《相遇问题》教学设计(通用20篇)
作为一名专为他人授业解惑的人民教师,就有可能用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。我们应该怎么写教学设计呢?以下是小编整理的《相遇问题》教学设计,欢迎大家分享。
《相遇问题》教学设计 1
教学目标:
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
教学时间:一课时
教具准备:实物投影仪、多媒体CAI、小黑板
教学过程:
一、复习
1、列式计算
(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?
(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?
2、板出关系式:
速度×时间=路程
二、引入
过去,我们研究的是一个物体运动时速度 、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的`关系。
三、新授
1、教学准备题
(1) 点击课件中准备题 出示题目
(2) 学生理解题意。
(3) 找出出发时间、地点、运动方向。
相向而行
时 间间
(4)点击热键 和 强调出发时间和运动方向。
(5) 用课件演示两人同时从两地向对方走去,引导学生思考会出什
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6) 利用课件出示准备题的表格,指导学生填表格的一、二行并课
件演示填空内容。
(7) 请一学生上来利用交换性课间完成表格第三行的填写。
(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样?
c、 两人所行的路程与全路程有什么关系?
(4) 学生试做。
(5) 用电脑课件演示解题思路并讲评。
(6) 学生看书、质疑。
(7) 小结:我们解例5时用了哪两种方法?
三、巩固练习
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?
(1)2000米
(2)1000米
(3)无法确定。
四、全课总结
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
五、聪明题 。
小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?
《相遇问题》教学设计 2
【学习目标】
知识与技能:学会分析相遇问题的数量关系,掌握相遇问题求路程的解题方法。
过程与方法:模拟相遇问题中两个物体的运动过程,亲身体验知识形成的过程。
【学习重点】
掌握相遇问题求路程的解题方法。
【学习难点】
分析相遇问题的数量关系,理解不同的`方法解答。
【学习过程】
一、知识铺垫
小萍每分钟走65米,从家出发 6分钟可以到栈桥。小萍家到栈桥有多少米?
思考:用什么方法计算?根据什么 ?
导:今天,我们将在这个知识的基础上研究一种新的数学问题。(揭题:相遇问题)
二、探索新知
1、初步感知,理解题意
小萍和小明同时从家去栈桥,小萍每分钟走65米,小明每分钟走75米,经过6分钟两人在栈桥相遇。他们两家相距多少米?
思考:(1)从题中知道了什么信息?
(2)两道题有什么不同?
2、学生表演,加深理解
同时、相遇、相距(学生上台表演)
思考:小萍走了( )分钟?小明走了( )分钟?他们同时走了( )分钟?也就是从开始到相遇,经过了( )分钟?
(生汇报师补充完成线段图)
列式计算:
方法一: 方法二:
—————————— ——————————
—————————— ——————————
—————————— ——————————
答: ——————————。 答:——————————。
3、小组交流,探索方法
要求:①说说你是怎样列式的;
②说清楚算式里每一步算出的是什么;
③记住用手指指着你列的式子说。
4、集体交流
师小结两种方法。
5、看书质疑,提高认识
师:这样的题目,我们称为相遇问题,看书本P63,想一想有没有不明白的地方?
质疑:(65+75)×6中没有小括号,行吗?
三、巩固练习
1、小方和小丽同时从家出发,经过8分钟两人在少年宫相遇,小方每分钟走70米,小丽每分钟走60米。她们两家相距多少米?
2、两列火车分别从甲乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲乙两地间的路程是多少千米?
3、拓展练习
甲、乙两车同时从同一车站向相反方向开出,甲车每小时行70千米,乙车每小时行55千米,开出3小时,两车相距多少千米?
五、课堂总结
通过这节课的学习,你有什么收获?
课堂检测
1、两列火车分别从两站同时相向开出,甲车每小时行驶60千米,乙车每小时行驶70千米,经过5小时在途中相遇,两站相距多少千米?
2、张丽和李云同时从学校向相反方向回家,张丽每分钟走80米,李云每分钟走60米,经过10分钟,她们同时到家,她们两家相距多少米?
3、甲、乙两艘轮船同时从甲、乙两地相对开出,甲船每小时行驶25千米,乙船每小时行驶15千米,经过10小时相遇,甲、乙两地相距多少千米?
4、小青和小红同时从自己家走向学校,小青每分钟走60米,小红每分钟走65米,两人走了2分钟时还相距125米,她们两家相距多少米?
《相遇问题》教学设计 3
教学内容:
课本应用题例6及练一练
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:
“求相遇时间问题”的特征和解题方法。
教学难点:
“求相遇时间问题”的特征和解题方法。
教学用具:
多媒体课件一套
教学过程:
一、激趣引入,复习旧知
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟 ?
2、口头列式 1500/100=15分钟
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间= 路程/速度)
二、学习新课
1、例6教学
出示:两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?
读题分析
思考:这里的460米是几个人走的`?
两人是怎 样走的?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)
学生尝试练习
评讲板演,理清解题思路,概括解题方法
教师板书:60+55=115米
460/115=4分钟
综合算式:460/(60+55)=460/115=4分钟
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少 米?
揭示课题:求相遇时间
2、试试
甲乙两台机床同时加工580个零件,甲机床每小时加工28个,乙机床每小时加工30个,加工完这批零件需要多少小时?完成时各加工了多少个零件?
三、变式深化
1、对比练习
⑴两人同时从相距2400的两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过几分钟两人相遇?
⑵两人同时从两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过3钟两人相遇,两地相距多少米?
比一比你能找到两题之间的联系吗?
2、变式应用
自行车商店要装配2500辆自行车,一个组每天装配52辆,另一个组每天装配48辆。两个组同时装配,完成任务要多少天?
四、小结
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业
练一练的第2——5题
板书设计 :
求相遇时间
两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?
60+55=115米
460/115=4分钟
综合算式:460/(60+55)=460/115=4分钟
《相遇问题》教学设计 4
教学目标
1、使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题。
2、提高学生分析问题,解决问题的能力。
3、培养中国学习联盟胆尝试,勇于探索的精神。
教学重点
1、找到与求路程应用题的内在联系。
2、正确分析解答求相遇时间的应用题。
教学难点
掌握求相遇时间应用题的解题思路。
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过3分钟两人相遇。两地相距多远?
1、画图,列式解答。
2、订正答案
3、小组讨论:试着改编一道求相遇时间应用题。
二、探究新知
例4。
两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米,经过几分两人相遇?
1、讨论:复习题的线段图该怎样改一改。并试着画一画。
2、联系复习题的解法,尝试解答
3、订正思路
想法一:两人相遇时,所走的路程是270米。几分走270米,就是几分相遇。
270÷(50+40)。
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和。
三、反馈调节
两人同时从相距6400米的两地相向而行。一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1、学生独立分析解答。
2、订正答案。
3、质疑:对于“求相遇时间”应用题还有什么问题?
