《两位数乘两位数笔算乘法》教学反思

时间:2021-11-21 15:23:55 教学反思 我要投稿

《两位数乘两位数笔算乘法》教学反思

  身为一位优秀的教师,课堂教学是我们的任务之一,我们可以把教学过程中的感悟记录在教学反思中,教学反思我们应该怎么写呢?下面是小编为大家整理的《两位数乘两位数笔算乘法》教学反思,仅供参考,欢迎大家阅读。

《两位数乘两位数笔算乘法》教学反思

《两位数乘两位数笔算乘法》教学反思1

  4月18-20日,我很有幸参加了在z举行的z市农村小学数学“关注常态,聚焦高校”课堂教学研讨会,在几天的紧张学习中,不但饱览了众多教学高手的真功夫,而且还聆听到多位专家的精心点评,受益匪浅。更有幸的是能和刘敏老师同上一堂课,让我深深的感受到了大师的风采,她的自信,稳重,驾驭课堂的能力,课堂上生成的问题能灵活机智处理的能力等等,有很多值得我去学习的地方。

  通过参加这次活动,我的感触很大,让我觉得这些专家前辈们之所以有今天的成就都是通过平时的思考总结,主动探索,积累经验,不断的反思、思考、创新、实践,才会有今天的成绩,才会使自己变的如此强大。我很想问问我自己,我每天都是在干什么?做了哪些有意义的事呢?是要我去做,还是我要去做呢?每天都思考了吗?每天都反思了吗?每天都进步了吗?哪怕只有一点点。真的得好好静下心来,好好思考,接下来应该怎么做呢?

  非常感谢于科长给我们提供了一个这么好的平台,展现自己。也很感谢县教研室给我这次锻炼成长的机会。通过参加这次的研讨会,我感觉到自己真的很渺小,感觉自己脑袋里空空的,自己真是懂的太少了,感觉到了自己有很多很多的不足,需要去学习的有很多很多。路漫漫其修远兮,吾将上下而求索。

  下面我就对我执教的《两位数乘两位数笔算乘法》进行深刻的教学反思。

  两位数乘两位数笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法,两位数乘两位数估算方法的基础上进行教学的。学生虽然在乘法笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以,本节课我把教学目标定位在让学生理解算理的基础上掌握两位数乘两位数的计算方法。

  本节课有以下不足之处:

  1.不能关注全体学生。

  在课堂上我发现回答问题积极的就那么几个同学,我试图调动其他同学的积极性,但是我屡次的尝试,都是以失败而告终,从这点上说明了我驾驭课堂的能力很差。

  2.评价语言过于单一。

  评价学生不但能调动学生学习的积极性而且能增加其学习的兴趣,主动探索知识的欲望。一个良好的评价语对一个孩子来说也是很重要的,哪怕是一个眼神,一个动作,一个表情都会对他们产生深刻的影响。但是我这节课老用你很棒、不错、很好,这一类的评价语,很单调,反复出现,让学生觉得习以为常,也激发不起学生的乐趣及其学习动机。

  3.个别地方设计意图不是很明显。

  比如:口算题第2组题目,我的设计意图是想把这组题目和竖式计算第二步联系起来,先给学生做个铺垫,然后便于学生理解用竖式计算的第二步是1个十乘24得24个十也就是240。但是通过教学效果来看,体现的不是很明显,属于无效环节。还有估算那个环节,设计意图是先让学生估算,再尝试用笔算,这样既复习了上节课的估算方法,也能使估算的数值能验算笔算的大约数值,使估算、笔算有机结合。但是课堂上只让学生估算出结果,没有让学生体会到估算在生活中的应用,没有使学生明确估算对笔算的作用,设计意图体现的不明显。

  4.教学机智欠缺。

  学生突发情况不知道如何处理,出现了走教案的情况。比如在让学生比较方法的时候,有的学生说喜欢方法一,有的学生说喜欢方法二。我当时也没有在意这个学生的想法,按照我原来的思路,为了突出这节课的笔算乘法,极力的倡导第二种做法。这个细节反映了我的教学机智,应变能力和课堂调控能力的不足。

