六年级数学圆柱与圆锥教学反思

时间:2025-07-04 10:01:42 蔼媚 教学反思 我要投稿
  • 相关推荐

六年级数学圆柱与圆锥教学反思(精选14篇)

  作为一名人民老师,教学是我们的工作之一,通过教学反思可以快速积累我们的教学经验,快来参考教学反思是怎么写的吧!以下是小编为大家收集的六年级数学圆柱与圆锥教学反思,希望对大家有所帮助。

六年级数学圆柱与圆锥教学反思(精选14篇)

  六年级数学圆柱与圆锥教学反思 1

  《圆柱与圆锥》这一单元内容重点分两大板块——表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:

  一、这一单元公式多,学生容易混淆,如圆的'周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。

  策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:

  1、等底等高,V柱=3V锥

  2、等底等积,3H柱=H锥

  3、等高等积,3s柱=s锥

  二、计算难度大,全是小数的加减乘除法计算,学生容易出错。

  策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。

  三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。

  策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。

  四、对题目的理解不到位,关于圆柱面积的计算经常出错。

  策略:以题组的形式进行对比训练。

  如:

  1、给圆柱体模型刷油漆(求表面积)

  2、圆柱形罐头贴商标(求侧面积)

  3、厨师帽的材料(求表面积,但不计算下底面)

  4、铁桶的材料(求表面积,但不计算上底面)

  六年级数学圆柱与圆锥教学反思 2

  前几天我配合学校教研活动讲了一节公开课。这节课是在整理和复习圆柱圆锥基本概念公式以及基础的习题后,针对学生容易出错的圆柱圆锥体积关系的变式习题进行的一节练习课。

  让我始料未及的是这节课毁了我从教十二年来所积累的所有自信心。一节课就让我看清了很多人的嘴脸。教研活动对课不对人,针对这节课优点在哪,存在的不足之处又在哪?这样的课型下回再上该怎么去上?这样每一位讲课教师才有信心上好下一节课。而不是因为一节课而否定一个人。哪一位教师也不能保证自己节节课都讲的很精彩,更何况是一节练习课。我们现在的教学又走进了另一个误区,以为一节课学生没有与老师进行互动,没有进行合作学习,就没有体现学生自主学习,进行点对点的课就是一节很不成功的课。我不这样认为。不是常说要在课前了解学生的情况吗

  ?我作为教师我很清楚我们班学生对这些知识点的掌握情况,讨论也好,合作也好,起不到应有的教学效果。很多学生跟着走了一个过场而已。看似热闹,实际效果不一定好。还不如老师和一部分学生讲,其他人听效果好。他们并不是陪衬。因为我觉得听会也是一种学习。我们不是一直都在讲教学的实效性吗?难道老师们节节课都有讨论有合作吗?讲授讲授有讲有授。有些课是没有必要合作的'。

  这只是我个人的一点看法,希望我们的教研活动越搞越成功,能有更多的老师参与。但不要一棍子把人打死。必竟给别人评课和自己讲课是不一样的。给教师一个上进的机会。

  六年级数学圆柱与圆锥教学反思 3

  今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。

  我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。

  课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的圆;侧面是一个弯曲的面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。

  你怎么知道圆柱的侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的联系。你能用这张长30厘米,宽20厘米的纸围成怎样的圆柱呢?生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的`高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。

  学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。

  六年级数学圆柱与圆锥教学反思 4

  这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。

  在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。

  在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。

  从学生的`练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。

  1、单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。

  2、求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。

  3、虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。

  在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。

  六年级数学圆柱与圆锥教学反思 5

  经过三个星期的教学,第一单元(圆柱和圆锥)如期完成了教学任务。本单元的知识点包括面的旋转、圆柱的表面积、圆柱的体积、圆锥的体积等。

  在教学过程中,通过学生的课堂反映、作业质量、小测的反馈信息,本单元掌握较好的知识点有:面的旋转、圆柱的体积、圆锥的体积。这些知识,大多数学生都掌握了长方形、三角形旋转一周后得得到一个圆柱、圆锥,会利用公式底面积乘以高得出圆柱的.体积,以及利用底面积乘以高再乘以三分之一得出圆锥的体积。在体积的教学中,我主要是通过类比法,先复习长方体和正方体的体积公式:底面积乘以高,然后让学生通过猜测、尝试验证等手段,让学生推导出圆柱和圆锥的公式,所以学生记得特别牢固,这一点在日后的教学继续发扬。