4、教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米。两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米。两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开。一艘军舰每小时行38千米。另一艘军舰每小时行41千米。经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿。第一队每天开12.6米,第二队每天开14.2米。这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米。一列货车从长沙开往广州,每小时行69千米。这列货车开出后开往广州,每小时行69千米。这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米。再过几小时两车相遇?
五、课后小结
我们今天所学的.相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣。
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数。
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59。
活动过程
1、教师进行表演
2、学生探讨其中的奥妙
3、学生自己设计这样的几个游戏。
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数。
六、板书设计
《相遇问题》教学设计 5
教学目标
(一)理解相遇问题的特点,并学会解答求路程的相遇问题。
(二)通过观察、比较、分析,提高学生灵活解答应用题的能力,培养学生合作意识。
教学重点和难点
重点:掌握求路程的相遇问题的解题方法。
难点:理解相遇时,两人所走路程的和正好是两地的距离;相遇时间为两人共同所走的同一时间。
教学过程设计
(一)复习准备
1.口头列式并计算:
小明每分走50米,小华每分走60米。
(1)小明5分走多少米?(50×5=250(米)。)
(2)小华5分走多少米?(60×5=300(米)。)
(3)小明、小华5分共走多少米?(①50×5+60×5=550(米);②(50+60)×5=550(米)。)
(4)小明5分比小华少走多少米?(①60×5-50×5=50(米);②(60-50)×5=50(米)。)
2.小结:
行程问题的三量关系是什么?(速度×时间=路程;路程÷速度=时间;路程÷时间=速度。)
(二)学习新课
1.认识相遇问题。
(1)请两名同学到教室前边迎向走,相遇为止。
(2)同学们注意观察并说出他们是怎么走的?(同时,从两地,相对而行。)
(3)再走一遍,注意观察两人之间的距离有什么变化?(两人之间的距离越来越近,最后变为零。)
教师:当两人之间的距离变为零时,我们就说两人“相遇”。
具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)
(4)相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)
2.准备题。
张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。
(1)学生打开书,看线段图填表。
走的时间/张华走的路程/李诚走的路程/两人所走路程的和/现在两人的距离
(2)同桌二人用一把尺子、两块橡皮合作演示张华与李诚的行走过程,并说出每过1分后,两人所走路程的和与现在两人的距离。
(3)思考:
①出发3分后,两人之间的.距离变成了多少?(出发3分后,两人之间的距离变成了零。)
说明3分后,两人相遇了。
②两人所走路程的和与两家的距离有什么关系?(两人所走路程的和+现在两人的距离=两家的距离。当3分后,两人相遇时,即两人之间的距离为零时,两人所走路程的和就与两家的距离相等。)
小结:相遇时,两人所走路程的和就是两家的距离。
3.学习例5:
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?
(1)此题是不是相遇问题?怎么看出来的?
(2)学生用学具演示小强和小丽的行走过程。
思考并讨论:
①校门口是否在两家的中点?为什么?(小强的速度比小丽的慢,相遇时离小强家较近。)
②根据题意画出线段图。
③两人4分后在校门口相遇,说明他们两家相距的米数正好是什么?(4分后相遇,说明他们两家相距的米数正好等于4分所走的路程的和。)
(3)怎样求两人4分走的路程和呢?
学生列式计算,并讲解。
解法1:
答:他们两家相距540米。
解法2:
重点理解第二种解法。
①两人同时走1分,他们之间的距离有什么变化?(学生演示学具,缩短了65+70=135(米)。)
1分后缩短的135米,叫什么呢?(小强的速度+小丽的速度=速度和)
②2分后缩短了几个速度和?(学生演示学具)
③3分后缩短了几个速度和?
④4分后缩短了几个速度和?
小结:速度和与两家的距离有什么关系?
速度和×相遇时间=路程和。
(4)比较以上两种解法有什么联系和区别?哪种解法简单?为什么?
讨论得出:
区别:从数量关系上看,第一种解法是用两人各自的速度乘以时间,得出两人各自走的路程,然后再求两人所走路程的和;第二种解法是根据两人同时出发后相遇,所走时间相同,可以先算出两人每分一共走多少米?也就是先求“速度和”,再乘以时间。
联系:从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。
第二种解法比较简便,它是第一种解法的简便运算。
(三)巩固反馈
1.P59“做一做”。
(1)学生独立解答后,分析解题思路,订正。
解法1:54×5+52×5=270+260=530(米)。
解法2:(54+52)×5=106×5=530(米)。
(2)用哪种方法解答?((44+52)×2.5=96×2.5=240(千米)。)
2.研究 P61:2。
(1)思考:这题是不是相遇问题?它与相遇问题有什么不同?(相遇问题:相对而行;而此题:相背而行。)
(2)怎样解答?((44.5+38.5)×3=83×3=249(千米)。)
为什么解答方法与相遇问题相同?(相遇问题:两车之间距离在缩短;相背问题:两车之间距离在扩大。所求路程都是两车在相同时间内所行路程的和,所以解答方法相同。)
3.将例题改编成:
(1)如果同时行5分,会出现什么情况?此时两人相距多少米?
(65+70)×(5-4)=130(米)。)
(2)如果4分后两人还相距150米,他们两家相距多少米?
(65+70)×40+150=690(米)。)
(3)如果小强先走2分后小丽才出发,经过4分相遇,两家相距多少米?
(①(65+70)×4+65×2=670(米);②65×(4+2)+70×4=670(米)。)
4.课后作业;P61:1,3。
课堂教学设计说明
相遇问题是研究两个物体同时运动的情况,两个物体的运动情况是多种多样的。相遇问题关键是要弄清每经过一个单位时间,两个物体之间的距离的变化情况。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。因此在复习了行程问题的速度、时间和路程的关系后,通过两名同学的表演,引导学生观察、理解相遇问题的特点。又多次通过用学具演示及同桌的合作,不仅使学生理解了什么是相遇,相遇时两人所走路程的和正好是两地的距离及相遇时间为两人共同所走的同一时间这一教学难点,还提高了学生动手操作的能力,培养了学生的合作意识。
练习的设计由易到难,在学生掌握了基本的相遇问题的解答方法后,又出现了各种变化情况,有利于防止学生死套公式,形成思维定势,提高学生灵活解答应用题的能力。
板书设计
相遇问题
解法1:
小强所走路程+小丽所走路程=路程和
65×4+70×4
=260+280
=540(米)
解法2:
速度和×相遇时间=路程和
(65+70)×4
=135×4
=540(米)
答:他们两家相距540米。
《相遇问题》教学设计 6
教学内容:
教材第36—37页例5和“练一练”,练习八第1~4 题。
教学要求:
使学生认识相遇问题,初步认识相遇问题求路程应用题的数量关系,理解和掌握相遇问题求路程应用题的解题思路和解题方法,学会用不同方法解答,并认识两种不同解法之间的联系,提高分析推理的能力。
教具准备:
男学生和女学生的人像、学校图片,复习题的问题卡片。
教学过程:
一、复习准备
1.做第36页复习题。
小黑板出示。
让学生依次提出问题,老师用卡片贴出问题卡片,并让学生口头列式,老师板书算式和结果。
结合前两题解答提问:
前两题是已知两个什么数量,可以求什么问题?是按怎样的数量关系解答的?
