一元一次不等式教学反思

时间:2024-09-02 14:05:47 教学反思 我要投稿

一元一次不等式教学反思

  身为一名人民老师,我们都希望有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,教学反思要怎么写呢?以下是小编帮大家整理的一元一次不等式教学反思,欢迎阅读,希望大家能够喜欢。

一元一次不等式教学反思

一元一次不等式教学反思1

  本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

  通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。

  在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。

  在练习的`设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。

  让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

一元一次不等式教学反思2

  今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的部分x的取值范围。

  在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的教学是本课难点,每个老师在课堂上用各种不同的.方法进行分析,协助学生理解。

  陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。

一元一次不等式教学反思3

  本课设计充分体现教科书的编写意图,通过创设与学生实际生活联系密切的问题情境,并由学生根据自己的经验列出一元一次不等式解决问题,从中发现一元一次不等式与一元一次方程之间的内在联系,从而学会用去分母的方法解一元一次不等式。

  要让学生懂得:学习的目的就是为了学以致用.为实现上述构想,本课设计了一系列的学生活动.特别是在“探究新知”中一连抛出5个问题,引发学生独立思考,讨论交流,尝试练习,自主建构一元一次不等式的解法.在这些活动中,又采用了个体活动、小组活动、全班活动等多种形式,为学生的自主学习提供了广阔的“舞台”,真正凸现出学生是数学学习的主人,动手实践、自主探索与合作交流是学生学习数学的重要方式这一全新的理念.

  本节课以开放式的课堂形式组织教学,让学生再教师提出的学习目标下进行自学,然后和小组同学共同合作探究难点、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生去自学,主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功之处在于调动、启发学生、提出问题的.水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。在课堂教学中,给了学生更多的展示自己的机会,并且教师的鼓励与欣赏有助于学生认识自我,建立自信,发挥评价的教育功能。学生在解题时经常出现解题过程单

  一、思路狭窄、逻辑混乱、叙述冗长、主次不分等问题,这是学生思维过程缺乏灵活性、批判性的表现,也是学生的思维创造性水平不高的表现。因此,教师必须引导学生反思自已的解题方法,努力寻找解决问题的最佳方案。通过这一反思过程,开阔了学生的视野,使学生的思维朝着灵活、精细和新颖的方向发展。教师应重视结合学生作业中出现的错误来设计教学情境,使学生在纠正作业错误的过程中加深对基础知识的理解。

一元一次不等式教学反思4

  一元一次不等式(组) 的主要内容是一元一次不等式解法及其简单应用。 这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。

  而不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

  在课前,我做了很多的`准备,对我所教的学生会出现什么样的情况,我都做到了心中有数。满以为自己可以打一个漂亮的战役。

  当我开始上课时,情况真的出乎我的意料。学生们不但一点都不配合,而且好像对这部分知识掌握的不是很理想,虽然我费尽脑汁想尽办法去让学生动起来,可收效甚微。我想我们上课的目的就是让孩子变得有个性,变得能积极主动发言。到底我错在什么地方了呢?

  经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。

  通过这节课,让我在教学的道路上又成长了许多。使我明白了怎么更能上好一节数学课

一元一次不等式教学反思5

  用函数的观点看方程(组)和不等式,是学生应该学会的一种数学思想方法。教学过程中要让学生理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的内在联系,明白方程(组)、不等式与函数三者之间可以相互转化、相互渗透,让学生成为学习的主导者,主动去观察、分析、归纳与总结,得到更深刻、透彻的知识点,并且让学生在交流中体会成功。

  教学优点:

  1、能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式及二元一次方程的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的'积极性。

  2、“数形结合”思想的完美体现。我能够利用一次函数图象从“形”方面直观地表示方程(组)和不等式的解或解集的含义,反过来,又从“数”的方面来解释方程(组)的解及不等式的解集实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

  教学不足:

  1、课堂容量有些大,学生组内讨论时间较少,学生单独回答问题的机会也有点少。

  2、缺乏对学困生的关注、指导和帮助。

  3、对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语。

一元一次不等式教学反思6

  一元一次方程、一元一次不等式和二元一次方程组在初一的时候就已经学过了,而《用函数观点看方程(组)与不等式》这节就要求学生利于函数的观点重新认识、分析。

  在复习导入过程中,我给出一个一元一次不等式的的题目:3x-2>x+2.同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x-2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。

  这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的'好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。

一元一次不等式教学反思7

  本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。

  1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。

  2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的.联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

  3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

  4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。

一元一次不等式教学反思8

  学习了实际问题与一元一次不等式后,我发现在学生学习起来比较困惑,存在以下问题:

  1.找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比较明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因而列不出不等式,所以也不会解不等式的应用题。

  2.一部分学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。

  3.不少应用题求出不等式的解集时往往都会根据题意,让求出不等式的整数解,到这时一部分学生往往不能准确的`求出整数解,这可能是对不等式解集的取值范围不是太明白。

  教后反思:在以后的教学中做注意的是,让学生熟练掌握不等式的性质,并能真正理解,能准确无误的求出不等式的解集。多进行不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而熟练的掌握列不等式解应用题的。要加强一些基础概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含含糊糊。

