花费相当长的时间,仅仅就是推导方法就得用一节课,甚至也不充足。哪里还顾得上去利用面积公式进行面积计算?遇到这样的问题,我们可以从以下方面进行认识:

  (1)不得因时间不够而删减过程性的探索.有利于学生后续发展的东西要下足功夫,甚至用夸张的手法进行突出的表现。学生学过的一些知识在多年之后就会被忘记了,而沉淀下来的却是那些学习的思想和方法。因而对于这些终生受益的东西我们在课堂上要不惜时间去渲染,让学生去深入地体会。比如圆面积这节课就可以将“现实问题--数学问题--联想--实验--总结”这个的过程随着学生的一步步进程而板书在黑板上,之后再安排一个环节进行回顾,整理推导的过程。教材安排了回顾整理,其中之一就是对化曲为直、化圆为方方法的回顾,就是着力于这种思想方法的及时总结。

  (2)统筹安排单元的课时。将整个单元的知识进行统筹安排,打破从知识点安排的传统习惯。前面的课时安排就是遵照这个原则进行的。这样安排使得既完成了教学任务又能突出我们的意图。

  (3)加强集体备课。教研组或备课组要加强集体备课,共同讨论出最优化的授课思路进行共享。这样可以利用有限的时间达到最优的教学效果。

  4、练习的分析

  第6题,通过估算荷叶的面积渗透估测近似于圆形物体面积的方法,即先估计直径,再估算面积。

  第7题:是灵活运用所学知识解决问题的题目。首先让学生明确只有圆的直径等于长方形的宽时,切割的圆的面积才最大。

  答案:

  (1)3.14×(2÷2)2=3.14(m2);

  (2)3×2-3.14=2.86(m2)。

  第9题,通过图示使学生理解求喷灌面积就是求半径是8米的圆的面积。

  第12题:可引导学生通过先画示意图,明确求增加部分的面积就是用扩建后的面积减去原来的面积。特别注意求扩建后圆的半径是(30÷2+5)米。答案:3.14×(30÷2+5)2-3.14×(30÷2)2=549.5(m2)。

  第13题:是一道找规律的题目,旨在让学生发现求个位数是5的数的平方的规律。教师先引导学生根据已有的五个算式找出规律,即先写上个位前面的数乘以比它大1的数的积,再写上25。再利用规律进行填空.教师可建议学生掌握这个规律,以提高计算速度。

  第※14题,引导学生通过分析发现:涂色部分的周长就是大圆周长的一半加上一个小圆的周长,也就是大圆的周长;面积就是直径为0.8米的圆面积的一半。

  课外实践:让学生综合运用所学的有关图形的知识开展研究性活动。活动中要求学生做到:第一,准备好使用的铁丝。铁丝最好找软的、细的,这样折起来比较方便。第二,小组成员做好分工;第三,活动中尽量把图形围的准确,规范,认真进行测量与计算,(可借助于计算器进地计算)并做好记录;第四,交流讨论,使学生发现铁丝的长度(周长)一定,所围成的各种图形中圆形的面积最大。

  回顾整理:包括回顾整理和综合练习两部分内容。回顾整理是以综合信息图的形式呈现,分上下两部分。上半部分整理圆的基本知识,以及推导圆周长和圆面积的方法;下半部分是用圆的知识解决实际问题。

  综合练习第6题:是利用圆的知识解决自然现象中的数学问题。练习时,可通过实验理解题意,即水波传送的距离就是圆的半径,水波的面积就是圆的面积;求哪种物体产生的水波面积大,大多少就是用大圆的面积减去小圆的面积,也可以用求环形面积的方法来解决。

  第7题,26型和28型是自行车的两种规格(用英制的长度单位英寸来表示的自行车车轮直径),这里可向学生作以简单介绍。第(1)小题可以分别求出两种自行车的车轮周长,然后再求比;也可以根据直径与周长的关系,直接得出周长的比是16:17。第(2)小题,要先分别求出两种自行车转动一周的行的路程,也就是分别求出周长,再进行比较.(教参与教材不符)

  第8题是求组合图形面积的题目。一方面要注意引导学生体会图形之间的联系,另一方面要求学生能熟练地运用不同图形面积公式进行计算。

  第10题:是一道综合运用所学知识解决实际问题的题目。练习时,可先让学生独立解决,然后进行交流。交流时注意让学生说清楚解决问题的思路,即要求扩建后圆形花坛的周长与面积,需要先求出扩建后的直径。

  答案:15÷=20(米)周长:3.14×20=62.8(米)面积:3.14×(20÷2)2=314(平方米)。

  第11题是实际操作并计算的题目。测量时,教师要提醒学生注意测量的方法(数据可能有误差),测量后向学生介绍硬币的实际直径。计算后,引导学生观察计算结果,体会半径、周长、直径的比是相等的,而面积比是半径比的平方。

  第※12题,是一道选做题,不作考试内容。

  答案:

  (1)大圆的周长是18.84厘米,两个小圆周长的和是18.84厘米,发现它们的周长是相等的。

  (2)大圆的面积是28.26平方厘米,两个小圆面积之和是14.13平方厘米。发现大圆的面积是两个小圆面积之和的2倍。

  “你知道吗?”呈现的是生活和生产中的一些圆形,意在让学生感受圆的魅力。教学时,可让学生去进一步地发现生活中哪些物体的形状是圆形的,也可以进一步地拓展,让学生去探究锅底、井盖等为什么是圆形的。作为小型的实践活动。

【五年级数学教案:航空中的圆】相关文章:

圆数学教案03-29

五年级认识圆数学教案08-25

圆的周长数学教案07-11

圆的面积的数学教案01-21

小学圆的数学教案04-23

《认识圆》数学教案03-03

小学数学教案:圆的周长08-15

小学数学教案:圆的周长08-15

《圆的认识》小学数学教案(通用15篇)01-29