结合第(3)题解答说明:
第(3)题求的是两人每分行的总米数,我们可以把它叫做两人的速度和。(板书:速度和)
追问:什么叫做两人的速度和?第(3)题小明和小芳的速度和是多少?
2.演示相遇问题。
我们过去已经学过一个物体运动的速度、时间和路程的关系,今天开始,我们研究两个物体的运动问题。现在我们用一条线段表示一段路程,两名学生同一时间从路程的两端出发,(演示)这叫“同时出发”;(板书:同时出发)面对面走来,(演示)这叫做“相向而行”;(板书:相向而行)(继续演示)请大家看,两人在途中怎样了?(板书:相遇)
提问:刚才我们看到的是两名学生从两地怎样出发的?是怎样行走的?结果怎样了?
说明:像这样两人分别从两地同时出发,相向而行,结果在途中相遇的问题,就是我们今天要研究的两个物体运动中的相遇问题。(板书:相遇问题)
(评析:先通过演示明确相遇问题里物体运动的特点,可以分散教学中的难点,有利于学生学习下面的例题。)
二、教学新课
1.教学例5。
(1)出示例5,同时贴出男、女学生人像和学校图片。
提问:从图上看,小明和小芳同时从家里出发走向学校,他俩的行走有什么特点?在哪里相遇?
题里告诉我们什么条件?(在线段上表示条件)要求什么问题?(表示出问题)
提问:从图上看,他们两家相距的米数,是哪两部分路程的和?求两家相距的米数就是求什么?
要求两人4分所走路程的和,要先求什么?这道题要分哪几步来做?
让学生在课本上先分步列式解答,再列综合算式解答,同时指名两人板演,分别用分步算式和综合算式解答。
集体订正,说一说每一步求的什么。
提问:这样解答是怎样想的?
(2)教学第二种解法。
提问:按照刚才的复习题,根据题里小明每分走70米,小芳每分走60米,可以求出怎样的数量?线段图上指的哪两部分的和?
(用红色在线段上表示)他们经过4分相遇,两人4分走的路程就是几个这样的速度和?(用手势在图上表示)
按照这样的分析想,要求两人4分所走路程的和,就要先求什么,再求什么?
让学生在课本上先分步列式解答,再列综合算式解答。
学生口答综合算式与计算过程,老师板书。
提问:这里第一步求的什么?第二步为什么乘以47这样解答的数量关系式是什么?(板书:速度和x时间=路程)
指出:速度和是两人每分一共走的路程,乘走的时间,就表示有几个这样的`速度和,这样就可以求出两家相距的米数,也就是路程。
(3)解法比较。
想一想,这两种解法各是怎样的数量关系?两种解法有什么联系?
2.小结。
这里第一种解法是先算每人4分走的路程,再加起来就是两人一共走的路程;第二种解法是先求每分的速度和,再乘以时间就是两人4分一共走的路程。两种解法的算式正好符合乘法的分配律。
三、巩固练习
1.做“练一练”的题。
学生读题。
提问:第一种解法可以按怎样的数量关系来算?第二种解法可以按怎样的数量关系来算?
指名两人各用一种方法解答,其余学生用两种方法解答在练 习本上。
集体订正,说明每一步求的什么。
2.做练习八第3题。
让学生读题。
提问:这里的题目和刚才做的有什么地方不同?从图上看,求两人相距多少米就是求什么?根据线段图上表示的题意,求两人4分所走的路程和可以怎样算?
让学生做在练习本上。
四、课堂小结
这堂课学习的是相遇问题里求什么的应用题?(接相遇问题板
书:求路程的应用题)怎样解答相遇问题求路程的应用题?
五、布置作业
课堂作业:练习八第1、2题。
家庭作业:练习八第4题。
《相遇问题》教学设计 7
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:
正确地寻找数量之间的相等关系。
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、激发
1.在相遇问题中有哪些等量关系?
板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?
生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。
甲车 相遇 乙车
每小时122千米 每小时87千米
北京 上海
第一种解法:用两车的速度和×相遇时间:(122+87)×7
第二种解法:把两车相遇时各自走的.路程加起来:122×7+87×7
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。 (板书课题)
二、尝试
1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
3.根据线段图学生找出数量间的相等关系:
甲车7小时行的路程+乙车7小时行的路程=1463千米
4.设未知数列方程并解答。
解:设甲车平均每小时行x千米。
87×7+7x=1463
609+7x=1463
7x=1463-609
7x= 856
x=856÷7
x=122
答:甲车平均每小时行40千米。
4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。
三、应用
试一试,试着让学生列出两种方程,如:
32x+32×7=480,
480-32x=32×7
四、体验
相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
五、作业
练一练
教学后记:
这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识。
《相遇问题》教学设计 8
教学内容:
教科书P14~P15例10、练一练P16第4~7题
教学目标:
1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。 结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心。
教学重点:
正确地寻找数量之间的相等关系
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、复习导入
1.在相遇问题中有哪些等量关系?
甲速相遇时间+乙速相遇时间=路程 (甲速+乙速)相遇时间=路程
2.一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是85千米/时。两地相距多少千米?
第一种解法:用两车的速度和相遇时间:(95+85)3
第二种解法:把两车相遇时各自走的`路程加起来:953+853
师:画出线段图,并板书出两种解法
3.揭示课题:如果我们把复习准备中的第2题改成已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。 (板书课题)
二、教学新课
1.出示P14例10
一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是多少?
(1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
(2)根据线段图学生找出数量间的相等关系
甲速相遇时间+乙速相遇时间=路程
(甲速+乙速)相遇时间=路程
(1)列方程
设未知数列方程并解答。启发学生用不同方法列方程。
解:设货车的速度是为x千米/时。
953+3x=540 (95+x)3=540
285+3x=1463 95+x=5403
3x=540-285 95+x=180
3x= 255 x=180-95
x=2553 x=85
x=85
答:货车的速度是为85千米/时。
(4)检验
三、拓展应用
1.P15练一练
(1)先画线段图整理条件和问题
(2)找出数量间的相等关系
(3)列方程并解方程
2.P16第4题
1.5x-x=1
4x-85=20
0.22+0.4x=5
3.看图列式
(1)求路程
(2)求相遇时间
(3) 求乙汽车速度
4.P16练习三第7题
四、课堂小结
今天这节课我们学习了什么内容?你有哪些收获?
