等腰三角形的判定课后教学反思

时间:2024-07-23 18:51:35 偲颖 教学反思 我要投稿
  • 相关推荐

等腰三角形的判定课后教学反思(精选11篇)

  在当今社会生活中,我们需要很强的教学能力,反思指回头、反过来思考的意思。反思我们应该怎么写呢?以下是小编整理的等腰三角形的判定课后教学反思,欢迎大家分享。

等腰三角形的判定课后教学反思(精选11篇)

  等腰三角形的判定课后教学反思 1

  这一课的教学重点是等腰三角形的判定定理及应用.教学难点是等腰三角形的性质定理与判定定理的区别.教学方法主要是讨论、探索、启发式.运用辅助工具是多媒体课件.

  等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。教材专门设计一个单元的内容来研究它。这个单元的重点之一就是等腰三角形的判定,同时这也是本章的重点之一。大纲对此的要求是“掌握等腰三角形的性质和判定,等边三角形的性质和判定,并能灵活应用它们进行论证和计算”(“灵活应用”是大纲中“了解、理解、掌握、灵活应用”四个层次中的最高要求)。在学过等腰三角形的性质和判定后,推理依据增多了,学生所接触到的题目难度也会明显加大,证明思路不再那么简单。近几年的许多中考题目常以等腰三角形为命题背景,结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目。所以要求学生能掌握并灵活应用。

  学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

  因此在课堂教学中先引出等腰三角形的`判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想。再进一步发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

  等腰三角形的判定课后教学反思 2

  这一课的教学重点是等腰三角形的判定定理及应用。教学难点是等腰三角形的性质定理与判定定理的区别。教学方法主要是讨论、探索、启发式。

  学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

  因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想,再进一步发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

  在教学方法上采用“目标——问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的`教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到我的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。目标——问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,我也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。

  通过训练更好地得到巩固、变化中规律的探究,通过题组更好地得到提升,做得还是有效的。

  等腰三角形的判定课后教学反思 3

  这一节课的教学重点是等腰三角形的判定定理及其应用,难点根据题目所给条件进行适当的说理,教学方法主要是讨论、探索、启发式,运用辅助工具是多媒体课件。

  开始上课时先让学生观察生活中一组都含有等腰三角形的图片,让学生体会数学来源于生活,生活中存在数学美,接着引导学生说出这组图片的特点,从而引出本节课要探究的主要内容即本节课的课题《等腰三角形的判定》。

  在教学过程中,先让学生动手做以下的实验:

  在白纸上画一条线段BC,以BC为一边分别以B、C为顶点,画两个相等的角(用量角器),这两角的另一边交于点A,让学生比较AC与AB的长度?设疑问:通过以上实践你得出什么结论?让学生思考、猜想、总结归纳出结论,让学生体验知识产生的过程,激发学生探求知识的欲望,接着为让学生证明实验的结论,用多媒体来演示三角形的'翻折过程,并引导学生总结实验的结论。进一步提问学生:本结论的前提条件是什么?已知什么?结论是什么?如何用数学语言把这个结论的意思表达出来?让学生思考两分钟后,挑选一个学生回答,在学生回答过程中引导并在黑板上板书出来,目的是让学生很好地理解这个结论的意思。然后引出:我们通过实践得出这个结论作用是用它来识别等腰三角形,也就是我们这节课的重点内容:等腰三角形的判定,与前面提到的课题前后呼应,接着引入如何利用判定定理解答一些问题,在讲例题与练习的过程中,题目由浅到深,题型由口答到动手写,在这过程,让学生能够充分的掌握与运用,老师只是从旁引导,并给予一定的帮助与纠正。

  总之,本节课较好地完成了教学目标,让学生体会数学来源于生活,生活中存在数学美,让学生能很好地理解等腰三角形的判定定理的含义及利用其来简单说理。但静下心来,认真思考,发现这节课我还有许多不足之处:

  1、如果在板书用数学语言表达实验结论:在一个△ABC中,如果∠B=∠C,那么AB=AC的之前在黑板上画出一个三角形引导学生指出∠B所对的边是哪一条边,∠C所对的边是哪一条边后,再把用数学语言表达结论板书出来的效果比直接板书的效果好。

  2、在教学过程中,忽略等腰三角形的性质定理与判定定理的区别。

  3、在教学过程中有时语速过快,语言不是很简练。

  等腰三角形的判定课后教学反思 4

  今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:

  (一)突出重点,实现教学目标

  《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

  (二)导课自然,成功引入新课

  首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的.学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

  (三)设置有梯度,学生易于接受

  在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。

  这节课,也有不足的地方:

  (一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。

  (二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。

  等腰三角形的判定课后教学反思 5

  《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

  本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的.学习过程,使学生通过“会学”最终达到“学会”。

  教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。

  通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。

  等腰三角形的判定课后教学反思 6

  本节课主要是让学生理解等腰三角形的判定方法及应用,并使学生通过对等腰三角形的判定方法的探索,体会探索学习的乐趣。在教学方面,主要按以下步骤进行教学,教学效果比较好。

  一、教学建议

  1、课前先简单复习等腰三角形的性质1“等边对等角”,这为后面讲等腰三角形的判定“等角对等边”留下铺垫。这样做也培养了学生数学思维的严密性。

  2、在学习等腰三角形的判定的时候,教师一定要创设一种切合实际的背景出来,从而使学生明白数学与实际生活紧密相连,学好数学,才能解决生活中的难题。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形判定的掌握更深刻得多。另外,在得出等腰三角形的判定以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。

  3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,先让学生讨论,再让学生上来板书,或者教师和学生先一起来分析解题思路,再让学生做,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习数学的积极性和创造性,从而使数学课堂充满活力。

  二、教学反思

  1.在授课过程中,教师要给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是判定的推导,还是判定的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。

  2.充分利用教材,在练习题与例题的.编排上打破常规,让学生通过与生活紧密联系的背景,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的判定方法,再让学生用等腰三角形的判定方法来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。

  等腰三角形的判定课后教学反思 7

  本节课《等腰三角形》中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。

  在本节课中我还应处理好以下几点:

  (1)等腰三角形“三线合一”定理的强调,尤其是书写。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。

  (2)加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的`结论一起考虑,按需择取。

  (3)加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。

  等腰三角形的判定课后教学反思 8

  本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

  通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证。从而由感性认识上升到了理性认识。

  性质得出后再引导学生观察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。在整个教学过程中,我利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  学完定理,我出示了一组练习,集中学生的注意力,同时为了突出重点,我设计了具有变式性的练习,通过口答、抡答形式来完成,既培养了学生的语言表达能力,又发挥了学生的`主体地位,激发了学习兴趣,活跃了课堂气氛。

  课堂教学,一是注重引入激发兴趣,二是注重教学过程,重视方法,三是注重概括总结,首先我让学业生总结本节课你都学到了哪些知识哪些解题方法、学习方法,然后教师对肯定学生的积极性,在今后的学习中继续发扬,让学生带着成功感走出课堂。

  作业必做题面向全体学生,注重基本知识的巩固,选做题面向学有余力的同学,培养他们产生学好数学的长久愿望。总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生学习的热情,让他们在轻松愉快中学习知识。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

  几点反思:对教材的处理上我作了很大的调整,比如画一个等腰三角形,采用了老教材的处理方法;在教学等腰三角形的性质二时,淡化了老教材叠合法的说理过程,为了突破难点把一个问题分成三个知识点来学降低难度,几何画板的演示使学生能正确辨析等腰三角形的性质二,达到了事半功倍之效。在学生画等腰三角形是否让学生留一点时间讨论交流?对猜测是否有更多的交流?学生的小结是否先让他们交流后再说?或许学生会有更多的体会?是否得归纳一下研究一个图形的基本方法应从图形的角、边几个元素着手,养成学习几何的基本方法,方便以后的学习。令人遗憾的是本节课新教材安排一课时完成,内容太多,性质的应用只能放在第二课时完成,教材的编写是否得考虑学生的实际情况?教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。

  等腰三角形的判定课后教学反思 9

  人们常说:"数学是思维的体操”,这主要指通过数学知识学习,来培养、训练学生的逻辑思维,同时发展学生的创造性思维和批判思维。这节是动手与观察、实验、猜想、几何推理证明相结合的一课。开课让学生先进行一个数学活动,将一张长方形的纸对折,然后用剪子一剪剪出一个三角形,再将其展开,让学生观察得到的是一个什么图形,并说出它的特点,从而引出本节课的主要要研究的内容即这节课的课题“等腰三角形”。

