《乘法交换律结合律》教学设计

时间:2024-06-29 23:06:08 教学设计 我要投稿

《乘法交换律结合律》教学设计

  作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编为大家整理的《乘法交换律结合律》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《乘法交换律结合律》教学设计

《乘法交换律结合律》教学设计1

  第五课时:

  教学内容:乘法交换律和乘法结合律练习课

  教学目标:

  1.能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学过程:

  一、基本练习

  (1)口算:

  50×2=100 50×20=1000

  25×4=10025×8=200 25×12=300 25×40=1000

  125×8=1000 125×16=200

  125×24=3000125×80=10000

  通过刚才的'口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

  板书:5×225×4125×8

  (2)在□里填上合适的数。

  30×6×7=30×(□×□)

  125×8×40=(□×□)×□

  (3)计算:

  43×25×4 25×43×4

  比较两道题,在运用乘法运算定律时有什么不同?

  在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

  小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

  引导学生在对比中加以区分。

  (4)师生比赛,看谁直接说出结果速度快。

  25×42×4 68×125×8

  4×39×25

  (5)对比练习:

  4×25+16×25

  4×25×16×25

  (25+15) ×4

  (25×15)×4

  46×25

  (40+6)×25

  49×49+49×51

  49×99+49

  (68+32)×5

  68+32×5

  学生小组分工后独立完成,再进行小组内交流。

  汇报。

  二、小结

  学生谈收获。

《乘法交换律结合律》教学设计2

  教学内容 :课本34页例1、例2。

  教学目标

  1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  教学难点:

  1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。

  2、能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

  教学过程

  一、自主学习

  (一)出示自学提纲

  1、乘法交换律的`内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  2、乘法结合律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  3、比较加法交换律与乘法交换律,加法结合律与乘法结合律,你发现了什么?

  (学生在自学过程中,教师巡回指导,并告诉学生在看不懂的地方要做上标记)

  (二)学生自学

  (三)自学检测

  计算下面各题,怎样简便就怎样计算。

  23×4×5 8×(125+11) 2×289×5

  二、合作探究

  1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)

  2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)

  (1)在运用乘法运算定律进行计算时应注意什么?

  (2)你会用简便方法计算下列各题吗?

  45×12 125×16 250×64

  三、达标训练

  1、下列各式运用了乘法的交换律,对吗?为什么?

  100×9=9×100 2×18=2×18 a+b=b+a

  2、先口算,再把得数相同的两个算式用等号连接起来。

  (6+4)×5 6×4+4×5

  (8+12)×4 8×4+12×4

  8×(7+3) 8×7+8×3

  3、在下列方框中填上适当的数。

  30×6×7=30×(□×□)

  125×8×40=(□×□)×□

  4、用简便方法计算。

  69×125×8 25×43×4 13×50×4 25×166×4

  课堂小结:通过本节课的学习,你都学会了哪些内容?你有哪些收获?你还有疑问吗?

  四、堂清检测

  1、判断。

  (1)4×(25×3)=(4×25) ×3 ( )

  (2)7×(18×40)=7×(40×18) ( )

  (3)(7×8)×125×15=7×(8×125)×15 ( )

  2、计算。

  (1)13×50×4

  (2)25×166×4

  (3)8×5×125×40

  (4)125×32×5

  3、解决问题。

  每袋有5个乒乓球,每排有4袋,放了2排,一共有多少个乒乓球?

  板书设计

  乘法交换律和乘法结合律

  (1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?

  25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)

  25×4=4×25 =125×2 =10×25

  ┆(学生举例) =250(桶) =250(桶)

  (25×5)×2=25×(5×2)

  ┆(学生举例)

  交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,

  这叫做乘法交换律。 积不变。这叫做乘法结合律。

  a×b=b×a (a×b)×c=a×(b×c)

《乘法交换律结合律》教学设计3

  教学目标:

  1、掌握乘法交换律和乘法结合律。

  2、运用乘法交换律验算乘法。

  3、培养学生的分析、概括能力。

  重点难点:

  掌握乘法交换律和结合律。

  教学准备:

  多媒体课件。

  教学过程:

  一、谈话引入,激发兴趣。

  1、出示第33页主题图。

  2、师:植树节快到了,四年级同学去义务植树。

  3、师:看图,植树要做哪些事情?

  (挖坑、种树、抬水、浇树…)

  4、师:这里也有许多数学问题,想学吗?

  二、自主学习,合作探究。

  1、教学例1。(多媒体出示教材第33页主题图)

  师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?

  生算,小组里交流。生汇报。

  生甲:4×25=100(人)

  生乙:25×4=100(人)

  师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)

  你能举出几个这样的例子吗?

  例:7×5=5×7 20×10=10×20

  师:交换两个因数的.位置,积不变。这叫什么?你给它取个名字?

  生甲:乘法交换律。

  师:你能用符号或字母表示它吗?

