《平行四边形的面积》教学反思14篇
身为一名刚到岗的教师,教学是我们的任务之一,教学的心得体会可以总结在教学反思中,教学反思应该怎么写才好呢?以下是小编帮大家整理的《平行四边形的面积》教学反思,仅供参考,大家一起来看看吧。
《平行四边形的面积》教学反思 篇1
平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。
教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的.活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。
本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。
《平行四边形的面积》教学反思 篇2
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的'方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的不足之处有:(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
《平行四边形的面积》教学反思 篇3
今天我教了平行四边形的认识,课前让同学们进行了以下预习:
(1)说说生活中那些地方看到过平行四边形?
(2)自己做一个平行四边形。
(3)根据自己做的平行四边形探究一下平行四边形有什么特点?
(4)有兴趣的可以做做后面的练习题。
一上课我就交流了预习作业,同学们兴致很浓,做的平行四边形材料不一,有的用吸管做的正好为研究后面的第6题作准备,有的用钉子板围的,有的在纸上画了个平行四边形……做的好的得到了老师的表扬,看他们的表情好神气哟!在探究平行四边形的特征时,有的学生竟然说到了对角是相等的'。看来四年级的学生不可小看他们。
尤其是在讨论长方形和平行四边形的相同点和不同点时,杨家豪大胆的说出当把长方形变成平行四边形时面积变小了,周长没有发生变化。当时我呆了,问他为什么呀?他还为同学们演示了一番。这节课我上得好开心,可能由于预习的缘故,学生的思维比较活跃,有时生成的知识也是我始料未及的。
《平行四边形的面积》教学反思 篇4
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的.边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
《平行四边形的面积》教学反思 篇5
1、深刻理解教材是有效课堂的基础
教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?
教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。
这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。
2、课堂环节的合理设计是有效课堂的保证
教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。
教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。
然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。
因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。
3、数学思想方法的提炼是有效课堂的精髓
让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。
如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的.面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。
教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。
课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。
《平行四边形的面积》教学反思 篇6
平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的`面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。
教材这样安排的目的是让学生应对一个新的问题,思考如何去解决教材供给了两种提示性的方法:一种是经过数格子的方法,数出这个平行四边形的面积;一种是经过剪与拼的活动,将平行四边形的面积转化为长方形,然后计算出面积。经过本节课的使学生经过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。
本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,经过小组合作,把学习的主动权交给学生,最终经过习题巩固,使学生灵活运用平行四边形的面积公式。
《平行四边形的面积》教学反思 篇7
平行四边形面积的计算是五年级上册第五单元的资料。教材设计的思路是:先经过数方格的方法数出平行四边形的底、高、面积。再经过对数据的观察,提出大胆的猜想。经过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,所以,必须让每个学生亲历知识的构成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自我的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自我的设想大相径庭。
(1)数方格中的得与失。
教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的.差别。再加上平行四边形中有不满1格的情景,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“能够把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有本事的同学向转化的方法靠拢。
学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自我安慰自我:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就能够随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学能够为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的准备。
(2)面积推导中的意外收获。
在推导平行四边形面积计算公式时,我鼓励学生大胆想象,经过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的期望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。
“教师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。
“教师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。
“我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自我的做法。
“你觉得适宜吗?”我把确定的权利交给了学生。
“不行,虽然也能变成长方形,可是,这个长方形和原先的平行四边形相比少了两块。”刘子谦认真分析道。
“我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。
“谁能帮忙改一下?”
“只要把剪下来的两小块加上就能够了。”易凡把剩下的两块细心翼翼地加在了一侧,又把它拼成了一个新的长方形。
“我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。他的方法立刻引起了争议。
“教师,我不一样意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自我失败的作品站上来说。
“为什么都是沿着对角线剪开的,这两位同学拼得结果却不一样呢?”我把两位同学的作品同时放在展台上,让大家观察。
“两个平行四边形的形状不一样。”学生很快就找到了原因。
“能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。
“这条对角线,恰好是平行四边形的高。”
“看来,仅有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。
经过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,可是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。
这是我比较得意的环节。但功劳不在我,而在我的学生。
《平行四边形的面积》教学反思 篇8
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。
我设立的教学目标是
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力生的空间观念。
反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的'面积,其实它们的面积是一样大的。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
《平行四边形的面积》教学反思 篇9
一、精心创设情境。
心理学研究表明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得内容亲切,易于接受和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学内容具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的`,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
二、努力营造学习氛围。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮助、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自己的见解,培养学生善于倾听,善于欣赏他人的良好品质。
三、鼓励学生大胆猜想。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造能力。再教学伊始,就让学生大胆猜测,平行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自己的“原始”思维状态表现出来,这是一笔有价值的学习资源。
四、注重让学生动手操作。
苏霍姆林斯基曾说过:“手是意识的培育者,又是智慧的创造着。”操作实践可以让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作能力,发展学生的智力,又能培养学生的探索精神和求实的科学态度。在本节课的教学中,让学生思考,讨论,平行四边形的面积可以怎样计算?当学生认为能将平行四边形转化为长方形时,让学生按照自己的设想动手操作使学生的知识,经验智慧充分发挥作用,通过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出平行四边形的面积计算公式。每个学生通过操作活动,经历知识的“再创造” 的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种能力的提高.