五、课堂作业
P16练习三第5、6题
《相遇问题》教学设计 9
教学内容:
相遇问题
教学目标:
1、 在学生理解速度、时间、路程三量之间关系的基础上,初步学习相遇问题中速度和、相遇时间和路程之间的关系,并理解三量的含义,数学教案-相遇问题。
2、 进一步培养学生的分析推理和迁移的能力,提高学生的实践能力。
3、 培养学生学习数学兴趣的积极情感。
教学重点:
能准确地理解并叙述速度和、相遇时间及路程的含义。
教学过程:
一、 复习引入:
1、师:同学们,我们每天都在走路,比如今天我们就从我们学校出发共同来试验二小上课。我们走的是同一段路程,你们是坐车来的,用了20分钟就到了,老师是骑车来的,用了25分钟才到。这里面有没有数学问题呢?
师:在走路中涉及的数学问题,主要就是速度、时间和路程这三量之间的关系问题。
这三量之间是什么关系呢?(速度×时间=路程)
师:你能根据这个关系式编一道题吗?(板书算式)
2、汇报作业:(小组)
边表演边讲解
二、新课:
1、 师:同学们遇到这么多情况,今天这节课我们就重点研究两个人从两地同时出发,相对行走最后相遇的这种情况。
板书课题: 相遇问题
2、 出题
小明和小红是一对要好的朋友,他们每天都约好早上7:30从家出发,4分钟后两人正好在学校门口相遇。小明每分走50米,小红每分走60米,你知道小明家离小红家有多远吗?
(1) 学生说已知条件,师在黑板上画图。
50米 4分钟相遇 60米
小明家 学校 小红家
?米
师:(介绍学具:绿色纸条表示什么?小明的`速度 粉色纸条表示什么?小红的速度 这条线段表示什么?路程)
(1) 先用学具演示,两人从同时出发到相遇的过程。
(2) 通过演示,看看你能用几种方法解答?
(3) 说说每种方法你是怎么想的吗?
3、小组演示,讨论。
4、小组汇报:(边摆边说)
(1)50×4+60×4=440(米)
师:你能说说你是怎么想的吗?
(2)(50+60)×4=440(米)
a、 小组演示,把4分钟相遇的过程用学具摆出来。
(师:50+60什么意思?×4什么意思?4分钟相遇说明什么?路走完了,小学数学教案《数学教案-相遇问题》。走了4个110米。)
(3)师小结:(教师边说边演示)
小明每分钟走50米,小红每分钟走60米,两个人一分钟就走了50+60=110米,第二分钟又走了110米,第三分钟同样走了110米,像这样他们俩共走了4个110米,就走完了全程。4分钟就是他们走完全程所用的时间,也就是他们相遇的时间。
几分钟相遇就有几个速度和。
(4)师:请你们小组里再说一说,摆一摆,体会一下。
(5)师:谁再说说(50+60)是什么?(小明和小红的速度之和)
为什么要乘以4呢?(因为他们4分钟相遇)
师:这两种方法哪种更好呢?为什么?(第二种更简便)
5、练习:
甲、乙两辆汽车同时从东西两站相对开出,甲车每小时行48千米,乙车每小时行42千米,5小时相遇。东西两站相距多少千米?
列式:(48+42)×5
问:48+42什么意思?为什么要×5?
6、师:48+42与50+60都是速度与前边的比,有什么不同?(这是两个人的速度和,前边是一个人的速度)
板书:速度和
时间呢?(这是两个人共同用的时间,前边是一个人的时间)
板书:相遇时间
路程呢?
7、总结关系式:
师:你能根据这三个量总结出一个求路程的关系式吗?
板书:速度和×相遇时间=路程
师:谁再说说速度和、时间和路程分别指的是什么?
三、总结
师:今天这节课,我们研究了随着运动物体的数量、运动方向的变化,它们之间的数量关系也发生了变化,速度变成了速度和,一个人用的时间变成了相遇时间,一个人走的路程也变成了两个人共同走的路程,但是不管怎样变化,它们的基本关系仍然反映的是速度、时间、路程这三量之间的关系。
师:通过这一段的学习,你们还有什么问题吗?
四、练习:
1、列式计算,并说一说算式的意思。(小组完成)
(1)甲乙两辆汽车从两地同时相对开出,甲车每小时行55千米,乙车每小时行45千米,4小时相遇。两地相距多少千米?
(2)两台机器同时开动,第一台每天生产零件470个,第二台每天生产530个。工作5天后,两台机器共生产零件多少个?
2、半命题。
两辆画线车同时从两个地点出发画隔离线,经过7分钟后两车相遇,你知道画了多长的隔离线吗?
师:能做吗?为什么?怎么办?
实践作业:(以小组为单位)
问题:一段路,如果两个人走,会遇到什么情况?把实践的结果记录下来。
出发地点
出发时间
运动方向
运动结果
一地 两地
同时 不同时
相对 相背
相遇 不相遇
《相遇问题》教学设计 10
教学目标:
1、通过研究学习,帮学生理解相遇问题的意义及特点,学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、培养学生的自主探究知识的能力和创新实践能力,提高学生的质疑水平。
3、培养学生的应用意识,提高学生学习数学的兴趣和自信心。
4、培养学生团结协作精神。
教学重点:
1、学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、提高学生自主探究知识的能力。
教学难点:
理解分析相遇问题的数量关系。
教学过程:
一、联系实际,复习导入
谈话:从你家到学校的路同学们都很熟悉了,那你能说一说从你家到学校的.路程是多少吗?怎样能知道呢?(指名学生说)
学生发言交流。
教师点拨:用速度时间=路程的方法。
二、探索新知。
(一)、理解相向而行、相背而行
1、教师:如果找你的一个好朋友来,你们两人合作,怎样走能计算出路程?
