《平均数》教学设计

时间:2023-06-10 16:11:23 教学设计 我要投稿

《平均数》教学设计(15篇)

  作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。我们应该怎么写教学设计呢?以下是小编整理的《平均数》教学设计,仅供参考,大家一起来看看吧。

《平均数》教学设计(15篇)

《平均数》教学设计1

  一、教学目标:

  1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。

  2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。

  3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

  二、教学重点:理解平均数的意义,学会计算简单数据的平均数。

  三教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

  四、教学过程:

  1、创设情境,体验产生平均数的必要性。

  同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?

  我们一起来看看比赛情况。

  出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)

  A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。

  学生讨论比总数——每队总人数不相同,不公平

  比最多的——个人水平,不是整队水平

  B、到底怎样比才公平地体现两队的实力(投球水平)呢?

  (平均每人投中多少个球)——实际就是每队队员投球的平均数

  揭题板书——认识平均数

  2、认识平均数

  刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?

  A、同桌合作完成

  a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?

  B、反馈:哪队赢了?你是用什么方法研究出来的?

  a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?

  每人投球个数变了

  每队的总个数不变

  (每队内部的个数调整,不影响整个队的实力)

  像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少

  刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。

  还有别的方法吗?

  C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)

  (1)、算式中的数都表示什么意思?

  (2)、比较平均数,谁赢了?

  比较两种方法,你喜欢哪一种?为什么?

  小结:当数字比较小又接近的'时候我们用移多补少更简便,

  当数字比较大而复杂的时候我们用计算的方法更为简单。

  3、理解平均数的意义

  刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?

  (1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?

  有的比5大――可能相等或不相等

  有的比5小――

  (2)、同样都是“5”,它们所表示的意义相同吗?

  是个体的投球水平

  是整个队的总体投球水

  4、其实,我们身边也有许多平均数,你能举个例子吗?

  五、在具体情境中理解、应用平均数

  1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?

  昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。

  (1)、出示身高计表

  同学12345

  身高cm131136134132137

  (2)、估计:他们的平均身高大约是多少?你是怎么估算的?

  145cm、130cm可以吗?最小数<平均数<最大数

  (3)、算一算他们的平均身高(计算方法)

  平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)

  (4)、根据第一排同学的身高,请你推测一下咱们班同学的平均身高,并说说你的依据是什么?

  (5)、看来推测的结果是否准确和我们选取哪5名同学有很大关系,如果按现在的座位(8排8列),还是选5名同学,你准备怎么选?

  小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。

  2、小熊商店

  (1)、出示统计图,你知道了什么?

  (2)、求出前三周的平均数

  (3)、预测一下第四周进几箱?

  六、拓展

  淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?

  七、小结

  这堂课你学得开心吗?有什么收获吗?

《平均数》教学设计2

  教学目标:

  1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重难点:

  理解平均数的意义,学会求简单数据的平均数。

  教学过程:

  一、创设情境,自主探究

  1.呈现套圈情境。

  多媒体演示“套圈比赛”场景。谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?

  2.收集整理数据。

  多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。

  【设计意图:运用多媒体对教材例题进行动态处理,能有效地激发学生的学习兴趣。通过“摆”小方块制作统计图,目的是让学生亲历数据收集整理的过程,同时也为后面用“移多补少”的方法求平均数作准备。】

  3.引入平均数。

  出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)

  【设计意图:富有启发性的“追问’’,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。

  【设计意图:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。

  观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。

  提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?可以通过哪些方法来验证?谈话:女生平均每人套中多少个圈呢?你是怎样知道的?先和小组内的同学一起说一说。反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?提问:现在你能判断男生套得准还是女生套得准吗?小结:通过刚才的活动,我们认识了什么?你能结合刚才的例子,说一说平均数表示的意义吗?

  【设计意图:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的'表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】

  二、联系实际,拓展应用

  我们一起玩闯关游戏好吗?

  1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。

  (1)想想做做第1题。移动笔筒里的铅笔,看看平均每个笔筒里有多少枝?还可以用其他的方法求出来吗?