五、充分发挥交流的作用。
学生的数学学习过程中,交流是不可或缺的,交流可以帮助学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流可以加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,提供具体的情境让学生去表达、倾听,在与他人交流中展示自己的原始策略,了解同伴的学习策略,发展自己的学习策略;在与他人的交流中开阔眼界,丰富自己的知识,完善自己的想法或认识。
《平行四边形的面积》教学反思 篇10
孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的'面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。
平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。
邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。
经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。
在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。
《平行四边形的面积》教学反思 篇11
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生通过自己的活动去获取知识。在《平行四边形的面积》这一课的教学中,我充分调动学生的学习积极性,让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了以下几点:
一、注重数学思想方法的渗透
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。在数学教学中,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中我先利用求不规则图形的面积向学生渗透转化的思想,从而引出用转化的方法求平行四边形面积的计算方法。在整个探究过程中,“转化”的方法为学生提供了解决问题的途径,学生通过把新知“求平行四边形的面积”转化为旧知“求长方形的面积”,从而达到解决问题的目的'。这一方法在数学学习中,具有普遍应用的意义,同时它也是求其他图形面积的重要方法。
二、注重学生自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。因为学习任何知识的最佳途径是通过自己的实践活动去发现,这样发现理解最深,也最容易掌握。学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。本节课我放手让学生从自己的思维实际出发,让学生在独立思考的基础上进行合作交流,这样既能满足学生展示自我的心理需要,又使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
三、注重了学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?接着,充分运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形转化为长方形的过程,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调平行四边形底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
四、注重练习的优化设计
练习是课堂教学中的重要环节之一,是巩固知识、运用知识、训练技能技巧的必要手段,是检查教学效果的有效途径。因此,练习设计必须紧扣教学内容和目标,必须注意基础性、针对性、应用性,练习的形式应具有趣味性、层次性、开放性,从而达到有效的练习。本课教学过程中,我注重练习设计,做到学练结合,体现出以下几点:一是抓住重点,练习注意基础性和针对性。第一题告诉学生底和高,直接求平行四边形面积,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,让学习上更高一个层次。二是动手操作,练习应注意实践性与应用性。第三题出示把一个长方形的木条框拉住它的两个对角,使它变成一个平行四边形,发现周长和面积有什么变化?三是循序渐进,练习注意层次性。在这个练习的设计中,把练习设计的有层次,由易到难,不能一下子就出现很难的题目,否则把学生难倒了,从而也检测不到本节课的教学效果。四是训练思维,练习注意开放性。设计练习时,有意识地设计一些能开拓学生思路的开放题。第四题比较同底等高的平行四边形的面积,意在提升学生对平行四边形特征的认识和加深对面积计算公式的理解。
总之,本节课为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境和探索解决问题的过程,在学生活动的过程中为学生提供充分的活动条件和活动空间,使学生的数学学习成了一个不断感受、体验、探索、交流和应用数学的过程。当然在课堂上也出现了很多不足的地方,但只要我用心去思考,不断反思,相信自己能在不断的自我反思中成长,在不断的自我实践中发展,在不断的自我成长中创新。
《平行四边形的面积》教学反思 篇12
平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:
一、遵循“猜想——验证——推导——应用”教学过程。
在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。
二、注重合作交流,追异求新。
本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。
三、课堂教学中,教师应加大“放”的.力度。
学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。
《平行四边形的面积》教学反思 篇13
人们常说,课堂教学始终都是一门缺憾的艺术。
一、主要的成功之处:
这节课主要采用了自主合作探究的学习方法,让学生观察、猜测,通过动手操作验证。整个教学思路清晰,重点突出,利用多媒体课件突破难点,收到了良好的效果。
二、不足之处:
在新课前没有复习平行四边形的`底和高。因此,在操作各推导过程中学生对这两个概念显得很生疏,很多学生在画平行四边形底和高时出错,影响了教学进度和教学效果。
三、质疑:
用数方格的方法计算平行四边形的面积时,教材在这里安排了一个长方形和一个平行四边形的面积,让学生填表后对它们进行比较,这里暗示了两个图形之间的联系。让学生用数方格的方法计算平行四边形的面积,然后在格里填出平行四边形的底和高与长方形的长和宽相比的内容,删去了长方形的部分,只留下一个平行四边形,不知这样处理是否合适。教学随想。
《平行四边形的面积》教学反思 篇14
在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的数学思想方法,培养了学生观察、分析、概括和能力。
我认为本节课的不足之处是:
(1)在学生把平行四边形转化成长方形时,没有给学生充裕的`时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。
(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。
(3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。
【《平行四边形的面积》教学反思】相关文章:
《平行四边形的面积》教学反思03-12
《平行四边形面积》教学反思04-14
平行四边形面积教学反思04-14
平行四边形面积的教学反思04-24
平行四边形的面积教学反思07-03
平行四边形面积教学反思04-14
平行四边形面积的教学反思04-25
面积的教学反思04-14
面积教学反思02-23
《面积》的教学反思06-09