小组讨论,全班交流。
引导学生说出两种方法:
①一人从家里走,一人从学校走,一直到两人相遇,两人所走的路程相加。
②从两地之间一人走到学校,一人走到家,所走的路程相加。
结合两种方法,借助手势,帮学生理解相向、相背的含义。
2、课件演示:
同学们仔细看,把你看到的和同学们说一说。
小组交流,小组汇报。
出示线段图,教师点拨:两辆汽车同时从两地出发,相向而行,相遇了。(板书:两地 同时 相向)
接着看,把看到的和同学们说一说。
小组交流,小组汇报。
出示线段图,教师点拨:两辆汽车同时从同地出发,向相反的方向行驶,各自走了一段路。(板书:同地 同时 相背)
(板书: )
相向而行、相背而行都属于相遇问题这节课我们一起来研究有关相遇问题的知识。(板书:相遇问题)
问你想研究哪一种运动方式?看到这两种运动方式,你想知道什么呢?指名说。
3、教师:这节课我们重点研究相遇求路程的问题,要求路程需要知道什么条件?指名说:速度和时间。现在,小组合作编一道相遇求路程的应用题,然后再解答出来。
小组编题解题。(指做的最快的一组板演,板演两种方法)
全班交流:先看板演同学做的,听这一组编的题,看解答对不对。这两位同学这样解答,你有什么问题要问吗?(指名问,学生相互解答)
你喜欢那种解答方法,说一说理由。
选择一种适合自己的方法解应用题就可以了。
指2组汇报编的题及解答方法。
三、练习提高。
1、只列式,不计算。指名说。
两辆汽车同时从邹平和滨州相对开出,从邹平开出的汽车每小时行45千米,从滨州开出的汽车每小时行50千米,经过1.2小时相遇,邹平到滨州的路程是多少千米?
两艘轮船同时从同一个地方向相反的方向开出。甲船每小时行26千米,乙船每小时行17千米,经过2.5小时,两船相距多少千米?
2、提问题,列出算式。
张强和王朋两人同时从两地相向而行,张强骑摩托车每小时 行30千米,王朋骑摩托车每小时行40千米,经过0.5小时相遇, ?
小组合作,提出一个问题,列出算式,看哪个小组提的问题最多。全班交流。
3、选择。
①小伟和小洁同时从自己家里相对向学校走去,小伟每分钟走60米,小洁每分钟走70米,经过8分钟,两人还相距260米,他们两家相距多少米?( )
②小伟和小洁同时从自己家里相对向学校走去,小伟每分钟走60米,小洁每分钟走70米,经过8分钟,两人交叉而过又相距260米,他们两家相距多少米?( )
(60+70)8 (60+70)8 +260 (60+70)8260
学生读题后,指名说。
4、思考:一辆客车和一辆货车从两地相对行驶,客车每小时行60千米,货车每小时行65千米,客车开出1小时后,货车才开出,再过2小时两车相遇,两地之间的路程是多少千米?
小组交流,全班汇报。
四、课堂小结:
说一说通过这节课的研究学习你学到了什么知识?指几名学生说一说。
《相遇问题》教学设计 11
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。
提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?
(板书:同时出发、相向而行)
如果他们继续走下去,结果可能会怎样?
(相遇、不相遇就停下来、相遇以后相交而过)
结果究竟怎么样呢?请同学们继续观察。
电脑演示两人相遇。
(板书:结果相遇)
谁能完整的说说他们是怎样运动的?
[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。
(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?
(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。
我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。
走的时间 张华走 的路程 李诚走 的`路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分
讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。
小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的?
提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的同学说说你的解题思路又是什么?
[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?
(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5
相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。
(59页做一做第1题)
2、只列式不计算。(练习十三1、2题)
学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]
四、闯关游戏,拓思创新:
电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?
提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?
提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]
《相遇问题》教学设计 12
教学内容:
相遇问题(教材第71、72页)
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重点:
理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
课时安排:
1课时
教学过程:
一、复习旧知
1、说一说
速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
3、列方程解应用题,关键是要找出题中的什么?,再根据找出的什么列出方程。
二、探索新知
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
板书课题:相遇问题。
2、创设“结伴出游”的情境。出示教材第71页的情境图。
从图中找出相关的数学信息。
生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。
生2:淘气家到笑笑家的路程是840米。
生3:两人同时从家里出发,相向而行。
第一个问题:让学生根据信息进行估计,两人在何处相遇?
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
第二个问题:画线段图帮助学生理解第二、第三个问题。
通过画线段图帮助学生找出等量关系。
淘气走的路程+笑笑走的路程=840米
第三个问题:根据等量关系列出方程。
解:设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示50x米。则方程为:
70x+50x=840
学生独立解答。
3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。
根据“路程÷速度和=相遇时间”列出算式:
840÷(70+50)
三、应用新知,拓展练习:
1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找 出数量间的相等关系,并列出方程
2、铺设一条长6300米的下水道,有甲乙两个小组从两头同时开始施工,经过60天后还剩300米。甲组每天完成54米,乙组每天完成多少米?
四、练一练
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
五、知识回顾,全课总结
今天这节课我们学习了什么?我还有那些困惑。
六、布置作业
教学反思:
这节课的主要内容是相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。我个人认为本节课教学设计和组织上很好的体现了新课程标准理念。
具体体现在:
1、情境的创设贴近生活,从生活实际入手,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题---尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的`体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了多媒体的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。
3、在教学过程中,还能注意实施差异教学。学生的水平参差不一,有的解题速度比较快,有的比较慢,甚至有的对所学的内容存在困难,因此我通过在完成练习时,要求早完成的学生要与旁边的同学实行一帮一的互相检查以及辅导,让学生在互助合作的良好氛围中学习,同时在实施评价、反馈时,教师注意捕捉、发现学生的思维火花,及时鼓励、肯定,极大的调动学生学习积极性,形成平等和谐的学习氛围。
《相遇问题》教学设计 13
教学目标
1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养中国学习联盟胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的`解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270÷(50+40).
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于“求相遇时间”应用题还有什么问题?
4.教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣.
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59.
活动过程
1.教师进行表演
2.学生探讨其中的奥妙
3.学生自己设计这样的几个游戏.
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.
六、板书设计
《相遇问题》教学设计 14
教学内容:
第7册教科书第91页例4,92页的练一练及相关练习。
素质教育目标
(一)知识教学点
1.使学生进一步认识相遇问题应用题的结构.
2.通过分析相遇问题的数量关系,较熟练掌握相遇问题的思考方法.
3.学会解答已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
(二)能力训练点
1.如何根据两地之间的路程和两个物体运行的速度,求相遇时间.
2.提高学生解答实际问题的能力.
(三)德育渗透点
1.培养学生积极动脑,独立思考的良好习惯.
2.通过应用题的教学培养学生热爱数学的.品质.
教学重点:
进一步认识相遇问题应用题的结构,能根据相遇问题的数量关系学会已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
教学难点:
如何根据相遇关系式解答相遇求时间的各类应用题.
教具学具准备:
自制活动投影片一套,小黑板两块.
教学步骤
一、铺垫孕伏
1.投影出示:
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经3分钟两人相遇.两地相距多远?
(1)读题
(2)用两种方法解答
2.导入:
(1)引导学生把这题所求问题变为条件,改编成求相遇时间的应用题.