  同时,本单元出错较多的地方是:计算圆柱的表面积,因为学生在求表面积时,没有很好地理解这个圆柱是求两个底面积加上一个侧面积,或者求一个底面积加上一个侧面积,或者只求侧面积……,所以经常列式出错,以及计算准确率不高。

  但总的来说,第一单元(圆柱和圆锥)的教学目标已达到,部分知识点学生没有完全掌握的,在期末复习中查漏补缺。

  六年级数学圆柱与圆锥教学反思 6

  本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的`教学设计,有以下几点思考:

  1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。

  2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。

  六年级数学圆柱与圆锥教学反思 7

  最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的'计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的能力。

  课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。

  六年级数学圆柱与圆锥教学反思 8

  综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:

  一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,

  (1)前轮转动一周,前进了多少米?

  (2)如果每分钟滚动15周,压过的路面是多少平方米?

  对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:

  第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在一次教研交流中听了于老师说的一句话,我茅塞顿开,我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利和手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。

  再如,课本59页第12题:欣欣把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的`圆锥形,你知道它的高吗?

  大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

  怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。

  通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。

  六年级数学圆柱与圆锥教学反思 9

  教完《圆柱和圆锥》这一单元内容,我的心总是七上八下的,隐隐约约中感觉到学生可能撑握得不够好。今天上午测试完后,我就迫不及待地批改起学生的卷子来。可是,我越往下批改,我就越觉得难受:之前的所用担心都不幸而言中了,学生考得出乎我意料地差!

  下午,我反复研究了学生的试卷,发现学生在答卷中至少存在着以下几个方面的问题:

  一、对于表面积而言,学生主要是对题中的圆柱体有几个面搞不清(当然也包括部队分学生审题马虎)和在求各个面的面积时公式运用错误。有些题目是要求圆柱的三个面的面积和,学生只求了两个面的面积和;有些题目要求圆体的两个面的.面积和,学生求了三个面的面积和;有的圆柱体的表面积实际是侧面积,而学生却求了三个面的面积和。如有一道题目要求一个无盖的圆柱形水桶的表面积,很多学生求了水桶三个面的面积和,还有一道题是求用铁皮做10 节通风管需要多少铁皮,学生也是求2 个底面积+ 侧面积的和乘10 。另外,就是在运用公式来求侧面积时,有的学生却错用了体积公式。

  二、对于体积而言,主要存在的问题是在圆锥这里。如有一道题要求一个圆锥体的体积时,很多学生却忘了乘三分之一,把它求成了圆柱的体积。这主要是学生分辨圆柱和圆锥的体积时出现混淆,当然也有相当部分学生是由于审题不认真所造成的。不管怎么样,说明学生对于圆柱体和圆锥体的体积有所混乱,同时在审题上也相当粗心。

  三、在整张试卷上,计算是最大的问题。这单元的计算大多是多位小数相乘,计算所得的积的位数也较多。因此,计算的难度相当大!很多学生见到这些计算就感到头痛,所以计算错误相当多。

  纵观这次考试情况,反思这个单元的教学内容和教学方法,我觉得本单元教学内容分两大板块--- 表面积和体积,但本单元的知识是简单的立体几何知识,很多知识都较为抽象,学生理解起来的确是不容易。因此,在教学时我有意识地结合、围绕下面几点进行教学设计:一是结合生活实际进行教学设计。比如在教圆柱体的认识时,我先要求学生收集身边的圆柱体物体、观察生活中哪些物体是圆柱体,让学生在身边、在生活中学到数学知识。二是加强动手操作,在做中学。比如在教学圆柱体的表面积时,我要求学生动手用硬纸做一个圆柱体,然后进行分解撑握一般的圆柱体有三个表面,使学生理解圆柱体的表面积的含义,从而撑握圆柱体表面积的计算方法。三是注意培养学生良好的学习习惯。在本单元教学中,我有意识地对计算、易做错的题目进行反复的训练。但是,由于本届学生基础的确较差,加上我教学上可能存在着急功好进的思想,勿视了学生的实际情况,因而导致学生测试成绩不好。今后,应好好注意。

