运算定律教学反思
作为一名到岗不久的人民教师,我们要有一流的课堂教学能力,借助教学反思我们可以学习到很多讲课技巧,那么教学反思应该怎么写才合适呢?以下是小编为大家收集的运算定律教学反思,希望对大家有所帮助。
运算定律教学反思1
本节课主要学习小数的简便计算,简便计算的依据是根据整数乘法运算定律推广得来的。本节课的内容对于优生来说,还是很容易掌握的',但对于学困生来说,有比较大的难度。
本节课采用了小组合作学习的方法,让优秀的小组长担任小老师点对点的辅导学困生,这样既减轻了老师的工作量又提高了教学效果,同时也使优秀学生和学困生都有进步。这是非常好的。
在学习过程中,乘法的分配律则明显是学生的难点,部分学生无法举一反三。如4.8×9.9,2.7×99+2.7这些稍有变化的简算题错误率较高。在以后的复习课中,要重点复习乘法分配律的灵活应用。
在小结时,学生的表达能力比较有限,主要是因为平时训练不够,学生会用学过的知识解决一些数学问题,但却不能用语言概括这些数学活动,这需要以后的课堂中长期的引导。
运算定律教学反思2
学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算。基本能够灵活运用。
然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)第二,学生能正确的分析算式,并正确的运用运算定律,对学生的`已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很生很多是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。
综上所述,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律。
运算定律教学反思3
《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的`头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
运算定律教学反思4
运算定律是很重要的一个知识点,必须让学生理解并能在解题中运用。首先是理解,交换律和结合律,根据字面的意思学生还是很容易理解的,但乘法分配率对学生来说就有点难度了。部分学生把“两个数的和与一个数相乘”,与“两个数的.积与一个数相乘”混淆。这个现象在学生练习时经常遇到。
如(15×8)×5=15×5×8×5,这在纠错中一定要强调,而且乘法分配率要多练习。
其二,在练习中要把握几种类型的题。如:6×(8—5);26—7—3;60—(35—15);60—(35﹢15);90÷3÷3;等几种类型。
其三:要让学生知道,学习了运算定律,可以使计算简便化。在计算时要学会灵活运用。
其四:要把握运算定律在应用题中的运用。应用题一直以来都是学生学习的一大难点,针对这一情况,要让学生多练、多想、多问,从量到质,逐步提高学生分析问题的能力。
其五:数学的学习离不开现实生活,所以要让学生在实践中发现数学,运用数学,学习数学。
总之,通过不断的练习,通过在练习中不断运用运算定律,既可以锻炼学生的口算能力和计算能力。也能够培养学生学习数学的兴趣。使学生感受到数学课的魅力所在。
运算定律教学反思5
第三单元讲授的是加法运算定律和乘法运算定律。加法运算定律包括加法交换律和加法结合律;乘法运算定律包括乘法交换律、乘法结合律和乘法分配律。
学生对于加法运算定律和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于乘法结合律则运用不是很好,乘法分配律则更为糟糕。
细想有以下几个原因:
第一,学生现在只是能够初步认识,弄明白这三个乘法运算定律,还不明白这几个运算定律的.作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,尤其是乘法分配律,它是乘法和加法的运算定律,学生忽视运算符号,极易把乘法分配律和乘法结合律混淆。
第三,对于乘法分配律,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
综上所述,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等待讲解了下节内容简便运算之后,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。
运算定律教学反思6
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的'简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
运算定律教学反思7
学完加法交换律后,我感觉内容比较简单,学生也容易理解。做了几个简单练习后,我准备结束这个内容。按照惯例,我问了一句:学了这个定律,你还有什么问题吗?这时马上有学生提出:加法中有交换律,那么减法、乘法、除法中有没有这个定律呢?