  5.该让学生明白的名称没让学生明确。

  比如两个因数相乘,告诉学生第一个因数,第二个因数简洁,明了。但是当时我在处理问题的时候老是说数字,让学生理解比较困难,浪费了时间,没达到很好的效果。

  6.细节关注不够。

  在板书的方法一的时候我课前设想是往下写一写,和竖式的两步计算正好持平,让学生很明显看出来,其实这两种方法的算理是一样的,只是呈现方式不同。但是课堂上考虑的不够仔细,把方法一书写的位置过于朝上,导致了用竖式计算的时候没有给学生们清晰的呈现出这个问题。

  通过这次的学习我深深的感受到数学课堂是朴实的、也是生动的。我想数学课堂最重要的不只是让学生学会数学知识,更重要的是要让学生学会学习数学的方法,感受到数学知识在生活中的应用。在以后的教学中,我将更加努力学习,取长补短。

《两位数乘两位数笔算乘法》教学反思2

  本节课是课本65页例题2进位的笔算乘法,重点讲解19乘19的竖式,让学生掌握两位数乘两位数进位的笔算乘法的方法,本节课是在学生学习了不进位乘法的基础上进行教学的,所以我先出示几个问题:

  (1)、这算式第一步算什么?是怎样算的?个位满十怎么办?十位呢?

  (2)、第二步算什么?是怎样算的?

  (3)、第三步呢?让学生带着这几个问题独立尝试计算,指名板演并给大家解释他的计算过程,其他四人小组也交流算法并全班汇报。

  这节课的重点是理解进位笔算的算理,在学生展示并讲解方法之后,我都一一作出了评价,最后由老师再演算一次,并一边算,一边讲解算理(先用第二个因数个位上的9去乘19的每一位,积的末位要和个位对齐,表示9个别19是不是171,个位满八十向十位进8,再用第二个因数十位上的1去乘19,最后把两个积相加),然后再让全班齐说算理。接着出一些错题让学生判断并改正,并要他们知道错在哪?笔算进位的两位数乘法要注意什么?再通过书本65页的“做一做”来加深进位的两位数乘法计算方法,并让学生同桌间说说笔算的过程,同桌说说,指名说,以此方法突破教学重点。

《两位数乘两位数笔算乘法》教学反思3

  两位数乘两位数的笔算是第四单元的教学重点。这部分内容是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的乘数是更多位数的乘法问题,奠定了基础。两位数乘两位数,是在学生学习了笔算多位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排,先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。接着,编排进位的,让学生经历两位数乘两位数需要进位的笔算过程,帮助学生掌握笔算乘法的方法。

  教学第一课时是不进位的,课堂上我结合例题引导学生去理解算理。当时的例题是没套书有14本,老师买了12套,一共买了多少本?当时这道题是先用口算方法想,先求10套多少本,用14×10=140(本),在求2套多少本,用14×2=28(本),然后140+28=168(本),学生对口算方法都能明白,所以这道题改成竖式时,学生对于算理都能明白,没有疑问,只是有个别学生习惯写上竖式中140的那个0,这个慢慢可以改掉。有了一定的情景辅助学生理解算理上略微有些吃力。课上再通过纯竖式计算,明确先算什么,再算什么,而且一开始我要求学生写清楚你每一步是谁和谁相乘得来的,学生能写清楚,必然是能理解的。练习的过程中适时请学生上台板演,再结合错题进行分析,加深理解,通过两课时的教学发现针对不进位的都能很好的掌握。

