《梯形面积》 教学反思

时间:2024-09-21 19:42:29 教学反思 我要投稿

《梯形面积》 教学反思15篇

  身为一名人民教师,我们要有一流的教学能力,借助教学反思我们可以拓展自己的教学方式,优秀的教学反思都具备一些什么特点呢?下面是小编为大家整理的《梯形面积》 教学反思,欢迎阅读,希望大家能够喜欢。

《梯形面积》 教学反思15篇

《梯形面积》 教学反思1

  教材中对于梯形面积的计算公式的推导只给出了常规的推导方法。如何给学生提供具有挑战性的学习内容,引导学生更深入地进行探索,以更好地培养学生的思维能力,发展学生的智力,这是我们每一位教师都应该积极思考的问题。在教学中,我充分挖掘了教材的思维因素,注意沟通梯形面积计算公式与平行四边形面积计算公式在推导过程上的联系,引导学生多角度地思考问题,给学生的探索、思维提供了一个比较适合的台阶,使学生在学习中,真正体会到了探索过程的艰辛。

  在教学中,我紧紧抓住“梯形面积计算公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。学生在原有的三角形和平行四边形等知识经验的基础上通过自主动手剪拼,利用等积变形把梯形面积转化成了各种不同的平面图形,然后研究两者之间的`联系,从不同的角度推导出梯形的面积计算公式。这种多角度的思考方法,既沟通了新旧知识的联系,激发了学生的求知欲,又通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程,培养学生获取知识的能力。

  数学思想方法是数学的灵魂与精华,教师在日常教学中应当十分注重各种数学思想方法的有机渗透。在这节课中,我较多地运用了“转化”这种数学思想方法,引导学生把新知识转化成旧知识,利用旧知识来解决新问题,学生对这种方法也有很深刻的体验。相信,经常这样有机渗透、恰当孕伏,学生一定会得到更多的锻炼,今后的学习、工作也会受到较好的影响。

  学生是学习的主体,教师是学生学习的促进者、参与者与合作者,教师在教学中要注意把学生的学习主动权还给学生,让学习的问题自然生成,再引导学生带着问题从已有知识出发进行探索,当学生在操作、探索、表述等遇到困难的时候,教师只应加以适当指导与点拨,而不是直接给予。但对于自主学习有困难的学生,教师应给予更多的关注,除了鼓励他们积极参与同学的合作学习之外,教师也可给予这部分学生更多的指导和帮助,使他们也能学有所得。

《梯形面积》 教学反思2

  一、加强探索方法的指导,避免假操作。

  在今天学生进行操作时,我要求学生先想好操作的顺序。特别是在计算梯形面积的时候,用数一数或分一分,移一移的方式算出梯形的面积,避免在操作过程中使用梯形的面积公式来计算。这样一来,学生得出的操作结果是真实的,对于用两个完全一样的`梯形拼成一个平行四边形,每个梯形的面积是平行四边形面积的一半这一知识点有了一个直观的感受。尽管学生在交流时有个别学生数梯形的面积出现了一点的小错误,但是这是个过程是真实的,有效的。

  二、规范学生的语言。

  因为在完成三角形练习时有这么一道判断题:三角形的面积是平行四边形面积的一半,我们班居然有大部分学生毫不犹豫地认为这是正确的。所以我就在想,是不是我在上三角形的面积一课时出现了一点问题。所以,本节课我特别注意他们的表述语言,的确,是有很多学生的语言并不完备,常常会出现:梯形的面积是平行四边形面积的一半这种并不完备的语言。当学生出现这种语言时,及时地予以修正和改正,当即引起学生的注意。这样的效果比后面纠正要好很多。

《梯形面积》 教学反思3

  本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:

  一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;

  二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。

  一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的.思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

  二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形面积》 教学反思4

  《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。

  一、复习旧知,引入新知

  本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。

  二、推导梯形的面积公式

  梯形的面积公式的'推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。

  三、在练习中巩固提高

  本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。

《梯形面积》 教学反思5

  我上了《梯形面积计算》一课,下面结合自己上课的感受以及学生作业的反馈情况,谈谈对这节课的认识。

  在这节课中我主要运用了合作探究、自主学习的学习方法,让学生运用已有的知识和学习经验来探索、研究新知识,并让学生进一步感受数学魅力。

  第一、注重知识间的紧密联系

  。在学习《梯形面积》之前,学生已经系统地学习了《平行四边形面积》和《三角形面积》两节课的内容,并掌握了平行四边形、三角形面积公式的推导过程。因此,梯形面积的学习虽然是一个新的内容,但是在方法上是有法可依的,在教学时我们可以据此为学生搭建学习的脚手架,密切联系之前的学习内容;而在研究过程中,又可以放手让学生自己开展研究,表述结论,从而经历比较完整的研究过程。