我一阵欣喜,学生已经学会了接受新知识时把知识延伸开来。虽然打乱了我这节课的教学计划,我马上引导学生一起来总结刚才是如何学习得到加法交换律的方法,在此基础上提出能不能根据刚才举例—观察—归纳—验证的方法来想一想解决这个问题呢?学生们马上进行小组合作探讨验证。在经过短暂的讨论交流后,同学们一致认为乘法也有交换律,并能举例应用。但说到减法和除法时,有了分歧,开始争论起来。
生1:我认为减法中没有交换律,例如8-5=3,交换被减数和减数的位置5-8就不能减了。
生2:可以减得-3(学生已经从课外学到了负数的知识)
生3:差不一样,所以没有交换律。
这时又有一个同学反驳到8-8=0交换位置后还是8-8=0,我认为减法中有交换律。这时很多同学露出了困惑的神情,到底谁的对呢?短暂的沉默后,马上又有一个同学站起来说:减法中必须被减数和减数相同时,才能出现交换位置差相等的情况,这是很特殊的.情况。但加法交换律和乘法交换律是任何数都可以的,所以减法和除法都没有交换律。我带头为这位同学的发言而鼓掌,更为他们的勇气和智慧而高兴。学生们在争论中解决了问题,从中体验到了学习过程中的成功与失败,更加深了知识的理解,培养了学习的能力。
运算定律教学反思8
《网络教学已经持续一个多月了,上周我结束了第三单元运算定律的教学,通过研读教师用书,我制定了本单元的教学目标:1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能运用所学知识解决简单的实际问题。,为了达到这些教学目标,每节课我都认真分析教材,把教学设计做成课件给同学们上课,线上授课每节课只有20分钟左右,而且同学们只能通过连麦来表达自己的想法,有时网不好,连麦需要很长时间,一节课只能几位同学连麦,其它同学老师是听不到他们想法的,所以我会在课前设计一些预习任务,让同学们对本节课老师要讲的内容做到心中有数,上课时就不耽误时间,直接表达自己的想法即可。通过学生作业反馈和回看自己的教学视频,我发现了很多问题。以下是对本单元教学的一些反思。
1:对于加法、乘法的交换律同学们掌握得很好,在课上,同学们能举出一些相应的例子,还能根据这些例子总结相应的定律,同时还能用自己喜欢的方式表示加法、乘法的交换律。同学们的作业也都完成的很好。加、乘法结合律理解起来也不算困难,同学们能在学习了交换律的基础上,迁移运算定律,利用情境理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并总结出定律的内容。这几节课,虽然是网络授课,但同学们仍能从已有的知识经验出发,通过观察、交流、归纳,亲历了探究加法、乘法交换律、结合律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
2:较难理解的是乘法分配律。通过回看视频我发现同学们在课上能用两种方法解决问题,并能说出用每种方法的.原因,然后老师和同学们共同发现,这两种方法的结果是一样的,得出等式,归纳出乘法分配律。由于网课的局限性,只有几位同学说了他们的想法,不能听到更同学的想法。通过做题,我才发现学生对乘法分配律不能达到应用自如。部分学生对规律只是浅表认识,不能深刻理解其意义及作用。比如(ab)×c=a×cb×c,左边表示ab个c,右边是a个c加b个c,这样左右存在相等关系。在课上虽然我也是用这种方法讲解的,但有部分同学不太理解。在课上我也没有让同学们举例,只是我在说。这也是导致部分同学不理解的原因。在我以后的授课中我应注意这样的问题。
课上只通过例题得出乘法分配律,但应用起来乘法分配律的变型题目太多。比如:102×15.需要把102变成1002的形式;而99×46需要把99变成100-1的形式;89×4545需要把45变成45×1的形式;28×225—8×225减法这样的形式:还有根据字母表达式直接应用,或从左往右或从右往左应用等等。这些应用技能不是学生短时间内灵活掌握的。由于题型太多,有少部分学生在应用时又回到原点,白费力气。比如105×16,明明拆成1005了。下一步不去分别乘括号外边的数,而是又得到105。
本单元所学习的五条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法,被誉为“数学大厦的基石”。
总之,没有特效办法来解决,只能靠多讲多练。在实践中体会规律之奥妙,体会规律的应用确实能使计算简便。教材的安排意图也很明显,每学完一种规律,紧接着都安排了应用规律可使计算简便的题目。现在由于是网络授课,学生不能自律,没有达到及时和适量的训练,老师通过作业发现同学们的问题后,讲解也不是很方便,所以导致现在效果不是我期望的那么理想。
运算定律教学反思9
《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:
1.在解决问题的过程中探寻规律。
英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。”
在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。
接着,让学生用同样的`方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
2、对加法结合律的教学看法
在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。
运算定律教学反思10
在备课时,我原本以为这是一节比较简单的内容,四年级时学生就学习了整数以及小数的运用运算定律进行简便运算,而此节课只是将这些运算定律迁移到分数的加减运算当中。但是在今天课堂上却出现了很多波折。
课始,我从复习整数及小数加减法的运算定律及应用入手的,想让学生能从复习中回忆旧知,为学生学习新知做好铺垫。我先出示三道题:①25+36=36+25 ②(17+28)+72=17+(28+72)④(0.5+1.6)+8.4=0.5+(1.6+8.4)请学生抢答,然后说出简算的依据。但我发现,很多同学能用字母把运算定律表示出来,就是用语言表达不了。我想,可能是平时的语言训练不够,在教学过程当中,尽量让学生多说,鼓励说,提示说。开放性的教学对开发学生的聪明才智和创造潜能,切实有效地调动学生的积极性,使学生正真成曾学习的主人并获得全面发展有着重要意义。本公式复习完后,我给学生抛出了一个问题:如果这些字母是表示分数,这些定律还适合吗?接下来由学生自主举例证明。学生积极性很高,但我发现很多同学都是直接从左边等于右边再计算。她们完全不知道怎样是证明。最后,我只好引导大家一起证明加法交换律在分数的计算中适合,并说明证明的方法,然后再放手让学生去做。曾记得这样一句话“今天的教是为了明天的不教”,只有基础牢固了,学习方法到位了,才能更大地培养学生的`学习能力,促进学生更好地发展。
另外,虽然题目设计有层次,但出题样式可以更多。在现在的计算当中,不一定每一个题目都能进行简便运算,而且根据很多学生平时计算习惯来看,他们宁愿按部就班地计算也不去观察怎样计算可以更简便。所以,在平时的教学当中,多引导学生认真审题,能简算的就简算,这样逐步培养数感,提高计算速度及正确率。
运算定律教学反思11
本节课,我通过观察、比较和分析、推理等途径引导学生找到实际问题不同解法之间的异同系,自主发现并验证、归纳这两个运算律,初步感受运算规律作用,有意识地让学生应用已有经验,经历运算律的发现过程。
一、在导入新课这一环节,我让学生回顾学过的运算,得出课题,让学生由课题思考本节课所学的知识,这样设计使教学活动的探究性更浓一些,同时也为接下来的学习留下了创新的空间 。
二、新授环节,我通过创设学生熟悉的生活情境,引导学生获取信息,让学生结合相关信息,提出用加法计算的问题。学生都能准确提出问题,这为接下来探索规律奠定了基础。在这个环节,我进行了创新处理,让学生开放思维,尽情提出问题,并将本节课探究活动必要的三个问题同步呈现出来,同步引导学生用不同的方法列式解答,同步通过口算揭示等式,为下面的探究运算律做好有效的铺垫,促进后面探究活动更加紧凑流畅。在首次探索运算律,学生还不懂得运用科学的.探究方法,我在此环节探索加法交换律的设计中,加强了教师的引导作用,启发学生按照“猜想——验证——总结”的模式深入探究规律,为今后探索数学规律,起到方法上的导向作用
三、在自主探索加法结合律这一环节,我在初步引导学生观察等式特点之后,放手让学生在合作组中自主探索第二个规律,真正做到让学生成为学习的主人,自主探索规律,学以致用。
四、最后,我让学生说一说上完这节课的心里感受。学生对哦能用自己的语言表达这两个定律,也会运用,效果还可以。
运算定律教学反思12
因为新课程提倡“自主探究、合作交流”的学习方式,结合我校堂构建模式要求的问题“质疑---自解----建构”这一教学模式和10+30,3+1的教学 操作模块,。我将培养学生的自学能力,教会学生探究学习作为最最基本的目标,这不仅要关注学生掌握知识的多少,更重要的是要关注学生是否亲历探索过程,是 否真正理解数学、是否在思维能力,情感态度和价值观等方面得到发展。我紧紧抓住“推广”两个字进行教学,精心设计了“四巧”即“巧”引入,“巧”探究, “巧”应用,“巧”巩固。课堂上,我没有占用过多的'时间去讲解,而是巧妙地点拨、引导。通过本节课的教学实践,我深深地体会到,留给学生自由发展的空间, 学生参与的是获得知识的全过程。不是模仿书本或接受教师提供的现成结论来进行学习,而是自己本人把要学习的东西发现或创造出来,这样他们对所学的知识点就 记得快,记得牢,同时又培养了良好的学习习惯,挖掘了创造潜能。