  两位数乘两位数的笔算乘法,必须让学生明白算理。再通过大量的练习题让学生巩固,学生才能彻底学会。

《两位数乘两位数笔算乘法》教学反思4

  两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。

  对整堂课的教学顺序初步打算是,创设一个具体的情境激发学生学习的兴趣,围绕要解决的中心问题展开自主探索,在教学中教师心引领者的角色带领学生理清:1、掌握乘的顺序。2、理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。在实际教学时,估计有相当一部分学生能算出结果是多少,所以本课基本思路是从“认知——冲突”到“新知——尝试”经过“交流——理解”达到“巩固——掌握”,同时也提倡算法多样化。

  实际教学中,在“组织全班讨论、交流各类方法,提出自己的疑问一起解决”这一环节上,教师处理上有不当之处。学生出现多种计算方法,有拆因数法,有正确的坚式计算,也有错误的坚式计算,组织讨论时教师问了这样一个问题:“观察黑板上同学的算式,你有什么意见或不同看法可以提出来。”于是学生就从错误的'坚式入手,说明它的错误点,导致再去观察其他坚式时出现了重复现象,破坏了层次感。其实在这一环节的处理上,教师应该充分发挥引导者的作用,带领学生从横式即拆因数法出发逐一去分析,将错误的方法放在最后处理,这样层次感更强些,也符合学生认知的特点。

《两位数乘两位数笔算乘法》教学反思5

  首先,我想谈谈对教材的理解。本课的教学内容是不进位的两位数乘两位数的笔算,它是在学生已经掌握了两位数乘一位数的笔算、两位数乘整十数的口算、两位数乘两位数的估算的基础上进一步学习的。它是本单元的重点,学生掌握了不进位的两位数乘两位数的计算方法以后,将为进位的两位数乘两位数的乘法,为学生解决生活中遇到的因数是更多位数的乘法问题奠定了基础。

  因此本节课的笔算主要是让学生1、掌握乘法的顺序;2、理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。传统的计算教学侧重于使学生掌握计算方法,能正确地进行计算。新课程背景下,计算教学不是孤立的,它与估算、与解决实际问题有机结合起来了。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。用旧知识来解决新问题是很好的学习方法,但如何让学生能比较好地接受,需要教师运用好的方法引导。

  我一开始出示了一位数乘两位数和两位数乘整十数原来已学过的旧知识,然后通过比较引出了两位数乘两位数这一新的问题,引导学生学习和尝试运用旧知识来解决新问题的策略,这样既体现了教师尊重学生,又体现了较好地发挥教师的指导、引导作用。

  先让学生估算,再尝试用笔算,这样既复习了上节课上的估算方法,也为笔算(精算)学习打下基础,使估算、笔算有机结合。为什么“24“的4要与十位对齐,这是这节课的新知,也是这节课的难点。为突破这个难点,我安排学生自己介绍计算方法,让学生自己说出“24”实际上是240,它是由24乘10得到的,它表示的是24个十,这样的安排,对于学生明白算理算法有十分重要的意义。

  《数学课程标准》中,在计算教学中提倡算法多样化。算法多样化的目的是能在计算教学中,加强数学思考,尊重学生的个性,体现因村施教,培养和发展学生的创新思维能力。让学生在经历具体算式的过程中,自主运用自己喜欢的方法进行计算。在具体的计算中,体验到竖式计算的的优越性:简洁、明白、通用,易检查,在这个过程中,我始终作为学习活动的组织者、引导者,让学生在自主探索、合作交流中去体会各种算法,但由于对旧知掌握的不扎实导致了后面算法上较单一。

  本节课在新知的探索过程中,为了突破重点和难点,我分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口。在对比横式与列竖式时,学生发现“实际上横式与列竖式的算法是一样的。只是呈现的方式不同。列竖式的方法比横式方法还要简便,实际上列竖式也是先算24乘2的积;再算24乘10的积;再把24乘2的积和24乘10的积想加。”第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,对于难点我处理的比较粗,没让学生理解透彻。特别是对算法的教学,理解力好的学生能明白,但中下的学生不一定能听懂。教学时,应需要用不同颜色的粉笔和箭头写明笔算的方法与顺序。在学习活动中,让每一位学生通过动手、动脑、动口积极参与的学习过程,感受“用旧知识解决新知识”这一数学思维方法。