  为了更好地让学生自主探索,在本节课上也设计了相应的复习,主要是对平行四边形、三角形面积计算公式的复习。但是如果我们能够在复习公式的同时,将推导的有关过程进行一些整理,那么对学生研究梯形的面积计算无疑具有较强的正确迁移。

  第二、强化对知识形成过程的体验

  从这部分内容的教材编排来看,突出体现了重研究过程的特点,但这并不意味着结论不重要。在上课前,我让每个学生准备好两个完全一样的梯形。在研究过程中,我有意引导学生由三角形面积计算公式的推导过程去探索梯形面积公式,学生很容易想到这一点

  。当学生把两个完全一样的梯形拼成一个平行四边形时,再进一步启发学生观察拼成的平行四边形的'底和高与梯形的底、高有什么关系,面积有什么关系,为了更好的让学生观察,我对教材上提供的实验素材和内容进行了处理和利用,让学生以小组为单位进行合作探究。

  在学生自主学习的基础上出示了教材中的讨论题,帮助学生进一步分析实验数据,并进行实验结论的总结性概括。最后在探索平行四边形和梯形关系的基础上,再进行公式的推导和相关计算练习。

  第三、从练习反馈中全面反思本节课的有效性

  从练习题反馈上看,学生对本节课知识的掌握比较扎实,能够运用梯形面积公式计算面积。但是在练习第2题时,同学们读题后都是通过计算出面积判断哪些梯形的面积是相等的,从表面上看这道题的作用仅限于此。

  但是如果我能进一步引导观察,学生还会发现这些梯形的高都是相等的,得出了在高相等的情况下,如果梯形的上下底的和也相等,那面积也是相等的结论。另外通过这道题学生还领悟到了面积相等的两个梯形,形状是不一定相同的。

《梯形面积》 教学反思6

  梯形面积的计算是小学生学习多边形面积计算中的一节内容。它与平行四边形、三角形面积的计算一起作为结束直线型面积的计算,进一步学习圆面积和立体图形表面积计算的基础,成为本册教学内容一个重点。五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期,通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的抽象概括等逻辑思维能力的发展。在本节的设计中主要突出了以下几点:

  1、加强学生动手操作,通过实际操作,既发展了空间观念,又培养了动手操作能力。

  2、放手让学生去发现、验证、推导、小结,得出梯形的面积计算公式。突出学生的主体地位,体现自主探索学习模式,有利于培养学生创造性思维能力。

  3、培养转化的数学方法,教学中引导学生主动探索所研究的图形与已学过的图形之间有什么样的联系,如何把要学的图形转化为已学的图形,从而使学生自己探索梯形的面积计算公式,理解更为深刻,思维能力亦得到发展。

  4、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的'含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。

  但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形面积》 教学反思7

  一、教学内容:五年级上册第88页《梯形的面积》

  二、教学目标:

  1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。

  2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。

  3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。

  三、教学重难点

  教学重点:

  探索并掌握梯形面积是本节课的重点

  教学难点:

  理解梯形面积计算公式的推导过程是本课的难点。

  四、教学过程:

  (一)、复习旧知

  出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段

  同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。

  学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。

  【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】

  (二)、探究新知

  联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:

  ⑴自选学具。(每个小组发如下梯形图片和探究表各一份)

  形状个数拼成的形状结论

  ……

  ⑵提出要求:

  ①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。

  ②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?

  ③说一说:你发现了什么,并尝试推导梯形的面积计算公式。

  ⑶小组合作,操作、观察、交流、填表,教师参与讨论。

  【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】

  ⑷全班交流汇报。(教师根据学生的回答借助演示)

  a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。

  b、沿梯形的对角线剪开分成两个三角形

  c、把一个梯形剪成一个平行四边形和一个三角形

  d、沿等腰梯形的一个顶点做高,剪拼成一个长方形

  e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形

  f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。

  ……

  对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。

  (其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)

  ⑸归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。

  梯形的面积=(上底+下底)×高÷2

  如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:

  S=(a+b)h÷2

  【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】

  (五)深化巩固

  1、尝试计算

  a、计算一个一般梯形的面积。

  b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:

  (1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

  (2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?

  借助模型和让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。

  【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】

  2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?

  【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】

  3、总结,反思体验

  回想这节课所学,说说自己有哪些得失?

  【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的'培养,同时体验学习的乐趣和成功的快乐。】

  【教后反思】:

  五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:

  突出体现了两个亮点:

  1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。

  2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,

  (1)、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。

  (2)、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。

  (3)、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)

《梯形面积》 教学反思8

  一、提出问题,激发兴趣

  我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

  二、注重合作,促进交流

  学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

  这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!