  (2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。

  2、挑战第二关“明辨是非”

  (1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()

  (2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

  (3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()

  (4)学校篮球队可能有身高超过160厘米的队员。()

  3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表

  学号1 2 3 4 5

  身高(厘米)132 134 136 140 142

  (1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

  (2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。

  【设计意图:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识,闯关游戏更能激发学生的学习兴趣。】

  三、总结评价,感情升华

  今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?

  教后反思:

  本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。

  具体地说有以下几个特点:

  1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。

  2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。

  3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。

《平均数》教学设计3

  教学内容:《数学》三年级下册第58、59页

  教学目标:

  1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

  2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

  3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

  教学准备:CAI课件。

  教学过程:

  教学环节

  设计意图

  教学预设

  一、情境创设:

  同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

  去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

  二、探究与体验;

  1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

  95分

  95分

  96分

  85分

  98分

  93分

  你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

  2.全班交流:

  刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

  指名回答。

  生评价谁算得对。

  4.师小结过渡:

  是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

  5.议一议:

  师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

  第一次

  第二次

  第三次

  第四次

  第五次

  167厘米

  167厘米

  167厘米

  167厘米

  167厘米

  那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

  全班交流。

  6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的最后成绩,而不是用他几次试跳的平均成绩。

  7.通过以上的学习你了解到了哪些知识?

  三、实践与应用;

  师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

  1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

  第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

  2.出示第2小题,生独立完成,然后集体订正.

  3.出示第三小题,生独立完成第一步,然后集体订正。

  第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

  四、拓展与延伸:

  出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

  请同学认真思考,然后和同桌说说你的想法。

  从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

  让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

  培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

  让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,

  对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

  在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。

  对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

  让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

  在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

  为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的.平均分。

  学生可能有以下几种答案

  1.(96+95+95+96+85

  +98+93)÷7=94(分)

  想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

  (2)(96+95+95+96+93)÷5=95(分)

  想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

  还有可能出现计算错误的现象,让学生找出错误原因。

  学生可能出现的回答有;

  1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

  2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

  第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

  答案应该是下周应准备和本周售出总数同样多的饮料最合适。

  什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

  “平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

《平均数》教学设计4

  教学内容:

  练习十一1—3题,教材42页例1

  教学目标:

  1、掌握平均数的意义和求平均数的方法

  2、知道移多补少求平均数的方法

  3、会根据数据列出算式求平均数

  教学重点:

  掌握求平均数的.方法

  教学难点:

  正确计算平均数

  教具准备:

  课件,小黑板,统计表

  教学流程:

  一、导入

  拿8枝铅笔,指4名同学,要平均分怎样分?

  每人2枝,每人手中一样多,叫平均分。2是平均数

  二、学习交流

  1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

  (1)从图中,你知道了什么信息?

  (2)他们四人怎样分才能一样多?

  (3)平均分后是多少个?

  2、课件展示统计图的变化过程

  (1)指名展示

  (2)这种方法叫什么?

  点拨:移多补少

  3、要求平均数,还可以怎样想?

  (1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

  14+12+11+15=

  (2)平均分成4份,怎么办?

  52÷4=

  4、归纳

  要求平均数,可以先求出( )数,再平均分几份

  5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

  6、算出各小组的平均体重,说说你们是怎么算的?

  三、交流展示

  展示自己的学习成果,说清求平均数的方法和过程

  四、达标测评

  1、练习十一第2题

  (1)什么是最高温度?什么是最低温度

  (2)你知道了哪些信息?

  (3)填写统计表:本周温度记录

  (4)计算出一周平均最高温度和最低温度

  (5)说说你是怎么算的?

  2、测量小组跳远成绩,求平均数

  五、总结

  通过这节课的学习活动,你有什么收获?

《平均数》教学设计5

  教学目标:

  1.使学生掌握平均数的意义和求平均数的方法。

  2.使学生能根据数据列出算式求平均数。

  3.在教学活动中提高学生的发散思维能力。

  教学重、难点:

  1.重点:掌握平均数的意义和求平均数的方法。

  2.难点:能根据数据列出算式求平均数。

  教具、学具准备:练习本、自制统计图、米尺

  教学过程:

  一.谈话导入

  老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)

  引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?