(2)出示改编后的例6,两地相距270米.小东和小英同时从两地出发,相对走来.小东每分钟走50米,小英每分钟走40米.经过几分钟两人相遇?这就是我们这节课要学的求相遇时间的应用题.(板书相遇求时间)
二、探究新知
1.教学例6,读题理解题以后解答
(1)这题告诉我们哪些条件?(相距路程,两人速度)
(2)要求的问题是什么?(相遇时间)
2.演示自制投影片.
第一次演示:你发现了什么?启发学生思考:
(1)小东走了多少米?(50米),小英走了多少米?(40米)
(2)两人共走了多少米?(50+40=90米)
(3)用了多少时间?(1分)为什么只用了1分钟?(因为他俩是同时出发)
(4)这时两人相距多少米?(270-90=180米)
第二次演示:请认真观察,根据第一次演示的思考方法讨论,你知道了什么?
引导学生知道:
(1)现在小东走了100米,小英走了80米.
(2)他们都用了2分钟,老师追问:为什么两人用的时间相同?
(3)现在两人共走了180米.(100+80=180米)
(4)两人还相距90米.(270-180=90米)
3.归纳
提问:通过以上两次演示还知道了什么?
引导学生知道:
(1)小东和小英走的时间是相同的.
(2)小东和小英走1分钟就是90米,走2分钟就是180米.
(3)如果小东和小英再走1分钟就走完全程相遇了.
提问:是不是呢?老师指名学生到前面演示.从中你发现了什么?
(4)小东和小英走完全程(相遇)用了3分钟.提问:
(1)这3分钟就是什么?(相遇时间)
(2)讨论:是怎样得来的?
引导学生知道:
(1)小东和小英同时出发1分钟就走90米,270米里有3个90米,所以两人同时走完270米就用了3分钟,也就是这题求的相遇时间.
(2)归纳数量关系,引导学生知道:
①270米是路程
②90米是速度
③3分钟是时间
④数量关系式是:路程速度=时间
4.列综合算式独立解答
三、巩固发展
1.甲乙两个车站相距270米,两辆汽车从两站同时相对开出,甲车每小时行50千米,乙车每小时行40千米,开出几小时两车相遇?改变条件出示:
提问:(1)根据今天学的数量关系解这题的关键是什么?
(2)说解题思路
①如果乙车每小时比甲车慢10米,几小时后两车相遇?
②如果乙车每小时行40千米,比甲车每小时少行10千米,几小时后两车相遇?
思考后先独立完成,然后汇报解题思路.
③如果甲车3小时行150千米,乙走2小时行80千米,几小时后两车相遇?
分组讨论,汇报解答思路,并列出综合算式.
引导学生思考:通过解答以上这三个小题,你知道了什么?引导学生回答:我知道了解相遇求时间这类题,都要先找出甲乙的速度各是多少和相遇时间,如不直接告诉我们,根据题意求出来,再按数量关系式解答.
2.根据条件列算式并说明理由甲乙两地之间的公路长540千米.两辆汽车相对而行,甲车每小时行65千米,乙车每小时行70千米,经过4小时两车相遇.
(1)(65+70)4=540 (2)540(65+70)=4
(3) 54065-70=65 (4) 54070-65=70
(5)540-654=70 4 (6)540-704=654
四、全课小结:
引导学生总结这节课学习了什么知识?
五、布置作业
六、板书设计
应用题
复习题小黑板
速度时间=路程
例6
路程速度=时间
(速度的和)(相遇时间)(速度的和)(相遇时间)
270(50+40)
=27090
=3(分)
《相遇问题》教学设计 15
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学重点:
在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。
教学难点:
从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学准备:
配套课件
一、导入阶段
1.复习行程问题中的速度、时间、路程的基本数量关系。口答
甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?
2分钟两人共行几米?
5分钟两人共行几米?
2.根据题意写出含有字母的式子。
一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?
轿车行了多少千米?
两车共行了多少千米?
二、结合实例,探究新知
1. 出示例题1
沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?
2. 学生读题,找出未知量与已知量之间的等量关系。
(1) 你可以从题目中收集到哪些数学信息?
(2) 学生介绍,教师画线段图。
(3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的'路程可以用100x千米表示。
(4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。
(5) 列方程解决问题:
解:设经过x小时两车在途中相遇。
80x+ 100x = 270
180x = 270
x = 1.5
答:经过1.5小时两车在途中相遇。 (检验)
三、巩固深化,灵活应用
1. 练一练
(1) 小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)
解:设x分钟后两人在途中相遇。
58x+ 62x = 960
120x = 960
x = 8
答:8分钟后两人在途中相遇。(检验)
(2) 两个城市之间的路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?
客车行的路程+货车行的路程=两个城市之间的路程
解:设货车平均每小时行x千米。
44×4.5+4.5x = 405
198+4.5x = 405
4.5x = 207
x =46
答:货车平均每小时行46千米。(检验)
2. 看图解题
分析比较,与例题比较,哪些题用方程解容易想?为什么?
3. 补充练习。(学生尝试着独立完成)
(1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?
(2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?
(3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?
四、全课总结
《相遇问题》教学设计 16
教学要求:
使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。
教学过程:
一、复习准备
1、解下列方程
(0.9+x)×3=3.6
0.32×5+5x=4.6
2、出示准备题
(1)全体学生审题后列式解答(用两种方法解答)
(2)解题后口述解题思路:
(58+54)×1.5 (先算速度和,在求两地路程)
58×1.5+54×1.5 (先分别算出两车相遇时行的路程,再求总路程)
二、学习例6:
1、审题:
(1)与准备题比较不同在哪里?
(2)如果设乙车每小时行X千米,列方程解你会么?
2、解答后反馈:
(1)你是如何解答的`?
(58+x)×1.5=168
(2)还能列出怎样的方程?
58×1.5+1.5x=168
1.5x=168-87
(2)比较这两个方程在思路上有什么不同?
3、与这两种方程相应的算术解法是怎样的?
4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的路程这个等量关系来列出方程。
三、巩固学习
1、独立练习:练1练第1、2两题。
全体学生解答后同坐两人互相说说解答的方法步骤。
2、出示试一试。
(1)弄清问题和要求要求。(怎样解方便就怎样解
(2)解答后讨论:与例6有比较有什么不同?
你是如何解答的?能否求速度和?
(3)你能列出与这两个方程相应的算术解法吗?
1、独立作业。
(1)练一练第三题,学生独立完成
(2)反馈:与例6比较有什么不同?解题方法呢?
师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。
四、课堂总结
今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?
列方程解这类应用题应注意什么?