  学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的`结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

  三、思维拓展,能力提升

  新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

  开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

  很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

  由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

《梯形面积》 教学反思9

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。 由于所有学生已经有了推导三角形面积公式的经验,因此在推导梯形面积计算公式时,我想放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,()学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

  反思整个课堂教学过程,还是存在着一些问题。如在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,在原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的.方案上,并让学生多多互动交流;然而,从教学的实际效果上看,学生最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我想还是得结合本班学生的实际,合理安排,及时调整课堂设计,多考虑学生的思维特点,这样效果肯定会更好。多边形面积教学反思圆的面积教学反思梯形的面积教学反思

《梯形面积》 教学反思10

  《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。

  在设计这一课的教学时,我主要考虑体现以下这样几个方面:

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的.途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

  三、紧密联系生活。让数学源于生活,归于生活。

  数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

  四、体现学生的主体性,让每个学生都能主动参与学习。

  学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。

  五、着重体现学生主动建构知识意义的过程。

  本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

  在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

《梯形面积》 教学反思11

  《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。

  在设计这一课的教学时,我主要考虑体现以下这样几个方面:

  1、紧密联系生活。让数学源于生活,归于生活。

  数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

  2、体现学生的主体性,让每个学生都能主动参与学习。

  学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习

  的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的`意识。

  3、着重体现学生主动建构知识意义的过程。

  本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

  在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

《梯形面积》 教学反思12

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

  这节课上完以后我觉得有成功,也有一些不足:

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的`能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

  反思整个课堂教学过程,还是存在着一些问题。

  首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,

  再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

《梯形面积》 教学反思13

  在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

  一、创设问题情境,激发学生兴趣

  我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

  二、以学生自主学习为主教师为辅的课堂教学理念。

  考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。

  三、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。

  在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的.作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。

  四、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。

  但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形面积》 教学反思14

  1、通过教学,让我更加明白:

  要充分相信学生。新课程理念中,要让学生通过自主探究,主动获取知识。这节课从学生的生活实际问题出发,一开始就让学生感受到生活中很多时候要计算梯形的面积,从而引发学生探究梯形面积的学习欲望。在这种内驱动力之下,学生调动自己已有的知识经验,探究出了很多种方法,培养了创新思维能力和自主学习的能力。

  2、学生的.创新能力不是一节课就能培养起来的。

  这节课学生能够想出那么多种方法,要以前几节课的探究平行四边形和三角形的面积为基础,学生的自主探究能力要经过一定量的积累,而不是一蹴而就的。但是如果长期这样得到训练,学生探究所需要的时间就会越来越短,创新能力也会越来越强。

  3、本节课的设计考虑到了一个首尾照应的艺术原则。

  课的导入部分以优美的音乐伴随引入生活中的问题,课的结尾同样以伴乐欣赏生活中的梯形。在轻松的氛围中让知识得到延伸,又遵循了“数学知识从生活中来,到生活中去”的理念。

  4、这节课还经过研究提炼,让我认识到:

  在学生探究各种方法的时候,不必马上让学生统一到梯形的面积计算的规则公式中来。有套用模式之嫌。可以在最后让大家一起观察,把各种方法进行沟通,理解,在统一。

《梯形面积》 教学反思15

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。 这节课的教学,紧紧抓住“梯形面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把梯形面积转化成了其他的平面图形,进而归纳、概括出梯形的计算方法。这种多角度的思考,既沟通了新旧知识的联系,又激发了学生的'求知欲,使学生不仅知其然,更知其所以然。

  这节课我运用了多媒体课件的演示,充分调动了学生的学习兴趣,提高了课堂教学效率,是其他教学手段无法比拟的。

  本节课要教会学生一种学习方法,即在求梯形的面积计算公式时,学生在原有知识经验的基础上通过学生自主动手剪拼,运用转化的思考方法,把梯形转化成已学过的图形,然后研究两者之间的联系,从而推导出梯形的面积计算公式。 在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。这节课中我努力激发学生的学习积极性,向学生提供充分从事数学活动的机会,通过“猜想-验证”来展开知识的发生发展过程,促使学生主动探索,学生以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程。

【《梯形面积》 教学反思】相关文章:

梯形面积的教学反思03-07

《梯形面积》教学反思02-25

梯形的面积教学反思04-14

梯形的面积教学反思03-24

“梯形的面积计算”教学反思04-14

“梯形的面积计算”教学反思04-14

《梯形的面积》的教学反思(精选22篇)12-13

梯形的面积教学反思15篇03-31

《梯形的面积》的教学反思(精选11篇)06-20