  8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)

  在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)

  今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。

  揭示课题:平均数

  二.探求新知

  1.导入新课

  同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的'统计图。

  (1)出示统计图。

  (2)观察:从统计图中,你能了解到哪些信息?

  (3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。

  组织学生交流、讨论,然后指名回答。

  一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。

  二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)

  教师根据学生的回答,并板书:

  (14+12+11+13)÷4

  =52÷4

  =13(个)

  “13”在这里也叫什么数?

  (4)巩固提问:这里为什么要除以4?

  (5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。

  三.巩固提高

  1.活动“数小棒,求平均数”

  早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。

  (1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。

  (2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。

  (3)根据学生的完成情况,教师小结。

  2.活动:求平均身高

  在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。

  四.全堂小结

  今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?

《平均数》教学设计6

  教学内容:本课内容是人教版义务教育课程标准实验教科书四年级下册90页的内容。

  学习目标分析:

  1、认知目标:在具体问题情境中,感受求平均数是解决一些实际问题的需要,理解平均数的意义,初步学会简单的求平均数的方法。

  2、能力目标:能运用平均数的知识解释简单的生活现象,解决简单的实际问题。积累分析和处理数据的方法,发展统计观念。

  3、情感目标:增强与同伴交流的意识与能力,体会平均数在生活中的实际应用,积累学习数学的情感。

  教学重、难点:

  本节课的教学重点是理解平均数的含义和简单求平均数的.方法。根据教材内容特点并结合四年级学生的认知基础,我将本课的教学难点定为:理解平均数在统计学上的意义和作用。

  教学资源与工具设计

  多媒体课件

  教学过程

  一、创设情景导入新课

  1、 李明和王小飞两位同学要进行篮球的定点投篮比赛。

  (课件出示)比赛规则:每人各进行3次1分钟的定点投篮,以每次投中个数为成绩。

  (课件出示)比赛成绩统计图:

  观察,你从统计图中知道了什么?

  问题:谁赢了?为什么?

  2、 王小飞再投一次,(课件出示成绩统计图)

  问题:现在谁赢了?为什么?

  发现问题:次数不同,比总数不公平。从而引出新课

  二、新知探究

  (一)、认识平均数

  1、合作讨论

  讨论问题:次数不同,比总数不公平时,该怎样比才公平?

  2、 探索求平均数的方法

  想一想:(以李明三次投球为例)能计算出李明三次投球成绩的平均数吗?

  教师适时板书:(7+3+8)÷3

  =18÷3

  =6(个)

  问题:(1)、“6”是哪几个数的平均数?

  (2)、我们是怎样求出7、3、8这三个数的平均数的?

  小结方法:先求和再平分。

  3、理解平均数的意义

  (1)、引导:不计算,有办法找到李明三次投球成绩的平均数吗?

  小组讨论

  根据学生回答,课件出示移动变化的过程和结果。

  说一说:根据刚才以多补少找平均数的过程,说说你对平均数的理解。

  想一想:“6”表示的是李明三次都投中6个球吗?“6”表示什么?

  在学生回答的基础上引导学生理解平均数的含义,认识平均数的特征。

  3、 即时练习

  学生独立完成求王小飞平均每次投中球的数量。

  组织汇报,交流方法

  结论:通过比较平均数,谁赢了?

  通过这次比赛的经历,你有什么感受或体会?

  4、 沟通平均数与生活的联系

  想一想:在平时的生活中,你们见过平均数吗?

  三、联系实际,拓展应用

  1、判断下列说法正确吗?为什么?

  (1)、不会游泳的小明身高140cm,他要到平均水深110cm的河里游泳不会有危险。

  (2)、小明家去年4个季度的用水量分别是16吨、24吨、35吨、21吨。小明家平均每月用水量是(16+24+35+21)÷4=24(吨)。

  2、你能想办法求出他的语文成绩吗?

