《长方体的表面积》教学反思

时间:2022-04-16 18:07:50 教学反思 我要投稿

《长方体的表面积》教学反思

  作为一名人民老师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,写教学反思需要注意哪些格式呢?下面是小编为大家收集的《长方体的表面积》教学反思,仅供参考,欢迎大家阅读。

《长方体的表面积》教学反思

《长方体的表面积》教学反思1

  新课程倡导学生学习有用的数学,并尽可能在有趣的情境中进行学习。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:

  一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。

  二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。

  三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。

  四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。

  五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。

《长方体的表面积》教学反思2

  长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学习的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。

  面对以往学生在学习时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。

  我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体----教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?在竞赛的氛围中同学们都能很快地说出每个面的面积的求法。接着我要求学生换方向,与原来方向成90度,接着提问:“现在前面的面积怎么求?左面呢?上面呢?”从而使学生明白,长方体摆放的位置不同,求每个面的面积所用的条件也有所不同,要根据具体的长方体摆放的位置,来决定求每个面的面积应该用哪些条件。经过这样训练,学生不但能理解每个面的长与宽和原来长方体的长、宽、高的关系,而且还能根据我所给出的数据说出每个面的面积,再算出长方体的表面积。在遇到计算特殊物体的表面积,如鱼缸、通风管、游泳池等,我启发学生先钻进“盒子”里,再想象应该计算哪些面的面积,哪些面的面积不用算,这大大地提高了解答的正确率。

  一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。

  当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练习题的错误率很高。这也是从一个侧面教育学生要养成良好的。平行四边形面积教学反思国土面积教学反思多边形面积教学反思。

《长方体的表面积》教学反思3

  1、侧重学生解决生活实际问题能力的培养

  以前我在上这节课的时候,第1课时是没有教学实际问题中求五个面的情况。我发现在第1课时就解决实际生活中求五个面的问题有两点好处:一是如果第一课时都是让学生求长方体、正方体六个面的,再让学生去解决实际生活中求五个面、四个面的问题,难度会增加。因为学生会受到定势思维的影响;二是提高了学生灵活运用知识解决问题的能力。如2、一个正方体的木箱,棱长4分米,做这个木箱至少用多少平方米木板?和3、老师想做一个玻璃鱼缸,它的形状是正方体,棱长3分米。制作这个鱼缸至少需要玻璃多少平方分米?这两题让学生一起去做,学生在解题过程中,能提高他们的审题、辨题能力,也是学生思维的操练。

  2、旧知的必要复习,为学生新知的学习打好基础

  让学生介绍手中的长方体,从而复习长方体的特征。再通过让学生摸长方体的各个面、闭上眼睛想长方体在学生头脑中建立模型。最后让学生摸长方体的每个面,说出求每个面面积的方法,找出长方体每个面的面积与长方体的长、宽、高之间的关系。突破了本节课的教学难点,使长方体表面积的计算方法水到渠成。

《长方体的表面积》教学反思4

  【教学实录】

  (一)创设情境,提出问题

  师:(电脑出示饼干盒、木箱)这两个物体大家认识吗?它们分别是什么体?

  生1:饼干盒是长方体。

  生2:木箱是正方体。

  师:对于长方体和正方体你们已经知道了什么?

  生1:长方体和正方体都有6个面,12条棱,8个顶点。

  生2:长方体相对面的面积相等。

  生3:长方体的每个面都是长方形,可能有两个相对面是正方形。

  生4:正方形的6个面的面积相等。

  ……

  师:同学们知道的可真多,那对于这两个物体你还想知道什么?

  生1:我想知道它们的12条棱共有多长?

  生2:我想知道它们的面积是多少?

  ……

  师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)

  (二)探究

  1、表面积的意义

  师:那什么叫做长方体和正方体的表面积?

  (拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?

  生1:(边摸边说)长方体6个面的和是它的表面积。

  生2:(边摸边说)正方体6个面的和是它的表面积。

  师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。

  师:现在知道了长方体和正方体6个面的总面积,就叫做她们的表面积。我们身边还有许多物体,你能举例说说它们的表面积吗?

  生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)

  生2:橡皮的6个面的面积和是它的表面积。(边说边摸)

  ……

  师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。

  (指名学生上来边摸边说)

  师:象这些物体几个面的总面积,就叫做它们的表面积。

  2、表面积的计算

  (1)一般长方体的表面积计算

  师:现在我们知道了什么叫做物体的表面积,(拿出1号长方体木块)请同学们猜猜这个长方体的表面积可能会和它的什么有关?