  六年级数学圆柱与圆锥教学反思 10

  《圆柱与圆锥》单元终于落下帷幕……

  我想教过这一单元的老师对它的感觉肯定是“想说爱你不容易”,学生也一定是“恨你在心口难开”。呵呵~~这一切的源头都得归功于本单元的“计算”。

  对于本单元的计算,我曾采取了以下策略,以期学生能少“恨”一些:

  1、熟记3.14与一些常用数相乘的结果。

  2、启动学生的简算意识,教给学生一些计算的技巧。

  ①对于一些有特殊数据的计算,如计算圆柱体积:2.5×2.5×3.14×8,引导学生利用乘法结合律使计算简便,(2.5×2.5×8)×3.14=50×3.14=157 ;

  ② 计算圆锥的体积时,可让学生把乘数中能和1/3约分的先约分,然后再乘:如4×4×3.14×6×1/3,可引导学生把6和1/3先约分,然后再乘,(4×4×2)×3.14=100.48 ;

  ③对于一般数据的题目,如:3×3×3.14×8,也尽量把3.14以外的数先相乘,最后再和3.14相乘,即(3×3×8)×3.14=72×3.14=226.08,以提高计算正确率。

  3、计算量很大的题目,采取“只列式,不计算”。

  对于计算繁杂程度高的题目,我通常是采取“只列式不计算”的策略,既可保持学生的兴趣又可节省时间。“银行的工作人员通常将50枚硬币摞在一起,用纸卷成圆柱形状。(底面直径2.5cm,高9.25cm)你能算出每枚1元硬币的`体积大约是多少立方厘米吗?”这题的列式是1.25×1.25×3.14×9.25÷9,如果真让学生计算出结果的话,恐怕既费时又费力。所以我们教师也不要拘泥于算。

  4、启动学生的估算意识。

  估算可以使学生把正确结果的范围框定,对于一些有明显错误的计算,容易发现问题。如:1.2×1.2×3.14×6=271.296,估算:1×1×3×6=18,正确的结果应该是在18左右,而现在271.296偏离正确的结果太远了,一定是错误的。正确的结果应该是27.1296。当然,如果真的为学生的兴趣考虑的话,可以使用计算器。但是由于考试的“紧箍咒”,又有几个老师能够如此洒脱与超然呢?

  我不能做到绝对的超然,但我也努力了!呵呵

  六年级数学圆柱与圆锥教学反思 11

  在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节

  第一环节:整理本单元学过的知识点。

  包括两部分:

  1、同桌互说圆柱和圆锥的特征和相关的计算公式;

  2、全班交流圆柱和圆锥的异同点,整理各种计算公式。

  第二环节:课堂练习。

  本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。

  虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的能力,对学情的把握也不够好。本计划用7-8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的面积公式,更不要说新公式了,完全是一塌糊涂。鉴于这种情况,我想在今后的.教学中应注意以下三点:

  1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。

  2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

  3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。

  六年级数学圆柱与圆锥教学反思 12

  复习课在知识整理与查漏补缺的同时应该让学生有些新的收获,而不能让孩子们感觉到知识的重复。我始终在想通过这节课到底让孩子们收获些什么?所以在复习内容的选择上,针对历年毕业考试的数学试卷进行分析,有针对性地选择了三道错率很高的试题进行复习。而这些题所体现的知识点都是圆柱与圆锥的关系,所以这节课的教学设计以圆柱和圆锥体积的关系为教学重点,希望能达到举一反三的效果。

  一、习题导入,产生学习需求。

  一上课,出示了这样的练习题:一个圆柱和一个圆锥的底面积相等、高也相等,它们的体积之和是12.8立方厘米。那么,它们的体积之差是()立方厘米。通过我已有的经验,此类练习一定有部分学生不知如何入手解题。这时候学生就产生了学习求知的需求,再复习本单元的知识点就顺理成章了。