  (1)、先估测一下:语文成绩可能是多少?

  (2)、同桌合作讨论。语文成绩究竟是多少?

  四、拓展延伸

  我校的舞蹈队参加市舞蹈比赛,评委亮分96、91、95、96、84、99、97,算一算,我校舞蹈队的最后所得平均分是多少?

  激发认知矛盾:平均分是94分,可评委却宣布最后得分是95分。这是为什么?

  师:请孩子们带着这个问题下课后自己去寻找答案。

  板书设计:

  、

《平均数》教学设计7

  教学目标:

  1、经历探索平均数的过程,学会寻找平均数的方法——移多补少(操作)、先总后分(计算),理解平均数的含义。

  2、在具体情境中,运用平均数的知识解释简单生活现象,解决简单的实际生活问题。

  教学重点:

  认识平均数,会找平均数。

  教学难点:

  理解平均数的含义。

  教学过程:

  一、情境激趣,引出问题:

  1、看到黑板上这几个圆圆的圈你想到了什么?

  2、这节课我们就把它看做一个靶子,来做个游戏好吗?

  我们先来制定一个游戏规则,投中这个靶心的得10分,投到第二个圈的得9分,投到第三个圈的得8分,投到第四个圈的得7分,投到圈外边的得6分。如果投到线上怎么办?我们就看投到线那边的.多一些就算那边的分,但是如果你连黑板都没投中就是0分,同意吗

  我们从中间一分为二,这边算一组,这边算一组。我们给这边起个名字叫第一组,这边叫第二组(板书)。第一组的同学向老师挥挥手,第二组的同学向老师点点头。

  我们每组选5个代表参加游戏,请大家排一队交错站好。(给每人发一个沙包)好,比赛开始。

  板书:第一组第二组

  []+[]+[]+[]+[]=[][]+[]+[]+[]+[]=[]

  下面我宣布胜利队是第一组,欢呼一下吧!

  看大家玩的这么开心,老师也忍不住想要参加这个游戏。我想参加你们组,你们欢迎吗?那我也来投一次好吗?现在第二组的得分是[]分,我重新宣布胜利队是第二组。

  你们什么想法都没有?对这个结果有意见吗?(采访第一组)你们说这样比公平吗?

  看来人数不相等,用比总数的方法来决定胜负是不公平的,那么怎样比才公平呢?不增加人,有什么好办法吗?请和身边的同学讨论一下吧!

  二、解决问题,探求新知

  根据学生回答板书:

  ([]+[]+[]+[]+[])÷5([]+[]+[]+[]+[])÷6

  =[]÷5=[]÷6

  =[]=[]

  那组赢了?能说出理由吗

  第二组虽然输了,但也不要气馁,你们课下还可以再比。

  第一组这个“5分”是谁投的?

  这组中最多的是几分?最少的是几分?5与它们相比怎么样

  小结:可见,5分既不是第一组的最高水平,也不是第一组的最低水平,而是处在最高和最低之间的一个平均水平,咱们就把表示平均水平的这个数叫做平均数。平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

  求平均数的方法是什么:总数÷份数=平均数

  三、巩固练习,拓展应用

  1、今天的数学课上,我发现了有3位同学听的特别认真,老师讲课他们听得很认真,同学发言他们也听得很认真。(三人上台领奖品,老师分别奖励他们1支、3支、5支铅笔)

  请上台的三个小朋友数一数,手里有几只铅笔,然后大声的告诉大家。你们说老师这样奖励公平吗?怎样才公平吗?那么你想怎样把它们移一移。和身边的同学商量一下,台上的3个同学也互相商量一下。

  你真了不起!想出了移多补少(板书)的办法。

  你还有什么方法求出来吗?

  学生计算,指名说出算式,师板书:(1+3+5)÷3

  =9÷3=3

  谁来说一说,求平均数一般可以用哪些方法?你喜欢用哪种方法?

  2、估一估:

  为了布置教室,小丽买来一些彩带,请你帮小丽估一估这三条彩带的平均长度大约是多少?