五、布置作业
作业本[59]
《相遇问题》教学设计 17
一、说教材
1. 说课内容:
《相遇问题》是北师大教材小学数学五年级上册“数学与交通”中的第一课。
2. 教材分析
《相遇问题》这节课的教学是学生在掌握行程问题基本数量关系的基础上进行的,本课教材给学生提供了“送材料”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决3个问题:
①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。
②用方程解决相遇问题中求相遇时间的问题。
③解决“相遇地点离遗址公园有多远”?实际上就是求面包车行驶的路程。
3. 学情分析
学生已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。 本节课学生对相遇问题的理解也有难度,所以我想只有站在学生学习的起点上,尊重学生发展的基础上多设计一些活动,引导学生积极参与到操作过程中,使所有学生通过本堂课都能有所收获。
4. 教学目标
从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了以下的目标:
①使学生理解相遇问题的意义及特点。
②经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。 ③会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
5. 教学重难点
我将本课重点制定为:会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的'能力。
难点制定为:找出相遇问题的等量关系。
二、 说教法学法
本课注重学生体验的过程:学习不是由教师把知识简单地传递给学生,而是学生自己建构知识的过程。基于这一观点,在本节课的教学中,在学生体验相遇问题中两人或两物体运动的速度不一样,但所用的时间相同这一难点,让学生模仿相遇过程和用手势表示相遇过程,使学生体验并理解。在这个基础上再引导学生画线段图,有助于学生对难点的突破。
三、 教学过程
我将本节课的教学过程设计为以下三个环节:
(一) 复习旧知,导入新课
(二) 模拟情景,探究新知
(三) 巩固新知,课外延伸。
在第一个环节中,首先我请一个学生在教室里走一走,引出速度,然后请学生提一个问题,从而复习旧知:路程=速度×时间;接着出示几道复习题复习速度=路程÷时间;时间=路程÷速度;最后总结:这是我们以前学习过的一个人或一个物体运动的行程问题,今天,我们来研究两个人或两个物体运动的行程问题。
利用学生们所熟悉的同学引出旧知,不仅激起了学生学习的兴趣,而且达到了复习旧知的目的。
第二个环节,我设计让同桌模仿相遇过程和让学生用手势表示相遇过程两个活动,让学生通过观察、实践加深对相遇问题的理解,感受到所谓“相遇”就是两人或两个物体从两地同时出发,相向而行,在途中相遇这样一个过程,在学生脑袋里建立一个清晰的相遇问题的模型,然后接着问:“刚才在手势表示的过程中,你还有什么发现?” 这时学生发现小轿车的速度快,面包车的速度慢;两辆车所走的路程就是总路程。或者学生还能发现“从出发到相遇两人用的时间一样”,这时出示路线图让学生根据两人的速度信息估计在哪里相遇。因为小轿车的速度快所以相遇地点应该在李村附近。理解“两人所用时间一样“是本节课的难点,班里大部分学生对这一问题还不理解。所以,通过播放路线图,让学生直观地感受。
在学生观看路线图的过程中,我打算分三个小步骤。首先,播放1小时小轿车和面包车所走的路程,提问:小轿车走了多少千米?面包车走了多少千米?用了多少时间?其次,继续行走了1小时,各走了多少千米?在解决这些问题的过程中,学生会发现两人所用的时间是相同的,但为什么相同呢?这又引起了学生思维上的冲突,这时再将重放幻灯片,学生就会发现她们是同时走同时停的,从出发到相遇他们所用的时间是相同的,这一难点在学生观看中,探索中自然而然的突破了
第三个环节,出示P57试一试的题目,让学生巩固新知,从而达到课外延伸的目的。
《相遇问题》教学设计 18
《相遇问题》这节课的教学设计,力求改变传统的教学模式,体现以学生发展为本,以培养学生的合作精神、创新精神和实践能力为重点,变单一的知识教学为发展学生的能力,引导学生积极主动的探究知识的形成过程,使自主学习、探索学习、创新学习成为数学学习的主流。
相遇问题是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系,现在从以下几个方面说一说本节课的设计思路:
一、教学目标:
1、通过研究学习,帮学生理解“相遇问题”的意义及特点,学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、培养学生的自主探究知识的能力和创新实践能力,提高学生的质疑水平。
3、培养学生的应用意识,提高学生学习数学的兴趣和自信心。
4、培养学生团结协作精神。
重点是让学生学会分析相遇问题的数量关系,会解决相遇求路程的问题,提高学生自主探究知识的能力。
二、教学组织形式:
本节课以“小组合作学习”的形式进行教学。一个小组要最快最好地完成学习任务,小组成员之间必然会团结协作,积极思考。这样培养学生的团结协作精神,同时也利于面向全体,人人都有发言机会,逐步提高学生的合作技巧,小组间的竞争也提高了学生的参与程度。
三、教学过程:
1、从实际出发,初步感知。
“相向、相背”对于学生来说是比较抽象的,所以我从学生最熟悉的生活实际入手,帮学生初步感知。我设计了“怎样知道从你家到学校的路程?”这样一个问题,引起学生参与学习的兴趣。引出用“速度时间=路程”的方法,找出新旧知识的连接点。接着又问“如果找你的好朋友来,你们两个人合作,怎样能较快的走完从家到学校的路,再算出从家到学校的.路程?”小组合作想办法,汇报交流时,学生想出了两种方法,借助这两种方法帮学生初步感知“相向、相背”的含义。
2、课件演示,加深理解。
在初步感知的基础上,恰到好处的利用课件演示,将静态的知识动态化,为学生创设良好的学习情境。分别演示两种运动方式,让学生仔细看把看到过程说出来,培养学生的观察能力和口头表达能力,通过小组相互交流,然后全班交流,教师及时点拨,使学生理解两种运动方式,从实物演示中抽象出线段图,由直观到抽象,符合学生的认知规律,在这过程中,尊重了学生主体地位,教师只是组织引导者,通过组织小组交流,培养了学生的发言意识、合作意识。
3、小组编题,自主探索。
这是本节课的中心环节。在充分认识两种运动方式后,问“你想研究那种运动方式”,“认识了这两种运动方式,你想通过这两种运动方式知道什么”,这一环节给学生选择的空间,激活了学生思维。组织学生小组合作选择一种运动方式编一道应用题,并解答。全班交流时,对板演同学的解答过程,我鼓励学生大胆提出疑问,再讨论解决疑问。在不断质疑、解疑的过程中,学生的自主学习能力得以培养,探索求知的欲望得以激发,这样就使课堂上的单向信息交流变为多向信息交流,激发了学生参与学习的兴趣,培养了学生的创新意识。
4、设计练习,培养创新。
练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。
本课的练习形式有:只列式不计算、提问题列算式、选择、思考,改变了原来的题海战术,从培养学生的实践应用能力、提高学生的创新能力为出发点。从课堂效果看,学生思维非常活跃。
在练习层次的设计上:只列式不计算是基本练习,使学生对两种运动方式有一个全面的认识;提问题列算式练习,问题开放,学生自由的提出问题再解答,在处理这个练习时,我组织学生以小组为单位,比比看哪个小组提的问题多。(同学们兴趣高涨,积极参与,唯恐落后)对相遇问题有了更深的理解;选择题提高学生灵活思维,运用所学知识解决实际问题的能力;思考题设计时,我考虑到满足不同层次学生的求知欲,因材施教,提高学生的创新能力。
总之,这节课就是让学生在小组合作学习中,自主探索、提出问题、解决问题,不断提高学生的创新精神和实践能力。
《相遇问题》教学设计 19
一、 说教材
1、教学内容:
本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容。
2、教材简析:
相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。
3、教学目标:
(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。
(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。
(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。
(4)培养学生细致的审题习惯,提高学生分析问题和解决问题的能力。
二、学生分析:
这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。
我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的,比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的',所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。
基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。
练习的设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。
三、说教法
教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来。让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。
四、教学流程:
教学重点:
掌握相遇问题求路程的算理和解答方法。
教学难点:
正确理解“速度和”的含义。
教具准备:
课件
学具准备:
两块橡皮(或两只笔)
(一)、 创设情景、逐步感知
帮助学生理解相遇、相向、同时
师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。
考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。
(二)、 探究问题、加深理解
(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)
1、 根据这些信息,你想提点什么数学问题吗?