  二、通过整理表格、整体把握知识。

  首先让学生在已有知识的基础上,形成单元知识表格图。学生做的表格图内容很全面,注意到知识间联系,但本单元所包含的圆柱和圆锥之间既有联系,又有区别,只有把知识点进行对比、区别,才能更好得掌握知识。其次,学生想不到的就需要老师去点拨、引导。我抓住时机,引导学生形成了规范的表格图,既教给了学生学习的方法,又为以后的归类复习做了铺垫。

  三、系统复习,突破重点。

  复习本单元的概念主要是为了突破本节课的教学重点,即圆柱与圆锥的体积关系。因此我在复习整理时利用多媒体课件演示圆柱与圆锥的实物,充分体现了在等底等高的情况下,如果圆锥的体积是单位“1”,那么圆柱和圆锥的体积之和就是4/3;如果圆柱的体积是单位“1”,那么圆柱和圆锥的体积之和就是4倍的关系。梳理知识点之间的联系,我在复习三道练习题时采用了“讲、扶、放”的方法逐步解决问题。针对学生层次不同,首先我采用了“讲”的方法。学生在读完题的情况下,我抽象出线段图体现圆柱和圆锥体积的关系,在通过学生之间的交流,正确率达到了90%左右。第二题采用“扶”的方法,先请好学生讲明题意,说出思考点,再做。第3题可以完全“放”,有了前面的'基础,最后一题的正确率有了很大的提高。

  四、在层层递进的练习中,培养学生运用知识解决实际问题得能力。

  练习分为基本练习题、发展性练习题和拓展性练习题三个层次,基本练习题是应用圆柱和圆锥的关系比较直接计算得题目,因此,我让学生先交流再汇报。发展性练习就有了一定难度,在汇报时,让学生展示出所有的解法,体现解法多样化。拓展性题目是综合运用知识解决问题得题目,属于拔高题,主要是针对优生设计的。通过层层练习,培养学生运用所学知识解决实际问题的能力。

  通过本课的教学,我认识到在教学中要注意教材编排的特点,要结合本班学生实际情况进行有机整合,有层次地发挥教师的主导作用,体现学生的主体作用。课堂中也留有一些小遗憾:对于学生当堂课生成的资源没有进行很好的利用,在今后的学习中,还要继续积累经验。培养灵活驾驭课堂的能力。

  这节研讨课能够完整的呈现出来,要感谢校长的指导以及数学教研组老师们的帮助,更要感谢孙老师,给予我这样一个交流的机会和对这节课的精心指导,在以后的工作学习中,我会更加努力。

  六年级数学圆柱与圆锥教学反思 13

  “数学是思维的体操”,数学课堂是培养学生思维能力的主阵地。因此,教学中,教师常常把重心放在拓展学生思维的空间上,常常更多地关注解题方法的优劣、解题过程的繁简。计算则通常归于一句话:计算要细心,多练自然准确率就高啦。其实不然,某些计算的难度已经影响了思维的训练及效果,譬如人教版第十二册第二单元的“圆柱、圆锥”。这部分内容素以计算繁杂而成为教学中的一大令人头疼的章节,相信每一位经历过的教师都有同感。

  因为已知了这个教学难点,许多教师和我一样,会有意识地对这个难点进行突破,让学生把3.14×1到3.14×9的得数背下来,并指导学生如何运用背的结果。还练习了由3.14×1你还能想到哪些算式的结果,拓宽3.14×1到3.14×9计算结果的运用范围。但在教学圆柱的表面积、体积的计算时,学生还是错误百出。在订正过程中,有些学生因此对正确的列式产生了怀疑,甚至动摇了对学习这部分内容的信心。作为教师,面对这种状况,心里很不是滋味,不免对自己的“教”进行一番审视,有些方面还真需要改进。