  生1:可能和长方体的棱长有关。

  生2:可能和它的长、宽、高有关。

  师:那请大家再猜猜它的表面积大概会是多少?

  生1:74平方厘米。

  生2:90平方厘米。

  生3:120平方厘米。

  ……

  师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?

  生:敢。

  师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。

  数据记录计算方法

  长方体长:

  宽:

  高:

  (自主探究)

  师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)

  师:各小组准备汇报你们组里的方法,汇报时先说说记录下来的数据,再说说你们是怎样求得它的表面积?

  生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)

  生2:我是先算上面的面积10×6,因为上下两个面的面积相等,所以上下面的面积和是10×6×2,再算前面的面积10×4,因为后面的面积和它也相等,所以前后面的面积和是10×4×2,然后算左侧面的面积6×4,右侧面的面

  积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)

  生3:10×(4+6)×2+4×6×2(方法三)。

  师:你是怎样想的?

  生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。

  师:你真聪明!

  师:现在我们来看看刚才的猜测,我们猜得准吗?

  生:不准。

  师:不过同学们还是很能干,研究出了这么多种计算长方体表面的方法,那么,在这么多种计算方法中,你比较喜欢哪一种?

  生1:我比较喜欢第一种方法。

  生2:我喜欢第三种。

  ……

  (2)特殊长方体、正方体的表面积计算

  师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。

  生独立计算后交流

  师:我们先来看2号物体,说说你是怎样解答的?

  生1:8×5×2+8×5×2+5×5×2。

  生2:(8×5+8×5+5×5)×2。

  生3:8×5×4+5×5×2。

  师:说说你是怎样想的?

  生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。

  师:这三种方法,你们比较喜欢哪一种?

  生:第三种。

  师:我们再来看看这个正方体,你是怎样求它的表面积的?

  生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。

  生2:5×5×2+5×5×2+5×5×2。

  师:哪种方法比较简便?

  生:第一种。

  师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。

  ……

  【教学反思】

  1、鼓励大胆猜想,诱发探究意识

  关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。

  2、搭建探究舞台,挖掘思维潜力

  在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的过程中,每个学生都在根据自己的体验,用自己的思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。

  3、提供交流机会,实现合作互动

  由于学生之间存在着各种差异,学习内容开放,学习活动自主。因此,面对同样的问题,学生中会有出现各种各样的思维方式

《长方体的表面积》教学反思5

  长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学习的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。

  面对以往学生在学习时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。

  我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体————教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。

  当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练习题的错误率很高。这也是从一个侧面教育学生要养成良好的认真审题的好习惯,在今后的练习中,我会进一步训练学生注意这一点。

《长方体的表面积》教学反思6

  设计思想

  “长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——平面——立体”螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力,浸润情感态度是素质教育的应有之义,“长方体和正方体和表面积”一课,正是从这一思路出发预设、生成教学过程的。

  1、从生活实际引入新课

  创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调“要让学生在现实情境中和已有知识的基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。

  2、按知识形成发展过程展开新课

  知识的形成发展是有层次的,且与旧知识紧密相连。新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。

  3、运用现代化教育手段,显现知识结构

  学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。

  “长方体和正方体的表面积”教学案例与反思案例:

  一、创设情境,激发兴趣,理解表面积的意义。

  师:(出示一个长方体纸盒和一个正方体纸盒)猜一猜,这两个纸盒那个用的纸板多? 生:我觉得这个长方体用的纸板多。因为它比这个正方体长。

  生:我觉得这个正方体用的纸板多。因为它比这个长方体高。

  生:我觉得这两个纸盒用的纸板同样多。因为这个长方体比这个正方体长,而这个正方体又比这个长方体高。中和一下就同样多了。

  师:如果只靠我们这样空口无凭地去猜,能否得出正确结果?

  生:不能。

  师:那我们应该怎么办?

  生:我们应该分别计算出它们的六个面的总面积。

  师:你的想法真不错。长方体或正方体6个面的总面积就叫做他的表面积。摸一摸、说说长方体的表面积都包括哪儿?