没有完美,本课教学完成后的发现不足之一是将定律迁移的过程有些生硬不是那么完美,其二是在验证过程似乎有些单一没有说服力。于是我决定对这两方面进行改进。进行第二次设计。
将25×95×4 125×( 17×8) 17×25+83×25 直接演变为:2.5×95×0.4 1.25×(17×8) 17×0.25+83×0.25
四道算式直接加上小数点问学生可以怎样计算,,为什么要这样计算?学生质会质疑,这样更顺利的迁移到小数计算当中。解疑过程让学生每人举一例乘法交换律, 全班六十余人会有六十多种结果但都可以验证小数同样适用。教师还鼓励有新发现的学生。(其实不会有)。另外几种定律也是采取小组先交流再全班汇报。这样一 来突出了验证过程增强了广度。有利于学生掌握用运用。
运算定律教学反思13
《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:1.在解决问题的过程中探寻规律。 英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。” 在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。 接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。2、加法结合律的教学的看法 在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的`特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。所以我们还在探索、反思是否有更好的题材与方法来教学加法结合律。 对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
运算定律教学反思14
小学阶段的数学总复习,我本着每天复习内容少而精的原则,把所要复习的内容理解透掌握好。
本课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,我改变以往的做法,老师出题学生做,而是让学生自己自编或搜集简便运算的题目。这样学生积极性更高了,看我编的题目能不能选上。学生在编题和选题时要进行大量的阅读,这本身就是一个自我复习的'过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:
(1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。
(2)关注了学生易错的题目。
(3)关注了一些生僻的解法。我们要相信学生,给学生一个舞台学生会还你一片精彩。
最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,让学生以竞赛、限时做题看谁做得又多又对等多种形式进行训练,计算题枯燥无味,学生在测试中,如果做的好,采取一些鼓励机制,如加分或加星等。
整堂课下来学生的精力高度集中,教学效果也很好。
运算定律教学反思15
《整数加法运算定律推广到小数》一课的教学目标是:通过有限个例证明让学生理解整数的运算定律在小数运算中同样适用,能根据特点正确应用加法的运算定律进行小数的简便运算,培养学生的计算技能。本课的教学设计朴实,概括为以下几点:
1、准确定位,提高课堂效率。本班学生对整数加法的交换律、结合律,及减法的性质已熟练掌握,并能正确运用于加、减简便计算,根据这一认知和技能水平,教学中不以复习铺垫旧知来实现知识迁移,而直截了当引放新课的情境,提高了40分钟的课堂效率。
2、实现情境创设激发学生学习新知识的愿望。教学情境是直接为教学目标,教学内容服务的,是学生掌握知识、形成能力、发展心理品质的环境。通过童话故事的情境导入,充分激发学生学习新知的欲望,使学生自觉地进行小数加减简便算法的探索活动,融入新知识的学习中。
3、调动学生已有的生活知识经验,构建数学模型。结合学生原来的.生活经验,大胆放手,给学生思考的空间,成为数学学习的主人。在学生独立自行计算,发展学生的个性的基础上,再让学生从不同的算法中比较、悟出整数加法定律在小数计算中同样适用。通过情境中特设计的两道都能用定律进行简便计算的例题,使学生在有限个例证中证实了初步构建的数学模型,懂得能否凑成整数是判断小数加减算式能不能进行简便计算的依据。
【运算定律教学反思】相关文章:
《运算定律》教学反思06-09
《运算定律》教学反思04-06
《运算定律》教学反思06-16
运算定律教学反思08-21
运算定律教学反思04-06
《运算定律》教学反思06-16
运算定律教学反思模板02-01
乘法运算定律教学反思09-23
最新乘法运算定律教学反思09-10
《运算定律与简便算法》教学反思10-03