  请你在本上列式算一算。学生尝试练习后评讲。

  你是怎么算的?都是先求和再平均分吗?为什么这个题目你不用移多补少的方法?

  看来我们要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少简单;数量多,相差大,用先求和再平均分。

  3、刚才我们一起认识了平均数,也知道了怎么求平均数,接下来我们来看一看生活中有关平均数的问题。

  判断(对的打“√”,错的打“×”。)

  (1)小刚语文、数学、英语三科的平均成绩是94分,小刚的数学成绩一定是94分。(×)

  (2)小明所在班级同学的平均身高是132厘米,小华所在班级同学的平均身高是135厘米,所以小华比小明高。(×)

  (3)三名同学的年龄之和是42岁,这三名同学的平均年龄是14岁。(√)

  (4)小明星期六做了20道题,星期天上午做了12道,下午做了7道,小明平均每天几道题列式为:(20+12+7)÷3=13(道)(×)

  4、想一想、说一说

  有危险吗?课件展示:游泳池和小明的问题。

  想一想:出示游泳图,平均水深110厘米,小明身高145厘米,下去游泳有危险吗?

  生讨论是否有危险。说说理由。

  5、出示1—9九张数字卡片

  下面请你把1—9九张数字卡片按从小到大的顺序摆在桌子上。卡片上都写着几?下面做这样这样一个竞赛:

  (1)请你从所有的卡片当中任意取出2张,让这两张卡片的平均数是5。

  还有吗谁能把所有的答案都说出来?

  为什么这两个数的平均数是5?到前面展示。

  (2)再做这样一个竞赛:

  随便拿出几张卡片,三张、四张、五张或更多张都行,要求这几张的平均数也是5。到前面展示。再多点还有吗都用上了平均数还是5。

  (3)下面请你去掉几张,平均数还是5。

  四、小结

  这节课你开心吗?通过这节课的学习你有哪些收获呢?

《平均数》教学设计8

  导学目标:

  1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。

  2. 学会计算简单数据的平均数。

  3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。

  重 点:学会求简单数据的平均数。

  难 点:理解平均数的意义。

  教学资源:自制课件、彩笔及笔筒

  教学过程:

  一.创设情境,提出问题

  1、谈话:同学们,课间休息时玩什么?

  (丢沙包、踢毽子、跳皮筋、跳绳等)

  课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。

  男生和女生谁获胜了?怎样比较?(求总数)

  2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?

  你觉得男生成绩好还是女生成绩好?比什么?怎样比?

  A、比男、女生的总数(质疑不公平)

  B、套的最多的、最少的都是女生,不好比。

  C、比男生还是女生套的准?

  二.自主探索,解决问题

  1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?

  小组内说说自己的想法。

  各组代表向全班学生汇报

  本组的想法。引出平均数。即:分别求出男生、女生平均每人套中的个数。

  2、求男、女生平均每人套中的个数

  (1)学生演示移动条形统计图中方块,使4个男生套中的个数变得同样多。

  移动女生条形统计图中方块,使5个女生套中的个数变得同样多。

  动手操作移动彩笔。(说清移动方法及结果)

  质疑:移动有局限性,数大或者没图怎么移?(如:求平均身高)

  (2)通过计算求平均数:

  求男生平均每人套中的个数。(抽生讲解思路并板书)

  独立计算女生平均每人套中的个数。(抽生板书)

  求丝带的平均数。(P94页2题)

  求平均身高。

  小结:求平均数的过程及注意事项。

  三、巩固练习,拓展应用。

  1、 提问:学校篮球队员的平均身高是160厘米。李强是学校篮球队队员,他身高是155厘米,可能吗?学校篮球队可能有身高超过160的队员吗?

  (1)在小组内讨论。

  (2)指名回答,要求说出理由。

  2、河水平均深度110厘米,身高145厘米,下河游泳一定安全吗?

  (1)在小组内讨论。

  (2)指名回答,要求说出理由。

  揭示平均数的意义:平均数表示的是一组数据的平均水平,有些数可能比平均数大,有些数可能比平均数小,有些可能和平均数相等。

  四、实际应用:

  1、生活中哪些地方用到平均数?