  生:边指边说,包括上下、左右和前后六个面。

  二、动手操作,探究长方体的表面积的计算方法。

  师:老师给每个小组都准备了8个长方形,要求:从给出的8个长方形中选出6个长方形围成一个长方体,同时思考:(出示)①长方体的6个面之间有什么关系?②长方体每个面的两条边分别与相邻两个面的'边长有什么关系?通过量一量、剪一剪、拼一拼、摆一摆等方法求出长方体的表面积,并把讨论结果写在之上。

  生:小组活动。

  生:反馈交流

  第一种方法:我们先求出每个面的面积,再把这六个面的面积相加,就能算楚这个长方体的表面积了。

  第二种方法:我们先把长方体的六个面剪开,把相对的面摆在一起组成三大部分,再用长×宽×2+高×宽×2+长×高×2,就能算楚这个长方体的表面积了。

  师:你们的想法很好,还有其它想法吗?

  生:还可以用乘法分配律把第二种方法写成(长×宽+高×宽+长×高)×2,也就是把长方体纸盒剪成面积相等的两大部分上面、左面、前面和下面、右面、后面。

  师:你能够运用过去所学知识来解决新的问题,很会学习。在这些方法中,你认为哪种方法好?为什么?

  生:我认为第三种方法好,因为这种方法最简便。

  师:我们今天学的这种类型的题当然用第三种方法比较简便,但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。

  三、精心设计练习,逐步优化求长、正方体表面积的方法。

  1、用你喜欢的方法计算纸盒的表面积。(单位:厘米)

  2、选择求上、下地面是正方形的长方体表面积的最优方法。

  ①(5×3+5×3+3×3)×2

  ②5×3×4+5×3×3×2

  3、选择求长、宽、高相同的长方体表面积的最优方法。

  ①3×3×6

  ②(3×3+3×3+3×3)×2

  四、联系实际,灵活应用,培养学生创新的精神。

  1、讲下列物体的表面积所包括的面进行分类。

  (1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,

  2、一间教室,长8米,宽5米,高4.5米,要粉刷屋顶和四壁,除去门窗面积20平方米,粉刷面积是多少平方米?

  反思:

  《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。

  本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

  一、创设情境,以“争”激思

  新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,然后再让学生摸一摸、说一说长方体的表面积包括哪儿?这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

  二、实践操作,以“动” 激思

  数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的8个长方形中选取相应的面拼成长方体,同时让学生思考:①长方体六个面之间的关系?(相对的两个面是完全相同的。)②长方体每个面的两条边分别与相邻的两个面边长之间的关系?(每个面的两条边一定分别与相邻的两个面的一条边相等。)学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后让学生在小组活动中通过量一量、剪一剪、拼一拼、摆一摆等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。

  三、巧编习题,以“练”促思。

  在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,(图略,选择求长、宽、高都是3厘米的长方体的表面积的最优方法。①3×3×6 ②(3×3+3×3+3×3)×2 ③3×3×4+3×3×2)。以选择题的形式出现,学生在说算式意义的过程中很自然地发现了正方体表面积的计算方法,这一设计,改变了以往将正方体的表面积独立用一单位时间教学的方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。

  四、联系实际,以“用”促思。

  数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我先出示了以下几种情况,(1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,让学生从各种物体的表面积所包括的面进行分类。从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不可以千篇一律,死套公式,要根据实际情况具体问题具体分析。在此基础上,我又及时拓宽学生的思路,让学生举出在日常生活中,做哪些事与求长方体或正方体的部分面积有关,培养了学生的空间想象力和求异思维的能力。再有,与实际生活联系,学生乐学、愿学。

  本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,如何解决这样的矛盾,仍是我今后的重要研究内容。

《长方体的表面积》教学反思7

  教学《长方体的表面积》这一课,我主要想通过学生的操作,让学生理解表面积的概念,初步掌握长方体表面积的计算方法,会用求表面积的方法解决生活中的一些简单问题。

  课堂中,在学生认识了表面积的概念后,结合例题,我引导学生求长方体的表面积时,提出问题:“你能想办法求出这个长方体六个面的总面积吗?试着做一做”。不一会儿,两种方法写在了黑板上,学生列出了这样的算式:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2和(0.7×0.5+0.7×0.4+0.5×0.4)×2,我顺势引导学生得出长方体表面积的计算方法。这时,史渊博站起来说:“老师,还可以这么列算式:0.7×0.5×2+(0.7+0.5)×2×0.4”。