  由于这是一堂计算课,为了提高计算能力,同时培养学生认真计算、书写工整的良好学习习惯。所以我在设计练习时明确每一道题的练习意义,确保一步一个脚印,步步到位。使学生从不同的角度加深对法则及算理的认识。只有这样才能真正实现练习的优化。但由于时间的关系练习没完全呈现出来。

  回顾整节课的教学,发现自己身上存在太多的问题:缺少对课堂的调控能力,语言不够精炼,对学生的引导不到位,制约了学生对新知的探索。今后的教学中,要努力学习。让每位学生通过动手、动脑、动口积极参与学习,让学生在教师创造的时间和空间中体现自我的价值。

  本节课理念新、设计巧、思路清、特色明。总观这节课体现了“简洁而充满活力,朴实而富有情意”的设计理念。它为公开课返璞归真,展示原生态的课,提供了成功的案例。

  1、明确教学目标,重视算理算法的理解与应用。《数学课程标准》中指出:计算教学中,“要通过观察、操作、解决实际等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感”。教师在教学中,不仅使学生会算,还通过学生自己的探究,懂得为什么这样算的道理。并在多种算法的比较中使算法得到了优化。

  2、通过改进教学方法,促进学习方式的改变。著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,教师在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。教师组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。

  3、教学内容联系实际,重视学生的体验与感悟。数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  教师在引入阶段通过现实数学情境的创设,采取忆旧引新的方法,从复习两位数乘一位数,两位数乘整十数的口算,再引出两位数乘两位的笔算。两位数乘两位数的计算,可以分解为两位数乘一位数和两位数乘整十数来计算,这里教师充分依据学生原有的知识和经验,复习旧知来为学习新知打下了扎实的基础。

  4、关注学生良好习惯的养成,重视学习方法、学习策略的指导。我国近代教育家叶圣陶先生曾说过:“教是为了达到不需要教”。本节课自始至终都渗透着教师对学生进行学习方法、学习策略的指导,让学生自己能够运用不同的策略解决实际问题。重点让学生体验到了用旧知识解决新问题的方法。但又鼓励,学生根据各人的实际选用合适的策略。如看书,请教家长老师、同学间相互帮助、独立思考解决等。

  5、课堂评价语运用恰到好处,时时处处都在关注促进学生的发展,激励学生学习更好地学习。如:“同学们的估算能力真强!”“仔细严谨,体现了我们学习数学的良好品质!”等都体现了教师看到学生在学习活动中的表现十分满意和欣喜。

《两位数乘两位数笔算乘法》教学反思6

  课堂上,我通过有趣的教学情境引导学生主动探索、研究算理与计算方法,反复向孩子们强调在乘的时候要记得“从个位起,用一位数依次乘多位数的每一位数;哪一位上乘得得数满几十,就向前一位进几”的计算要求,但是在练习中部分学生仍然出现了下面的情况:

  1.漏进位。在计算时孩子们常会出现贪快不进位的情况,一旦漏掉进位,在下一个数位的计算上就容易遗忘出错。

  2.忘记了要“依次乘多位数的每一位数”在计算乘加混合式题的口算时,加法也“依次加多位数的每一位数”了。

  在计算一位数乘多位数时,必须严格按照计算顺序一步一步去乘,碰到有进位时,要先对准前一位下面进几,千万不要漏掉把进位的数与乘积相加。为了减少计算上的错误,需要多练习乘加混合式题的口算(如:68+7等),这类口算的熟练可以大大提高一位数乘多位数的正确率。在教学中还要通过各种形式适时地多补充些相关练习,以强化学生计算技能,提高计算的正确性。

  以上这些如果只是讲给是不行的,我通过操作学具让学生加深对算式算理的理解,能够运用所学知识解决简单的实际问题,能对问题做出正确分析,对同一类题目做出总结和概括,提高解决问题的能力。