问题1小强和小丽一共走了多少米?
问题2:小强走了多少米?小丽走了多少米?
问题3:小强比小丽多走了多少米?
2、 通过问题2复习: 速度×时间=路程
3、 这节课重点来研究:小强和小丽一共走了多少米?理解 相距
(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)
4、 生上来板书:(1)100×4+50×4 (2)(100+50)×4
5、 反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)
6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)
速度和×时间=路程 (师板书数量关系,齐读)
7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。
学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?
可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?
根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
(三)、解决问题,概括方法
(大屏幕出示:两个工程队合作修一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?)
先指导学生审题:进度可以理解前进的速度,那就是行程问题,“经过15天打通是什么意思?地铁的的长与进度有什么关系?地铁的长可以通过什么去求?还可以通过什么去求?”
1、能独立解决吗?
2、说说它们相同的地方?
(大屏幕出示刚才做过的两道题目)
3、小结
这个例题的设置使得本课更具有开放性,一是为工程问题打下了基础,也放开了学生的思维,避免应用题中经常出现的对号入座的现象,
三、 阶梯练习,扩展思维
1、学生汇报生活中类似问题。
2、基础练习(只列式,不计算)
(1)两列火车同时从甲乙两站相对开出,客车每小时行60千米,货车每小时行40千米,经过4小时两车相遇,甲乙两站相距多少千米?
(2)四(1)班为准备联欢会折纸花,男同学每小时折136朵纸花,女同学每小时折164朵纸花,他们共同折了2小时,一共折了多少多纸花?
(3)甲乙两个打字员合打一份文稿,甲每分钟打35个,乙 每分钟打40个,两人同时打15分钟完成任务。这份文稿一共有多少个字?
生独立解答,并说出算式的含义。
3、 扩展练习
最后,我们来表演一下相遇问题怎样?
(请两生上来,分别给他们一个速度70和80,老师手中拿时间4分钟)
第一种情况:同时出发,4分钟后相遇。求路程?
第二种情况:同时出发,4分钟后两人还相距200米。求路程?
第三种情况:同时出发,相遇后,两人擦肩而过,4分钟后两人还是相距200米。求路程?
4、提高练习
(大屏幕出示题目:小张和小李在环行操场跑步,两人同时从A点出发,反向而行。小张每秒跑4米,小李每秒跑6米,经过20秒在B点相遇。操场的跑道长多少米?)
如果时间不够,留带课后完成。
练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,满足不同层次的需求,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。本课基本练习,要求列式不计算,是希望将更多的时间放在对算式的理解上,将时间留给学生说算式的含义,列式的理由,说的形式由点带动面,即由好生带动差生,(差生可以仿造说)到同桌互说,借此进一步突破本课的重难点—— 求路程的算理和解题方法,逐步提高语言表达能力。
《相遇问题》教学设计 20
各位领导、老师:
您们好!
今天,我说课的内容是津教版四年级上册第四单元《三步计算和应用》中的相遇问题。从以下三方面进行我的说课:分析教材,理清思路。优选教法,注重学法。优化程序,突出主体。
一、分析教材,理清思路
本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。
本节课的教学目标是:
1、知识目标:明确相遇问题的特点。理解基本数量关系。正确分析解答相遇问题。
2、能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。
3、情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。
在实施知识目标过程中,重点是让学生在“做”中发现规律,从而理解相遇问题的数量关系,掌握解答方法。
二、优选教法,注重学法
学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做。做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。
三、优化程序,突出主体
本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。
(一)创设情境
1、引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)
2、播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)
[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的.情境,使学生能主动地在与情境的交互作用中学习。]
(二)实践探究
1、理解意义
(1)揭示课题——相遇问题
(2)制定目标——看到这个课题,你想研究哪些内容?
(教师依学生所说归纳出学习目标并板书:意义、规律、应用)
(3)联系生活——提问:在实际生活中还有哪些情况属于相遇问题?
(4)归纳小结——要想出现相遇的情况应具备哪些条件?
(5)教师指出——本节课侧重研究两个物体“同时”行进的规律。
2、实践操作。
小组合作:
(1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。
(2)每行进一次把数据填入表中。
(3)观察表中的数据,研讨发现了什么?
设计这一实践活动的目的,是让学生在“做”中感受两物体同时从两地相向而行的运动规律。
①两者之间的距离越来越小,直至为0,即相遇了。
②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程。
③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。
3、应用规律
例:(媒体出示)90页,例3
(1)自己选择学习方式。
A独立完成(鼓励用多种解法)
B借助教材(依据小标题列式解答)
C请教同学。
(2)指名板演,讲解思路。
[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成。对善于与人交往的学生,让他们向同学请教。对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]
(三)巩固深化
1、口答:
先说说解答思路,再列式计算——目的是巩固新知
小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分两人在学校相遇(学校在两家位置之间)两家相距多少米?
2、自选——让学生依个人掌握知识情况,选择练习题。
(1)练习十八1、2。
(2)两辆汽车同时从一个地方向相反的方向开出,甲车平均每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?
3、编题:
小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。
[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]
(四)课后小结
谈一谈本节课有什么收获?
【《相遇问题》教学设计】相关文章:
《相遇问题》教学设计11-14
相遇问题教学设计06-14
相遇问题教学设计06-09
《相遇问题》教学设计03-15
相遇问题教学设计(13篇)05-28
相遇问题教学设计13篇02-10
相遇问题教学设计(精选13篇)02-10
相遇问题教学设计(13篇)04-03
相遇问题教学设计(通用13篇)02-10
相遇问题教学设计(通用18篇)08-11