  说实话,这种方法我们在计算圆柱体的表面积时经常用到,而对于计算长方体的表面积时,我一直认为孩子们不会想出这种方法,所以过去几次教学这一课时从未介绍过。既然今天孩子们提出来了——这种预设之外的生成性资源,那我必须顺势开发利用。我接着提出:“这种方法对吗?”孩子们面面相觑,不知如何判断。“你能给我们讲讲是怎样想的吗?”看到孩子们如此的表情,我又继续提出问题。“这个长方体包装箱,先做两个底面,需要0.7×0.5×2平方米硬纸板,而长方体前后左右四个面展开是一个大长方形,这个大长方形的长是长方体两个长加两个宽的和,宽是长方体的高,所以这四个面的面积是(0.7+0.5)×2×0.4,把两个底面加四个面就是这个长方体六个面的总面积。”史渊博一口气说出了自己的想法。“是这样子吗?那我们动手将手中的长方体剪剪看吧。”学生动手将手中的长方体上下两个底面剪去,其余四个面沿一条高剪开,发现的确是长方形,而这个长方形的长是底面周长,宽是长方体的高,这种方法自然很容易理解了。这样一个教师认为不适合对学生讲的问题方法,随着学生的提出迎刃而解了。

  课后,细细琢磨,教师只不过是让学生说出了自己的想法,而实际是将学习的主动权交给了学生,结果创造了水到渠成的事。看来,学生是金子,只要我们真正把主动权还给他们,允许他们用自己的大脑思考,用自己的嘴巴表达,就能激起孩子们思维的火花,发出耀眼的光芒,我们的课堂也就更加精彩!

《长方体的表面积》教学反思8

  本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。另外,创设情境以“疑”激趣问题是思维的起点,课的开始我以问题:

  店员阿姨做一个生日礼物包装盒需要多少包装纸?引入课题,学生带着疑问观看实物,并讨论。通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心。让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。

  然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。

  我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:

  一个面一个面的面积依次相加;

  二个面二个面的一对对相加;

  先求出三个面的面积再乘以2;

  对于今天金校长提出的把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。

  实际生成时,学生只说出了其中的一种简便情况,如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出第四种方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。

《长方体的表面积》教学反思9

  本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,图在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,数出小长方体的体积,目的有二:一是抛弃繁索的动作,直奔中心;二是快速刺激学生的探索欲望。果然,课上学生的兴趣快速激起,为后面的探索活动提供了足够的情感准备,并羸得了充分的操作探索时间。

  本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因——正方体是特殊的长方体。同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。

  不足之处是练习的安排,应该更有层次和梯度,使学生在理解基础知识和掌握基本技能的基础上,在适当有些拓展,提高课堂四十分钟的效率,提高学生分析问题和解决问题的能力。

  

《长方体的表面积》教学反思10

  “长方体和正方体”一单元结束后,我上了两节复习课。教材中安排第一课内容为长方体和正方体的特征与体积单位;第二课时为表面积与体积。考虑到这样安排第一课内容显的比较少,而第二课练习时间较少,我就作了一下调整,把第二课中的表面积移到了第一课,以使第一课内容充实些,使第二课有更多时间进行拓展延伸,从而提高复习的效率。

  在“长方体和正方体的特征与表面积”这课中,对于第一板块的复习,主要以引导学生自己回忆与整理为主。课的一开始,即明确了本课复习的目标,然后让学生对照复习,归纳长方体与正方体的特征,小组内先行交流,互相补充。汇报时,教师板书成表格形式,并要求学生口述时配合手的动作。这样一方面避免整理时的零敲碎打,提高时间利用率,另一方面使得所复习知识更为系统化,直观化,有利于掌握、巩固。对后面的多练留出足够的时间。

  在第二板块练习中,我注重了练习的层次性。对表面积计算,较之基本计算方法,我更重视了对方法本身意义的理解。让学生列出求表面积的算式,不计算,但要写出算式中每步求的是什么,这样就为后面解决相关实际问题做好了准备。在应用练习中,我让学生自己举出生活中的相关实例,帮助他们补条件后再组织练习,这样也比教师直接出示题目对学生更有吸引力。

  纵观这一课,我尽量避免了对学生发言无价值的重复与不必要的讲授,而在关键处适度点拨,突出要点,在学生掌握较好之处省下时间用以拓展练习,基本做到了精讲多练。

《长方体的表面积》教学反思11

  通过本节课的教学,我总结出以下两点:

  1、理解表面积的定义上,出示一个长方体纸盒,要包装礼盒,需要多大面积的纸片,求什么,把一个生活实际问题转化为一个数学问题,也就是要去求这个长方体的表面积,让孩子们指一指表面积在哪里。这个时候不急着去计算这个长方体的表面积,而是让孩子们想一想在我们的生活场景中哪些地方需要计算表面积的,孩子们举例了给教室贴瓷砖、做纸箱、做鱼缸、给教室的们刷漆,等等,这个时候我会追问你的场景中的表面积在哪里,像鱼缸是会少一个面的。这样为学生建立了空间想象的表象认识,学生在后面完成解决问题时就会在脑海里有立体图形的浮现。

  2、在探索具体计算表面积我关注了几下几点,第一,先想计算策略,让孩子们说一说打算怎么计算,那孩子们都会说,把六个面加起来,有的孩子说了不必每一个面都求,对面相等,只要求出三组面。第二,让孩子们说清楚计算的过程,有条不紊的阐述自己的计算过程,我就追问为什么要乘以2这样的细节问题。第三,引导孩子去概括总结计算的公式,最后大家一起总结得到一个公式,用长宽高来表示这个公式。同时出示长和宽都相等的长方体,让学生体会,按公式计算不会重复或遗漏,这样的计算表面积更加是准确。第四、在出示长方体与正方体表面积公式之后,着手让孩子们去比较长方体与正方体表面积计算有什么相同与不同之处,我觉得这里的相同之处十分重要,让孩子们明白求一个完整的长方体和正方体的表面积实际上是在求外面六个面的面积总和,无论孩子们的计算过程如何,公式又是如何,本质就是求那六个面的面积之和。

《长方体的表面积》教学反思12

  《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

  1、以人为本,以学生发展为本

  这节课是在认识长方体、正方体特征的基础上进行教学的。整个教学过程是:从实际出发设置情境提出问题——引出表面积概念——当直觉无法判断时需要计算表面积——学生尝试求表面积——总结求表面积的方法、条件和规律——学生独立解决正方体表面积——应用知识,解决问题。这样设计,层次清楚、结构严谨、学生主动建构,积极回忆联想,使教材结构与学生的认知结构达到和谐的统一,真正做到“凡学生能想的,应该认学生自己去想”,从而使学生在获得真知的同时,也学会了怎样学习,个性得到了充分的发展。整堂课学生动手实践操作,合作讨论交流,积极主动参与探究,体现了“以人为本,以学生发展为本”的新理念。

  2、注重多种教学手段优化组合,培养学生的空间观念

  培养学生的空间念是空间与图形教学的重要任务,而求长方体表面积必须具备长方体每个面是由哪两条棱相乘的空间观念,这是教学的难点。为此,教师在教学中一方面充分运用电教手段,精心设计各种投影片(立体图),在投影片上用不同的颜色有规律地衬托出不同面的位置以及面与棱的关系,从而较好地化抽象为具体,克服了学生空间想象中的困难;另一方面,教师引导学生观察实物、立体图,将纸盒展开再还原整合,动手触摸长方体的面与棱等,也有效地增加了学生的空间观念,为独立探索长方体表面积打下了扎实的基础。

  通过这节课,我体会到教学方法、途径是各种各样的,教师自己要摒弃唯上、唯师、唯本的传统理念,不迷信静态的教材和传统的经验,将"已完成"的数学当成"未完成"的数学来教,使教师自身思维放开,富于创新。

  其次,不要以自身成人的眼光看待学生的思维,而应"蹲下身子",以儿童的眼光去欣赏数学,接纳学生的不同意见。尤其是对于学生"异想天开"的答案,不要过早作出简单的判断,更不能嘲笑、讥讽学生,而应耐心倾听,积极肯定,小心呵护学生刚刚萌发的创新意识。

  再次,教学不应围着自己的"教"转,应多为学生的"学"服务。应积极倡导延迟评价,多给学生表达自我的机会,尤其是当学生的答案"离奇古怪"时,教师不应急于主观猜测、简单评价,草率收场,而应真诚地多问几个"为什么?""你是怎样想的?"或许学生富有个性化的火花就会随之迸发而出。这时你会惊叹,学生的创造潜能是难以估量的,而课堂也会因学生丰富多彩的答案而变得精彩。

《长方体的表面积》教学反思13

  “长方体和正方体的表面积”教学内容,是在学生初步认识了长方体和正方体特征,知道它们都有6个面、12条棱、8个顶点。长方体的每个面都是长方形,相对的面的形状相同,大小相等;12条棱分为3组;相交于一个顶点的三条棱的长,分别叫做长方体的长、宽、高,以及正方体的6个面都是面积相等的正方形的基础上而学习的。对于表面积的概念与平面图形的面积,既有联系又有区别。同时是后继学习的基础。