  在操作学习过程中,也培养了学生的合作意识,口头语言表达能力,课堂上我注重张扬学生的个性,鼓励学生以自己的思考方式和习惯解决问题。个别学生的学习情绪往往是外热而内冷。我想今后的教学要注意课堂上让所有的学生都活跃起来。

《两位数乘两位数笔算乘法》教学反思7

  教学目标:

  1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化;

  2、感受“借助旧知识,解决新问题”的策略意识。

  3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。

  教学重点:理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。

  教学难点:理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。

  教学过程预设:

  一 、创设情境,提出问题

  听说小朋友这几天在学乘法,先来考考你们

  1、先后出示12×3 12×30

  师:12×3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的

  乘法意义吗?(乘法意义)

  师:那12×30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?

  2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。

  3、师:李老师来自镇小,在算我们学校总人数的时候遇到了这样一个问题

  临城小学平均每班有31人,那全校12个班有几人?

  (1)读题

  (2)怎样列式?31×12

  (3)这是几位数乘几位数?(两位数乘两位数)它的乘法意义你知道吗?那么谁能说说,31×12它的结果大约是多少?你是怎么估计的

  (4)我知道了镇小大概的人数,那到底准确的有多少人呢?大家还没告诉老师呀,要计算这道题,我们以前学过吗?遇到新问题了怎么办?能不能把它变成我们已经学过的知识?

  二、探索尝试,寻找方法

  1、自己试着把这题变成我们学过的旧知识,在自己的练习本上试试。

  2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)

  3、同桌交流整理。

  师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。

  3、全班汇报,汇总解答策略。

  师:我发现刚才在讨论的时候大家学习习惯特别好,学习效果一定很好。谁想出了一种方法?有两种的吗?还有没有更多的?(把学生的方法写到黑板上来,并请学生来介绍)这是谁写的,请你来说说?

  可能会出现:

  第一种方法:31×10=310 31×2=62 310+62=372

  师:为什么这么列,这是什么意思?(31×12没学过,但我们可以转化成我们学过的知识,31×12表示12个31相加,可以把它看成10个31与2个31相加)你们明白了?

  或出现12×30=360 12×1=12 360+12=372

  师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)

  师:为什么要拆呀?

  师:看来大家很有自己的想法,想到把新知识转化成旧知识来解决。

  第二种方法:31×4×3 31×2×6

  那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。

  [1][2][3]下一页

  第三种方法:

  1、他是用什么方法做的?用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

  若学生没出现竖式的形式

  师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

  2、 62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数

  3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系

  起来)

  31

  × 12

  ———

  62

  310

  372

  4、若学生还有其他不同的算式,

  31

  × 2

  ———

  62

  31

  × 10

  310

  62

  + 310

  372

  (1) 你为什么这么做?看来大家很有自己的想法。

  (2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。

  4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)

  5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。

  6、现在我们能知道镇小有多少学生吗?(板书完整横式)观察竖式,填一填2个班有( )人 10个班有( )人 12个班有( )人

  23

  × 13

  ———

  69

  230

  299

  7、尝试用竖式练习23×13。(学生再次尝试计算)有困难的同学可以模仿上面一题也可以求助于你的同桌

  (1)谁愿意把你的解法展示给大家看(实物投影)并边介绍

  你的想法

  (2)你能看明白这个算式的每一步是怎么来的,表示什么意

  思吗?同桌互相说一说

  有什么地方不懂的?想问大家的。(实物投影)

  8、揭示课题

  师:这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)今天我们用到了哪些旧知识?现在你能说说应该怎样笔算两位数乘两位数吗?