  生乙:a×b=b×a

  师:乘法交换律,以前我们已用过它,在什么地方呢?

  生丙:交换因数的位置相乘,验算乘法。

  师:对。试一试,好吗?

  24×16 15×17

  指名两生板演,集体订正。

  2、教学例2。(多媒体出示主题图)

  ①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?

  生小组里交流,并汇报。

  生甲:我先计算一共种树多少棵。

  (25×5)×2

  =125×2

  =250(桶)

  生乙:我先计算每组种树要浇水多少桶。

  25×(5×2)

  =25×10

  =250(桶)

  ②师:那么(25×5)×2○25×(5×2)中间填上什么符号?

  生:等号。

  请你举出几个这样的例子。

  生甲:(25×2) ×2=25×(2×2)

  生乙:(lO×5) ×5=10×(5×5)

  生丙:1O×(2×5)=(lO×2) ×5

  ③师:从上面的算式中,你发现了什么?

  生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。

  师:仿照加法的运算定律给它取个什么名字?

  生乙:我叫它乘法结合律。

  师:同意这种叫法吗?

  师:你会用字母表示它吗?

  生丙:(aXb) Xc=aX (bX。)

  3、比一比,议一议。

  师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

  生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。

  生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。

  师:你们真聪明,说得好极了。

  三、巩固运用,深化提高。

  1、教材第35页“做一做,,第1题。

  先计算,再运用乘法交换律进行验算。

  2、教材第35页“做一做,,第2题。

  生独立做,并汇报。

  生甲:2×24×5

  =48×5

  =240(元)

  生乙:2×(24×5)

  =2×120

  =240(元)

  师:他们做得对吗?你是怎样判断的?

  四、总结提升。

  这节课,你学会了什么?还有什么问题和大家共同讨论?

《乘法交换律结合律》教学设计4

  教学目标

  1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

  2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

  3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

  教学过程

  一、复习旧知、导入新课

  1.出示:

  你能在下列的 内填上合适的数吗?

  28+320=320+ ;

  (27+138)+62=27+( + );

  35+ = +35。

  提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

  2.出示:

  在下列○内填上合适的运算符号。

  4○10=10○4 (2○3)○5=2○(3○5)。

  谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

  3.导入新课。

  谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

  【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

  二、举例验证探索规律

  (一)探索乘法交换律。

  1.情景中感知乘法交换律。

  出示例题。(略)

  谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

  学生列式:3×5=15(人)或5×3=15(人)。

  提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

  板书:3×5=5×3。

  【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

  2.举例验证。

  谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

  学生举例。

  引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

  学生交流,教师选择一些等式板书。

  电脑验证大数相乘的结果。

  谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

  3.总结规律。

  讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

  板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

  提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

  板书:a×b=b×a。

  提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

  【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

  4.回忆乘法交换律在过去学习中的运用。

  谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

  【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

  (二)探索乘法结合律。

  1.初步感知。

  谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

  出示例题。(略)

  谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

  组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

  2.引导比较。

  提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

  提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

  板书:(5×3)×4=5×(3×4)。

  3.举例验证。

  谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

  组织交流,教师有选择地板书一些等式。

  4.总结规律。

  讨论:

  (1)你发现等号两边的算式中什么不变,什么变了?

  (2)你能从这些算式中发现什么规律?

  师生共同归纳乘法结合律。

  板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

  谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

  板书:(a×b)×c=a×(b×c)。

  【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的'一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

  三、尝试运用理解规律

  1.做“想想做做”第1题。(略)

  2.尝试简便运算。

  谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

  出示第62页的“试一试”,学生尝试简便运算。

  指名学生板演。

  评讲:你能说出计算时运用了乘法的什么运算律吗。

  小结。(略)

  【说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。】

  四、巩固练习拓展提高

  1.做“想做做做”第2题。

  观察:你发现每一组题的上、下两道算式有什么联系?

  谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

  提问:你能说出算得又对又快的理由吗?

  【说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。】

  2.做“想想做做”第3题。

  谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

  组织交流。

  3.用简便方法计算。

  25×6×4×15 25×125×32

  学生练习后,组织交流。

  五、引发联想,鼓励探究

  谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

  127-53-27 218-69-31

  127-27-53 218-(69+31)

  72÷3÷8 54÷3÷2

  72÷8÷3 54÷(3×2)

  【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】

【《乘法交换律结合律》教学设计】相关文章:

乘法交换律和乘法结合律教学设计10-05

《乘法交换律和乘法结合律》教学设计10-11

《乘法交换律和乘法结合律》优秀教学设计10-02

《乘法结合律和交换律》教学设计06-08

《乘法交换律和结合律》教学设计范文07-26

《乘法交换律结合律》教学设计范文(精选12篇)03-07

《乘法交换律和结合律》的教学反思08-16

乘法结合律教学设计10-02

《乘法结合律》教学设计09-02

乘法结合律教学设计06-11