  我认为表面积的概念的学习,要是通过学生对长方体特点的感知并懂得表面积的意义基础上,进行学习。学生虽然会正确求长方形的面积,但要求表面积,这是一个质的飞跃。为什么呢,因为是从平面到立体,从二维到三维。成人看似简单,而对小学生却有一定的难度。同时,小学生往往习惯于迁移,长方形面积明明是长×宽,而现在怎么变成长×高、宽×高了呢?这对于一部分学生来说,肯定存有困惑。所以要把长方体展开,变6个面为一个面,这种转化不是老师来完成,而是在学生思维中展开,因此,在前一课时就应打下一定基础:上下面:前后面、左右面等概念!对立面相等等知识点。再通过观察长方体的每一个面的面积任何计算!有没有简便方法等。

  在教学中,激发学生的学习积极性显得尤为重要!思维的活跃,积极的学习是本堂课成功的的关键。

  不足之处:在教学中、思维的发散显得不够!以至于在后来的无盖,甚至四个面计算中部分同学不理解!

  非常遗憾、值得反思!

《长方体的表面积》教学反思14

  《长方体的表面积》教学反思《长方体的表面积》是一节典型的概念教学课。它是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。为了让学生亲自感知表面积这一概念,在讲长方体的表面积之前我给学生布置了任务,要求学生自己制作一个长方体和正方体学具,调动学生感兴趣的学习情境,开课时我用学生亲手制作的长方体学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需求,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

  这样的教学,孩子们在直观感知,动手操作中认识了长方体的表面积,最后得出结论。数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。因为是从平面到立体,成人看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的平面图做出点拨效果会更好。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。数学知识从生活中来,但是他们生活常识较少,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问。应该对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学习新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在平时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。

《长方体的表面积》教学反思15

  今天教学《长方体的表面积》不大顺畅,除了课堂上魏博宇、毕峻伟同学因理解出现偏差,交流纠正浪费时间外,我认为教师的设计也存在很大问题。

  一、教学设计要删繁就简。

  1、复习导入内容可以再精炼一点。没必要从长方体和正方体的点、面、棱的方面挨个去比较,去订正,直接设计说出长方体和正方体的异同点,形式也没必要挨个抽学生回答,可以同桌互相交流,抽一组代表回答即可,这样既节省时间也抓住了重点。第二个练习题的设计可以直接让学生说出面积即可,其他学生判断,因为是复习内容,没必要像新课一样都是重点去分析。

  2、重点的内容重点突破。长方体的表面积探索是本节课的重点,也是在之前学习了长方体的特征和展开面的基础上进行的,所以可直接让学生借助实物或者展开图去探究长方体的表面积,关键是让学生理清弄顺长方体展开面的长和宽和原长方体的长宽高的关系,将小组合作“议一议”的内容作为重点,让学生们自己去探究、去发现、去总结,占用的时间也应该是比较重要的时间。

  二、牢记数学课的“三必讲、三不讲”。比如这节课上“什么是长方体的表面积?”在学生用自己的话说出来后,没必要定义读三遍,然后又抽取了10个同学依次回答问题。包括温故知新里的练习内容,只要学生回答正确,或者知错能改,没必要一道又一道的讲解。

  三、数学课应该精讲多练。而本节课学生说的多,而且环节过于罗嗦,将简单问题复杂化了,导致教学任务没有完成,练习又少之又少。

  以上原因都是老师个人的原因造成的,初次带五年级数学,对教材内容以及重难点内容抓不准、吃不透,设计上不敢求新颖只求能正确的教学下来就好,针对以上不足,我以后一定要勤学习,勤请教,争取快速提高自己的数学教学水平。

【《长方体的表面积》教学反思】相关文章:

长方体的表面积教学反思04-14

长方体的表面积教学反思15篇04-14

长方体表面积的教学反思范文(精选6篇)12-23

长方体和正方体的表面积教学反思12-23

长方体的表面积教学设计04-03

长方体和正方体的表面积教学反思(15篇)04-15

《长方体的认识》的教学反思04-09

正方体的表面积教学反思04-09

《圆柱的表面积》教学反思15篇04-13

正方体的表面积教学反思04-09