一元一次不等式教学反思9

  不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。

  现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。

  不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的'重要方法。

  不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。

  解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。

  在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

一元一次不等式教学反思10

  在讲完不等式的性质后,我们根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。

  在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣,动笔解答。

  但是巡堂时发现出现以下问题:

  一、由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向。

  二、过去遗留的问题:

  1、去括号的问题

  2、去分母的问题

  3、系数化1的问题

  三、未知数系数含字母,没有分类讨论

  解决方案:

  1、在课堂巡堂时,检查每个学生的`练习,发现问题及时纠正

  2、发挥学生的力量,开展“生帮生”的活动

  3、课余对还未掌握的学生进行课后个别辅导

  4、安排“解一元一次不等式”的小测,及时查缺补漏。

一元一次不等式教学反思11

  一、教材分析

  1、地位和作用

  这一节内容在学生学习了前面一节一次函数后通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

  2、活动目标

  ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

  ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

  ④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

  3、教学重点:(1).理解一元一次不等式与一次函数的转化关系及本质联系

  (2).掌握用图象求解不等式的方法.

  教学难点:图象法求解不等式中自变量取值范围的确定.

  二、学情分析

  八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  三、学法分析

  1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

  2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

  四、教法分析

  由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

  ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的`取值范围。

  ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

  1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

  2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

  3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

  4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

一元一次不等式教学反思12

  今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的部分x的取值范围。

  在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的.教学是本课难点,每个老师在课堂上用各种不同的方法进行分析,协助学生理解。

  陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。

一元一次不等式教学反思13

  由于本节课的知识点多,又是一元一次不等式组的第一节课,学生主要是掌握如何利用数轴确定一元一次不等式组的解集和一元一次不等式组的.解法,因此,在设计教学过程时,紧紧抓住如何确定一元一次不等式组解集这一重点知识和一元一次不等式组的解法。为了进一步加深学生对不等式组的解集的确定与理解,教学中注意运用以下几种教学方法:(1)运用随堂课件启发学生的方法,结合数轴直观形象来研究与确定不等式组的解集;(2)注重学生活动与教师活动的交流与配合;(3)通过例题与练习,加深理解。

  在数轴上表示数是数形结合的具体体现。而在数轴上表示不等式组的解集则又前进了一大步。因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题。

一元一次不等式教学反思14

  本节课是以一元一次方程为脚手架,来学习一元一次不等式的概念及解法。

  教学目标明确,理念新颖,整个教学环节充分体现了学生的主体地位,并注重对数学思想方法的渗透。

  通过创设与学生实际生活联系密切的问题情景,并由学生根据自己的经验分别列出一元一次方程和一元一次不等式,从中发现它们之间的内在联系,从而确定含括号的一元一次不等式的解法步骤,为探究含分母的.一元一次不等式奠定了扎实的基础。

  在探究含分母的一元一次不等式解法中,一连抛出几个问题,引发学生思考,小组合作,谈论交流,归纳出解法步骤,这些活动中,真正凸显出学生是学习的主人。

  拓广探索让学生巩固了方程和不等式之间的内在联系,思维迁移开阔了学生的视野,使学生思维更加深刻灵活。

  另外,根据本节课内容特点,教师无需过多讲解,只需适时引导点拨,组织学生活动,有意识的让学生去观察比较、讨论归纳、展示讲解、质疑补充等,给予他们更多展示自己的机会和舞台。这是本节课的成功之处。

  不足之处是时间安排不够科学合理,学生展示时间过长。

一元一次不等式教学反思15

  本节内容是第八章的难点也是重点,在章节中有承上启下的作用,是一元一次不等式的简单变形的应用,是一元一次不等式组的基础。因而这节内容我更加费劲心思的思考该如何教学,才能让学生更好地掌握知识,运用知识。

  一、课堂教学结构反思

  本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。

  在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。

  (1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。

  (2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。

  (3)从解的情况来看:

  1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。

  2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。

  二、有效的课堂提问反思

  错误分析引入有效的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:解一元一次方程的步骤是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。同时,提出对“等号”与“不等号”的不同,不等式的解与方程的解又有点差别,特别是对不等式的性质3的不同,加深了学生对不等式的解的理解。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。

  三、 有效的课堂参与反思

  本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,让学生理解一元一次不等式的概念及不等式的解法步骤。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的.理解和掌握,使学生真正参与到知识形成发展过程中来。

  本节课较好的方面:

  1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

  2、课程内容前后呼应,前面练习能够为后面的例题作准备。

  3、设计学案对学生学习的知识进行检查。

  不足方面:

  引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。

  我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。

【一元一次不等式教学反思】相关文章:

一元一次不等式的教学反思11-23

一元一次不等式的教学反思06-09

一元一次不等式组教学反思03-09

解一元一次不等式教学反思03-05

一元一次不等式组教学反思03-06

解一元一次不等式教学反思课后反思02-27

《一元一次不等式》的教学反思(精选18篇)07-04

《一次函数与一元一次不等式》教学反思01-15

一元一次不等式教学反思范文(精选20篇)05-17