  一.计算圆柱的侧面积、表面积、体积,圆锥的体积,如果用综合算式计算,算式有时很长,特别是半径或直径未知时。

  我以前较注重要求学生用综合算式来解答,这样对列式的正确与否一目了然。事实上这样要求不但增加了学生思维的难度,同时也增加了计算的难度。思维能力上的难度体现在根据公式求圆柱的'表面积、体积时,有些条件没有直接告诉,需要先求出中间数。如已知底面直径和高,求圆柱的表面积,这里需要先求出底面周长与半径,再求出侧面积与底面积,最后再求出表面积。教师眼中比较简单的问题,对学生来说由于中间问题多而显得思维难度大,如果我们一开始认识不到,不能降低要求,帮助学生用分步列式的方法计算,无形中增加了学生的难度。教材中的例题就是分步列式,是有良苦用心的。更何况在解决实际问题时,还要考虑问题求的是侧面积、表面积、体积中的哪一种,如果求的是表面积,又应该是由哪些面组成的,是一个底,还是两个底,还是没有底。计算上的难度体现在这么长的一个算式中,如果其中一步列式有差错或一个数据算错,整个算式的结果就会算错。而对待错误,一般的学生特别是后进生很少去对这么长的算式进行整体反思,去改正列式中的一个小错误,或把其中算错的那个数据进行修正,进而用适当微调的方式进行订正,而是全部推倒重算。算的步骤越多,错误的概率就越大,常常越订正错误越多,多次订正得不到正确结论,学生很容易烦燥,并丧失学习的信心。

  二、对3.14的处理要掌握巧妙的方法。

  一个问题中,3.14通常要重复计算多次,结果多是几位小数。如已知圆柱的底面直径是10厘米,高是15厘米,求圆柱的表面积.算式是10×3.14×15+(10÷2)×3.14×2.3.14要分别乘150与50,最后是两积相加。如果我们把3.14看成,在计算时先不与具体的数字进行计算,到最后统一处理,如上面这一题,如果我们这样算:,最后只要算200与相乘,那么只要乘一次3.14,这样就可以减少与3.14相乘的次数,也就减少了出现错误的可能性。因此,我鼓励学生把带入算式中计算,甚至允许如果题目结果没有提出得数保留的要求,最后的结果可以保留,让学生品尝把带入算式计算的好处。在以后的练习中,学生的学习效果出现了明显的好转,自信又回到了学生的身上,同时也培养了学生计算的兴趣及能力。

  三、关于圆锥的体积计算中三分之一的处理。

  圆锥的体积等于与它等底等高的圆柱体积的,计算圆锥的体积有几种公式:,首先看能否与其它数约分,如已知圆锥的底面积是20.5平方厘米,高是6厘米,体积是×20.5×6,可先把与6约分。如已知圆锥的底面半径是9厘米,高是5厘米,体积是×3.14×9×9×5,可先与9约分。若无法约分,就先算出其它各数的积,最后再除以3。这样尽量减少小数计算的次数,降低出错的可能性。

  从圆柱、圆锥的表面积、体积的教学,我想到了我们教师如何对待学生计算过程中出现的差错。学生在学习过程中出现差错是很正常的。对待学生的计算错误,教师首先保持一个正确的心态,适当提醒学生是应该的,过分从学生身上查找原因,过分责怪学生不认真、不仔细、习惯不好等等,不但不会对解决问题产生丝毫的帮助,反而会使学生失去数学学习的兴趣。教师应充分吃透教材,准确把握教材的意图,善于观察学生,从学生学的过程寻找适合的教法,找到帮助学生克服学习困难的金钥匙。

  六年级数学圆柱与圆锥教学反思 14

  一、注意生活化抽象到数学化,让学生掌握知识的共同特点

  1.对于圆柱物体的认识(教材P10),圆锥物体的认识(教材P23),不容忽视,这一环节是生活化的具体表现,再从生活化的物体抽象到数学化的图形,这又是数学化的具体运用,是知识从形象到抽象的过程。

  (图略)

  2.抽象出具体的图形后,再让学生观察并说说这些图形的共同特点,更好地认识圆柱(或圆锥)的特征。避免知识形成的片面化。

  二、注意计算公式的直观推导,让学生掌握知识的形成过程

  知识的形成比结果更重要。这也是课程标准的重要理念。

  1.圆柱侧面积计算公式的推导

  让学生用二张长方形纸和一张正方形纸分别围成一个圆柱体。将围成的圆柱体的其中二个沿着高剪开,另一具斜着剪开。然后展开,让学生知道圆柱的侧面展开,可能得到一个长方形(或正方形,或平行四边形)。

  圆柱的侧面展开可以得到一个长方形,这个长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  圆柱的侧面展开可以得到一个平行四边形,这个平行四边形的底就是圆柱的底面周长,宽就是圆柱的高。

