一元二次方程数学教学反思

时间:2024-09-25 17:15:26 教学反思 我要投稿
  • 相关推荐

一元二次方程数学教学反思15篇

  作为一名到岗不久的老师,课堂教学是重要的任务之一,通过教学反思可以快速积累我们的教学经验,教学反思我们应该怎么写呢?下面是小编为大家收集的一元二次方程数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

一元二次方程数学教学反思15篇

一元二次方程数学教学反思1

  教学背景:

  在《实际问题与一元二次方程》这一单元教学中,师生共同存在一个困惑,这困惑源于九年级数学《教师教学用书》102页测试题第13题:百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价1元,那么平均每天就多售出2件。要想平均每天销售这种童装盈利1200元,那么童装应降价多少元?

  解:设平均每件童装应降价X元,由题意得:

  (40—X)(20+2X)=1200

  解之得 X1=10 , X2=20

  X1=10 ,X2=20均达到了扩大销售量,增加盈利,减少库存的目的,所以都满足题意。

  答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或20元。

  对于我的解题思路,善于动脑筋的学生提出不同的`质疑:(1)降价20元,薄利多销,更能减少库存,应选最优的方案。所以只选取X=20。(2)降价10元,每天销售40件,同样能盈利1200元。库存部 分还可继续盈利,这样在减少库存的基础上能进一步增加盈利,所以只取X=10。学生的不同见解,说明学生善于动脑思考,我及时给予了鼓励;要敢于向教材挑战、敢于向老师质疑。而对于这道题最合理的解法,我们师生共同关注、共同探讨。

  课后,我与同行交流、查阅资料,并利用星期天到新华书店、新奇书店、教育书店翻阅教辅资料。经过一星期的查阅搜集,我筛选了一组类型题,课前印发给同学们,在课堂上进行专题学习,师生带着困惑共同去探究。

  教学目标:

  1、进一步培养学生运用一元二次方程分析和解决实际问题的能力,再次学习数学建模思想。 2、将同类题对比探究,培养学生分析、鉴别的能力。

  教学重点:

  培养运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。

  教学难点:

  将类同题对比探究,培养学生分析、鉴别的能力。

  教学内容:

  第1题选自九年级数学《教师教学用书》102页测试题第13题(见上)。

  第2题:选自九年级数学《学苑新报》第4期第15题。某市场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元, 为了扩大销售,增加利润,尽量减少库存,市场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?

  第3题:选自九年级数学《新课标点拨》270页第27题。某商场销售一批儿童玩具,若每天卖20件每件可盈利40元 ,为了扩大销售,尽快减少存库,商场决定采取适当的降价措施,调查发现,若每件玩具每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,那么每件玩具应降价多少元?

  第4题:选自阶段性教学质量评估检测第4页第七题。西瓜经营户以2元/千克的价格出售。每天可售出200千克,为了促销,该经营户决定降价出售,经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克,另外,每天的房租和固定成本共24元,该经营户要想每天盈利240元,应将小型西瓜每千克售价降低多少元? 课堂上学生积极参与探究、分析对比得出:第(1)、(4)两题的两个答案都满足题意。第(2)、(3)两题为尽快减少库存,只选取降价多的那个答案(这与资料中的答案相吻合)。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案都满足题意。

一元二次方程数学教学反思2

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值;

  2、验判别式是否大于或等于0;

  3、当判别式的数值大于或等于0时,可以利用公式求根,若判别式的数值小于0,就判别此方程无实数解。

  在讲解过程中,我要求学生先进行1、2步,然后再用公式求根。因为学生第一次接触求根公式,求根公式本身就很难,学生可以说非常陌生,如果不先进行1、2步,结果很容易出错。首先,对于一些粗心的同学来说,a,b,c的符号就容易出问题,也就是在找某个项的系数或常数项时总是丢掉前面的符号。其次,一无二次方程的求根公式形式复杂,直接代入数值后求根出错一定很多。但有少数心急的同学,他们总是嫌麻烦,省掉1、2步,直接用公式求根。

  为什么会这样呢?我认为有这几方面的原因:

  一是学生没体会这样做的好处,其实在做题过程中检验一下判别式非常必要,同时也简化了判别式的值,给下面的运算带来方便。这样做并不麻烦,而直接用公式求值也要进行这两步。

  二是学生刚学习公式法,例题比较简单,对于简单的`题,这样做还可以,但一旦养成习惯,遇到复杂的习题就不好办了。

  三是部分学生老是想图省事,没学会走,就想跑,想一口吃个大胖子。

  在今后的教学中,还要加强对新知识学习过程中格式和步骤的要求,并且对习惯不好的同学要进行耐心细致的讲解,让他们认识到这样做的弊端,掌握正确的学习方法,提高正确率。

一元二次方程数学教学反思3

  这是一节复习一元二次方程解法的课,主要通过复习一元二次方程的解法,了解学生对知识的掌握情况,加强对学生的学法指导。

  本章内容中重点为一元二次方程的解法和应用。我将复习设为两节,第一节重点讲解法。思路:以学生为主体,注重学生自我发现,了解自己的不足,同时,注意加强运算。总的设计思路较好,过程中有一个地方费时较多,主要是我没有吃透“课标”,对于一元二次方程公式法的'推导过程不应让学生推导,因为在此费时过多,所以最后的小测试没来得及做。另为,在练习中解方程时,由于时间关系,没有让学生比较,而是由我代办,这样效果反而不好。

  通过复习,我感到,在复习时一定要好好研究课标,吃透课标。另为,注意学生的分析,教师不要代办太多。

  看过九年级数学一元二次方程的解法教学反思的还看了:

一元二次方程数学教学反思4

  方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

  本节课的整体过程是这样的,通过三个例题让学生掌握一元二次方程根的判别式及根与系数关系的应用,总的来说,虽然课堂上同学们总结错误不少,总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了。学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的'练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

  另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

一元二次方程数学教学反思5

  用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。

  如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?

  分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加X人,即(30+X)时人均旅游费用(800—10X)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”

  (2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的.解题技能,收到事半功倍的效果。

  (3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。

  尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。

一元二次方程数学教学反思6

  一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。

  列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的`百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

  在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

  总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。

一元二次方程数学教学反思7

  1、教学结构。

  新课程改革的核心目标是全面推进以培养创新精神和实践能力为重点的素质教育,培养21世纪所需的创新人才,这就要求在教学过程中既重视基础知识、基本技能的教育,又要重视创新精神和实践能力以及良好道德情操的培养。因此教学结构采用“以学生为主体—以教师为主导”的教学结构。通过对教学内容、学习活动等的设计,使学生在学习过程中既有很大的自主权,又能保证其学习不会发生质的偏离,能在适当的时候得到教师或伙伴的指导。学生处于这种开放式的学习环境是有程度限制的,这节课的教学过程中虽然在每一个小的学习环节都是采取的学生自主学习的方式。

  但从整来教学的主导性太强,学习一直被老师牵着鼻子走。对一些思维速度的学习是可行的,而对于一些反应速度慢的学生来说跟着吃力,很快就失去学习的积极性。因此教师还要再放一把,给学生更广阔的思维空间。尤其是在环节的'衔接过程,由学生思考下一步要做什么。学生是完全能够做到的,因为在复习时已把解决实际问题的一般过程复习了。

  2、学生学习方式和学习效果。

  在教学过程中虽然以学生为主体,以自学为主。但是其积极主动性在某些同学来说还是不高的。对知识的获得的成就感也没有表现得那么明显。对于知识的广度和深度也没有举一反三的效果展示,更何况创新思维的培养。例如应在例题完成时,根据老师提出可以用设速度的方法为例,同学们还有什么方法?这样就起到了点睛的作用,为学生思维的开发提供了一个空间。只是重视了知识的巩固和运用,和解决问题的训练。虽说在总结时进行了思想教育,也没有见其明显的反馈。培养学生合作的小组学习不免有些形式化。因为在小组协作时都属于自我陈述,无合作解题的意向。