  本节课把教材内容作为学生活动的起点,学生活动的平台,确定了有利于主动学习的素材。教学内容以活动为载体呈现出来,给学生以真实感、亲切感。提高学生的学习兴趣,教学内容的安排上既注意知识又加强对学生动手能力、交流能力、语言表达能力和解决实际问题能力的培养。

  本节课成功与否,不在于教师讲解,而在于调动启发,组织的技巧与水平的高低。本节课是让学生参与整个知识的学习进程,通过小组合作、展开交流,培养学生的动手能力、自学能力、解决问题的能力,在学习中,有情感的投入,有内在动力的支持,能使每个学生在学习中能轻松而有所收获,并且在学习中获得积极的情感体验。

  在本节课中我的'困惑在于:

  1、是否能够真正的调动学生积极主动地参与学习活动,而不流于形式。

  2、在学生之间是否能够顺利开展活动,而学生是否又乐于与他人合作,能否清楚地表达自己的结论和建议。

  3、对于学困生在探索“三线合一”的过程,仍存在问题;对于“三线合一”的理解更存在困难。

  怎样才能够充分的利用有效的活动,帮助学生学会并掌握新知识。怎样才能让学生在一般与特殊的对比中运用发现法。由观察比较到验证归纳,再到推理论证;由个别形象到一般抽象;由感性认识上升到理性认识,使学生的思维由形象直观过度到抽象的逻辑演绎,层层展开,步步深入,进一步体会等腰三角形所具有的特征。揭开对“三线合一”正确理解的疑难。同时,在实施合作式学习时,教师要对“收”“放”“度”有充分的把握,否则时间分配不合理,造成拖堂。所以这些方面还值得我进一步去反思、去探究。

  等腰三角形的判定课后教学反思 10

  等腰三角形第一节课,要让学生通过动手翻折等腰三角形纸片得出等腰三角形"两个底角相等"、"三线合一"的性质。设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的。授课过程分为4个环节:

  (1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找"你身边的等腰三角形"。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。

  (2)形象认识等腰三角形性质特点。设计"已知等腰三角形的两边长分别为5和2,求周长",我的目的是检查学生对"三角形两边和大于第三边"知识的掌握情况及"等腰三角形有两条相等的边"的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:"等腰三角形两腰相等"。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的'角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。

  (3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形"等边对等角"、"三线合一"都是由其具有轴对称性质引出的,学生得出"两个底角相等"较为容易。因为担心"三线合一"学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出"三线合一"的性质。这样做好处是降低了"三线合一"性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。

  (4)运用"等边对等角"解决实际问题。本节课的另一知识重点是学会应用"等边对等角"解决实际问题。课堂上,完成了一些角度计算的填空后,我侧重于让学生书写解题过程。新课标教材中对学生解题步骤书写要求比较放松,但我认为学生若养成严谨的书写习惯对于培养思维的严谨性有帮助,经过近一个学年的严格要求,多数学生能较顺利进行解题步骤的书写,但也还有部分学生对此感到困难。为进一步让学生巩固"等边对等角"性质的运用,我补充了"圣诞树轮廓为等腰三角形"这一道生活题,请同学们根据底角计算树顶两条斜线的夹角,本题与例题解法相同,同学们基本上都可以完成。课后反思,这个练习补充得不是很好。虽然可以让学生巩固书写格式,但在时间较紧的情况下,这样重复训练显然没有必要。

  生命化教学实践中,提倡数学教学应更关注学生的认知特点,尽量让全体学生学有所获。本节课从总体上看,学生基本掌握了等腰三角形"等边对等角"及"三线合一"的性质,学会了"等边对等角"的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。

  这是我对《等腰三角形》课后的几点认识,希望同行给予指教,以期在生命化教学实践中能真正做到:师生创建平等、合谐的氛围,让学生的个性得到张扬,形成师生互动的学习环境,使我们的课堂走向精彩。

  等腰三角形的判定课后教学反思 11

  安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

  在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的不是很充分。

  性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。

  在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的`应用。

  要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。

【等腰三角形的判定课后教学反思】相关文章:

判定教学反思11-16

矩形的判定教学反思11-09

矩形的判定教学反思10-25

等腰三角形判定教学反思及建议(通用9篇)10-31

教学课后反思11-17

教学课后反思11-17

课后的教学反思03-01

课后教学反思10-15

课后教学反思03-05

矩形的判定教学反思5篇05-30