  2、给本节课打分(提出对老师、同学的.建议,进一步渗透平均数的应用意识。)

  五.课堂总结:今天学会了什么?有哪些收获与困惑?

  教学反思

  用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与困惑:

  收获一:情境的成功运用。课一开始,我以学生熟悉而又喜欢的运动会跳绳的录像引入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫,同时也为求平均数的方法(移多补少法)起到了迁移的作用。在例题教学中,我让学生观看了“套圈比赛”的录象,学生注意力特别集中,兴趣盎然,既而我抛出一个实质的问题:是男生套的准还是女生套的准?一石激起千层浪,学生们议论纷纷,有的认为男生组,有的认为女生组,学生各抒己见,各自发表了自己的意见?然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理。当学生感受到要比较谁套得更准一些必须先求出“男、女生平均每人投中的个数”后,我并没有急着让学生讨论或者讲解“平均每人套中个数”的含义,而是让学生用移一移,画一画的,或者用计算的方法求出平均数。在此,我把思考的权利交给学生,不交流的权利还给学生,让学生充分感受所学知识的价值。

  收获二:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材,如:第一题是对平均数的理解;第二题是对平均数的应用,第三题是对平均数的深化认识。这三道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。这样的教学实现了数学教育的多重价值,使各学科起到了有效的整合作用。

  但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!

《平均数》教学设计9

  教材第43页例2,练习十一第4、5题。

  教学目标:

  1.使学生进一步掌握平均数的意义和求平均数的方法。

  2.懂得平均数在统计学上的意义和作用。

  3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。

  教学重点:

  掌握平均数的意义。

  教学难点:

  掌握求平均数的方法。

  教学过程:

  一、复习引入

  三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?

  提问:题目的已知条件和问题分别是什么?

  要求平均每一组投中多少个?应该怎样列?

  提问:(28+33+23)3表示什么?3表示什么?把投中的`总数以3表示什么?

  二、快乐体验,学习新知

  1、出示教科书第43页的例题2。

  提问:从这两张统计表中,大家发现了什么?

  在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

  场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。

  2、学生动手列式计算。

  3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。

  三、巩固练习

  1、科书第45页练习十一的第4题:

  (1)完成第1小题。提问:什么叫月平均销售量?

  要求哪种饼干月平均销售量多?多多少?应该怎样列式?

  (2)完成第2小题让学生自由发表看法。

  (3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

  2、练习十一的第5题。

  学生独立完成,集体订正。

  四、课堂小结:

  本节课学习了什么?你有什么收获?

《平均数》教学设计10

  一、教学目的:

  1、使学生在生活情境中理解平均数的概念。掌握较复杂的求平均数的方法。

  2、提高分析与推理能力,以及将数学知识引入生活并解决实际问题的能力。

  3、在探求知识的过程中,培养学生的创新精神与合作意识。

  二、教学重点:

  灵活运用求平均数的方法解决实际问题。

  教学难点:样本平均数的意义。

  三、教学过程

  (一)议一议:

  课件出示;一个猴妈妈在林中摘了一些桃,回到家后叫来了三只小猴分桃给他们,猴老大10个、猴老二9个、猴老三5个。

  师:对猴妈妈桃这件事,你有什么话想说吗?

  生:三只猴分的桃子不一样多。 生:应该三只猴分的一样多

  根据学生的回答板书:不一样多 一样多 师:如何使他们分的一样多呢?