  师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。

  23

  × 13

  ———

  69

  41

  × 21 230

  299

  9、理解个位“0”不写的意思

  31

  × 12

  ———

  62

  310

  372

  1)观察这三个竖式,跟以前两位数乘一位数的笔算有什么地方不同?为什么会出现“两层楼”的情况?(因为乘了两次,第一次是第二个因数的个位去乘第一个因数,第二次是第二个因数的十位去乘第一个因数)

  (2)除了要乘两次外,还有什么共同的地方吗?(第二次乘得的积的末尾都是“0”)为什么末尾都有“0”?那这个“0”不写可以吗?如果横式中不写可以吗?为什么竖式中可以而横式中却不可以?(竖式中有数位)“0”省略会不会影响计算结果?但要注意什么?因此我们通常把个位的 “0”省略不写。

  (3)其实个位不写“0”还有一个更大的作用,(观察板书)只要算第二个因数十位的时候,跟十位对齐就行了,这样两位数乘整十数就变成了两位数乘一位数。但有一点算得的积必须与哪位对齐?(十位)

  (4)省略“0”以后要注意什么?

  三、巩固方法,推广应用

  1、现在我们用这种形式笔算完成34×12 41×21

  (1)做之前有什么要提醒自己和大家的吗?

  (2)(实物投影)学生笔算并汇报

  (3)现在同桌互相说说两位数乘两位数的笔算应该怎么算?

  2、师:在我们生活中用没有用到过“两位数乘两位数”的例子?(一学生举例可请其他学生笔算完成)

  3、师:老师也来举个例子并笔算。出示:

  一套12本,每本24元。一共要付多少元?

  4、帮老师解决一个问题

  出示:

  ⑴61个小朋友去看电影,买票一共需要多少钱? (学生认为还少了每张票的价钱)

  师:电影院售票窗口有这样一个告示 :成人票每张50元 儿童票每张24元

  ⑵学生笔算

  怎样列式?为什么要与24相乘而不是50?

  ⑶多媒体对照

  61

  × 24

  ———

  244

  122

  1464

  ⑷ 1张票要( )元 60张票要( )元 61张票要( )元

  5、 11×11= 12×11= 13×11=

  14×11= 15×11= 16×11=

  师:要掌握两位数乘两位数的笔算,必须进行大量练习。现在我报题,你们笔算。

  (教师随时报得数)我已经好了,你们呢?

  师:很奇怪是吧,是不是老师把这些得数全背出来了?其实这里就有数学秘密在,有兴趣的话下课可以去找找

  机动:出示图片《脑筋急转弯》每本16元 《小博士观察手册》每本24元

  三(2)班小朋友准备700元钱,想每人买一本相同的书,应该买哪种书?

  四、课堂小结

  师:今天这节数学课你有什么收获?你是怎样学习的?

  师:今天我很高兴,感觉真好!这种感觉是大家给我的,所以我要特别谢谢你们,以后有机会咱们再在一起上课,好吗?

  反思:

  首先,我想谈谈对教材的理解。这部分的学习内容是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。

  本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,包括两位数乘两位数笔算的过程都仅仅围绕乘法的意义来展开;第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,主要是能解决这几个问题,第二个部分积的末尾“0”能不能省?会不会影响计算结果?省“0”后要注意什么?

  由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。只有这样才能真正实现练习的优化。因此在探索检验过程中我一共安排了4道题:31×12 23×13 41×21 34×12 前两题主要是为理解算理服务的,后两题是为了巩固部分积的对位问题。计算是枯燥的,但也是有用的,引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识,从而从“有用性”的外在角度刺激学生的主观能动性,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法,使今后学生面对没出现过的题目、类型或其他生活中的问题,不再惊慌不已、束手无措也是我本节课要传达给学生的:原来新问题也不可怕,也只不过是旧知识的重新建构。

  在教学的过程中我也发现了自己的许多不足,特别是作为一名教师课堂智慧的缺少,如课堂提问的策略问题,面对学生的突发问题,不知道怎样去引导。在今天部分积“0”问题的处理上就花费了大量时间,并且出现了很多重复教学的情况。我想了有了失败,才会去找原因,才会去思索,才会不断去实践,这样在实践反思中不段磨练自己,锻炼自己。