  3、教师的教学方式和教学效果。

  教师在教学过程中处于主导地位应关注学生分析,解决解决能力的培养;应关注学生交流协作表达能力的培养,应关注学生创新意识、能力的培养。从这些方面本节课教学过程中都表现的不足。还应提高在这方面的设计。还应提高驾驭课堂能力。

  教学方法单一。几乎都是教师提问学生回答的形式。使整个课堂的也十分音调。学生的自主学习,探究学习,协作学习效果也不是很好。

  教师的语言,在教学过程中教师的语言的地位是非常重要的,直接影响教学效果的成败。每一次出公开课都是一个锻炼学习的机会,从中能找到自己的一些缺点和不足。如在教学过程中由于语速过快而出现吐字不清的现象,口误出现频率也很高。语言表达能力还需要不断的锻炼。

  培养学生的分析和解决问题能力,虽然不是一朝一夕的事情,但是必须重视每一次机会。特别提出的是王亮这名同学。这是一个比较特殊的学生,他的计算能力非常之强,速度非常之快,全班第一。记忆力也如此。而分析能力和解决问题能力就反过来了。举个例子,三角形的两个直角边是9厘米,三角形的面积是10平方厘米。如果设其中一个为X,那么另一个直角边可以表示为什么?这样的分析题都不能完成。他这种情况主要是没有掌握分析方法。因此每到一些简单的分析题时都要求他独立完成。在这节课上又出现了所问非所答的情况问“跳水运动员跳到最高点时的速度是多少?”而他回答的却是平均速度。显然他平时不认真分析老师说的话或应用题的题意。只有从平时,从基础抓起。不放过一次机会。

  还有一点值得提出的是教学过程中一定及时纠正学生的错误。在这堂中有多处学生的错误没有得到老师的纠正。如:在计算过程中,最大数加上最小数的和除以2或可以说(最大数+最小数)/2。学生没有加括号,也没有说“的和”都是错误的,要及时加以纠正。

  4、应注意的几个问题

  1)教学目标的完成。

  基本完成了基本知识和基本技能的学习目标,也对学生进行了情感教育,但是创新思维的培养没有体现出来。从始至终,学生都是有理有据的回答老师的提问。在总结分析时,教师只提到了有多种做法,学生可能是一头雾水。很可惜的失去了一次对学生创新思维培养的机会。

  2)教学环节的灵活性。

  教学的主动权牢牢的抓在教师的手里。更要重视教学环节的灵活性。这样才有可能抓住学生的思维的火花,深入探究。推动学生思考的深度和广度,培养学生的创新能力。

  3)个别化学生的全面发展。

  教学中一定从学生的实际出发,学生特征涉及到智力因素和非智力因素。根据不同的情况在一节课学完之后,每一个同学都有其不同的收获。这一点做得很不好,很明显只有三个学生能积极的主动学习,不断解答老师的提问,而另三个同学虽然有特殊原因,但在教学过程中

一元二次方程数学教学反思8

  1. 教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。

  2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”

  3、以导学案的形式,创设由特殊性到一般性的`实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。

  4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。

  5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。

  6、学案的设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。

  7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。

  8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。

一元二次方程数学教学反思9

  本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重中难点的.体现。

  在本节课的活动1中,通过实际问题引入学生熟悉的一元一次方程,让学生掌握利用方程解决问题,从而顺利过渡到后面的问题。活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。活动3意在强化学生所学知识,并运用到实际问题中去。

  教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。

一元二次方程数学教学反思10

  1.注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2.关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

  3.强化行为反思

  “反思是数学的.重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4.优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。《人教版九年级数学下册。

一元二次方程数学教学反思11

  一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生很容易理解。这里我通过两个实际问题,一个是求长方形的面积问题,另一个增长率问题,让学生经历了二次项的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的练习,如若关于x的方程(m+1)x|m|+1-2x+3m=0是一元二次方程,求m的值,学生的出错率也不低;如果再问m为何值时这个方程是一元一次方程,正确率就会很低,所以可以说学生对此类考察方程概念的题型掌握得还不是很好。本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。本节的第三个知识点就是一元二次方程根的概念,课件上关于这个知识点设置了两个练习:

  练习1:判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根?