  2.圆柱体积计算公式的推导

  (1)圆柱等分可以拼成一个近似的长方形,这个长方体的底面积就是圆柱的底面积,这个长方体的高就是圆柱的高。

  因为长方体的体积=底面积高

  所以圆柱体的体积=底面积高

  (2)圆柱等分可以拼成一个近似的长方形,这个长方体的长就是就是圆柱底面周长的`一半(r),这个长方体的宽就是圆柱的底面半径(r),这个长方体的高就是圆柱的高。

  因为长方体的体积=长 宽 高

  所以圆柱的体积 =r r h=r h

  3.圆锥体积计算公式的推导

  同底等高的圆柱与圆锥,让学生用水量一量,观察,讨论与交流以下问题。

  同底等高,圆柱的体积是圆锥体积的()倍。圆锥体积是圆柱体积的( )。从而得到圆锥体积的计算公式:

  因为圆柱体积=底面积高

  所以圆锥体积=1/3底面积高

  =1/3Sh=1/3r h

  三、注意用字母表示已知条件,让学生养成良好的解题习惯

  这一举动既是培养良好的解题习惯,也是为中学学习奠定良好的基础。教学实践证明,这一举动还可以提高学生的分析能力,也可以为学生选择恰当的计算公式服务,同时又可避免学生对条件丢三落四,真是一举多得。

  例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?

  已知h=28厘米,d=20厘米,r=10厘米,

  S表=dh+r

  V柱=r h

  四、注意计算公式的书写要求,让学生更好的进行中小衔接

  学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。

  例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?

  人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,S表=dh+r

  =2028+10

  =560+100

  =660(平方厘米)

  五、注意由面到体的变化,提高学生平面到立体的认识

  长方形的小旗是一个平面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个平面图形,它旋转后所得轨迹是一个圆锥体。学生看平面图的数据后会求立体图的体积(或表面积),可以提高学生平面图形到立体图形的认识。

  六、注意加强知识的联系转化,提高学生的空间思维能力

  1.圆柱体侧面展开转化成长方形

  (1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?

  (2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?

  2.圆柱体转化成长方体

  (1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?

  (2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积

  (3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积

  (4)圆柱等分拼成一个近似的长方体,表面积增加100平方厘米,求原来的侧面积。

  3.圆柱体截面情况

  (1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?

  (2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30平方分米。求原来圆柱的体积。

  (3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加多少?

  (4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加80平方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?

  4.圆柱体侧面增加(减少)

  (1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?

  (2)一个圆柱的高是10厘米,如果高减少3厘米。表面积减少18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?

  5.圆柱和圆锥体积知识变化与联系练习

  (1)一个圆柱的体积是24立方厘米,把它削成一个最大的圆锥,要削去( )立方厘米。

  (2)一个圆锥体和一个圆柱体底面积和高相等,它们的体积之和60立方厘米,这个圆锥的体积是( )

  (3)圆柱和圆锥同底等高。圆柱的体积比圆锥的体积多1.8立方分米,原来圆柱的体积是( )。圆锥的体积是( )。

  (4)一块底面半径为3分米,高5分米的圆锥体钢锭,熔铸成一个底面直径为4分米的圆柱形钢材,求这段钢材的长

  (5)一个底面直径是24厘米的圆柱形玻璃杯装有水,水里浸没一具底面直径为12厘米,高8厘米的圆锥形钢块,当钢块从水中取出时,杯中的水会下降多少厘米?

  (6)一个瓶子内直径8厘米,装入10厘米高的水后,盖好瓶子倒过来(如图),量得空余部分的高是2.5厘米,求这个瓶子的容积是多少毫升?

【六年级数学圆柱与圆锥教学反思】相关文章:

圆柱圆锥教学反思06-19

圆柱和圆锥的教学反思08-16

关于《圆柱和圆锥》教学反思06-06

圆柱圆锥整理复习教学反思07-30

《圆柱与圆锥》教学反思(精选10篇)10-02

数学《圆锥的体积》的教学反思07-22

圆柱和圆锥的认识教学反思两篇09-29

《圆锥的体积》数学教学反思06-03

《圆柱与圆锥》说课稿10-04