  练习2:已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值。

  对于这两个练习学生在课堂上都回答得很快,但在课后的`作业中发现了一个非常严重的问题,就是学生他知道要用“代入检验法”来判断一个值是不是方程的根,但对于如何书写这个判断过程却没有任何思绪,以致于在作业中很多的同学或是直接下结论或是在判断时都没有分开“左边=”“右边=”,这块书写的过程是我教学的一个疏忽,所以很多学生没有掌握。此外,对于“一元二次方程的根”这个知识还有一类这样的提高题,如:已知一元二次方程ax2+bx+c=0,若满足a+b+c=0,4a-2b+c=0你能通过观察知道这个方程的根吗?实际上这类题目中有着一种逆向的思维,所以学生不是很容易理解和掌握。

一元二次方程数学教学反思12

  一、教学之前的思考

  基于对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。

  二、实施教学所遇到的难点

  在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的`方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。

  三、教学后的及时改进

  为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单

  通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。

  四、反思

  1、备课应该更加务实。

  在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。

  2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。

  五、教材的独到之处

  教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。例如课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

  例如1:新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900远时,平均每天能销售8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

  2、如图,在一块长92米、宽60米的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885平方米的6个矩形小块,水渠应挖多宽?

  3、某农场要建一个长方形的养鸡场,鸡场的一边*墙(墙长25米),另三边用木栏围成,木栏长40米。

  (1)鸡场的面积能达到180平方米吗?能达到200平方米吗?

  (2)鸡场的面积能达到250平方米吗?

  如果能,请你给出设计方案;如果不能,请说明理由。

  在这里我重点谈谈第3题;这是一个很现实的生活问题,很能调动学生的创造热情,但同时很容易被生活中的经验所蒙蔽。很多同学认为,要使鸡场的面积最大,当然要把25米的墙完全利用起来,所以最大的面积应该是平方米,故很快可以解决问题,鸡场的面积能达到180平方米,不可能达到200平方米。实际上当真如此吗?这时引导同学利用数学知识,构建数学模型来解决问题。问题中设问"能达到的200平方米吗?"。设这时的养鸡场宽为X米,则养鸡场的长为(40-2X)米,根据题意,可得到,经过计算,,从而得出一个出乎意料的结果:不仅能达到200平方米,而且养鸡场的墙体不需完全利用,只需要它的一部分,这时学生体会到,即使整面墙都用上,它的面积并不是最大的。

一元二次方程数学教学反思13

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值

  2、验判别式是否大于等于0

  3、当判别式的数值符合条件,可以利用公式求根、

  学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、

  1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

  2、求根公式本身就很难,形式复杂,代入数值后出错很多、

  其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、

  通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的'火花,具体有以下几个特点:

  本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。

  例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。

  课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。

  需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。

一元二次方程数学教学反思14

  学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的形式;形如x+(a+b)x+ab=0的.形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。

  方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。

一元二次方程数学教学反思15

  问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

  1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

  (学生很自然列方程解决)

  改换题目条件和问题:

  2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

  分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

  于是学生很容易完成下列求解。

  解:设该商品定价为x元时,可获得利润为y元

  依题意得:y=(x-40)?〔300-10(x-60)〕

  =-10x2+1300x-36000

  =-10(x-65)2+6250300-10(x-60)≥0

  当x=65时,函数有最大值。得x≤90

  (40≤x≤90)

  即该商品定价65元时,可获得最大利润。

  增加难度,即原例题

  3、已知某商品的进价为每件40元。现在的`售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

【一元二次方程数学教学反思】相关文章:

一元二次方程教学反思07-25

《一元二次方程》教学反思09-18

一元二次方程教学反思08-12

一元二次方程教学反思04-04

解一元二次方程教学反思07-16

《2.1一元二次方程》的教学反思06-10

一元二次方程的概念教学反思04-07

一元二次方程的解法教学反思04-04

一元二次方程概念的教学反思03-19

《一元二次方程解法》教学反思07-19