  学生讨论,指名汇报。(从猴老大手中拿2个桃给猴老三,再从猴老二中拿1个桃给猴老三。这样每人都是8个桃。)

  师:很好。谁能给这种方法取个名字?(“移多补少法”。)

  师:你还有什么好方法吗?(先把三个人的桃全合起来有24个,再平均分给这3只猴,这样每只猴都是8个桃。)

  师:这种方法也很好!我们也给它取个名字。(“先合再分”)。 师:刚才我们用不同的方法,都能使他们分的桃个数相等,都是8个。

  师:同学们帮猴妈妈解决的分桃不公平的问题,这下小猴们也不会有争执了。

  (二)探究新知

  师:说起这个啊,老师想起前不久在我们班举行的一次套圈比赛,三(3)班男女生之间发生的一次争执。

  师:为了备战套圈比赛,我们班的男生和女生之间选择了一些代表队先进行了一次套圈比赛。每人套15个圈。看,这是他们套中个数的统计图。

  (出示两幅条形统计图。)

  女生套圈个数统计图 男生套圈个数统计图

  9876543210小英小红小花小丽小晶1086420小强小军小华小刚

  师:从这两幅统计图上你能知道些什么数学信息?

  师:套圈比赛结束了,男队员说男生套的准,女队员却说是女生套得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男生的整体水平高一些,还是女生的整体水平高一些?(小组讨论)

  指名汇报,说明理由。(有3名男生都投中得比女生少,所以女生投得准一些)

  这是你的意见,有不同的意见吗?(女生一共投中30个,男生一共投中28个,男生投得准一些)

  可是男生只有4个人,女生有5个人啊!还有不同的意见吗? (去掉一个男生。)

  去谁合理呢?能去吗?(应该求出女男生套中个数的平均数,然后再进行比较)

  师:有道理,他们两个队的人数不同,所以我们不能用套的总个数来比较,分别求出他们套中个数的平均数,用平均数来体现他们套中的整体水平,好办法!掌声鼓励。

  师:我们先来求哪个对的平均数呢?怎么求他们的平均数呢? 先来求女生投中个数的平均数。

  观察女生套圈成绩统计图,小组讨论,代表汇报。

  (将多投中的两3个分1个给小红,分2个给小花,这样,她们每个人都是投中了6个,也就是女生投中个数的平均数是6个。)

  师:不错,方法很简洁,移多补少法。有不同的方法吗? (先求出五个人投中的总个数,再求出平均每人投中的个数。)

  总数:8+5+4+6+7=30(个)

  平均每人投中数: 30÷5=6(个) 他用的方法就是——先合再分法。

  师:看来,大家都非常聪明,男生平均套中的个数会求吗? 师:你们觉得这时我们求平均数用哪种方法比较合适?为什么? 小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

  学生在练习本上计算,指名板演,集体订正。 师:为什么这里求得的总数除以的是4而不是5?

  师:现在我们能帮三(3)班的同学解决他们争论的问题了吗? (女生平均每人投中6个,男生平均每人投中7个,所以男生投得更准一些。)

  师:观察统计图,女生平均每人套中6个,(用直线画出6的水平位置),提问: “6”是什么?是不是每个人都套中6个?还有什么情况存在?

  小结:一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

  (三)应用方法、解决问题

  师:看来平均数的本领还真不小啊!其实在我们的学习生活中,处处都要用到它,老师这里就收集了一些有关平均数的信息。想看看吗?

  《一》、教师课件出示列举生活中的平均数问题,学生自己阅读这些信息

  国家旅游局关于20xx年“五一”黄金旅游周旅游信息的公告

  (1)上海东方明珠平均每天的门票收入为130万元,北京故宫平均每天门票收入为200万元 。

  (2)南京中山陵平均每天接待游客70000人,北京故宫平均每天接待游客50000人。

  师:你有什么想说的?

  《二》学习了平均数,它能为我们解决一些生活中的问题吗?让我们继续来看。

  1、老师前几天调查了我们班同学的身高,这是其中一组同学的身高。

  3 138厘米

  4 142厘米

  5 145厘米 129厘米 131厘米

  你能估计一下这5同学的平均身高吗?

  老师发现,你们猜的时候都是往中间的数猜,大家想一想,这个平均数会起过145厘米吗?会低于129厘米吗?

  到底谁猜的对呢?有什么方法可以知道?

  2、计算:怎么样计算?

  自己试试看。指名板演。并说一说分别表示什么?(总数、项数、平均数)

  3、和自己的身高比一比,你是偏高呢?还是偏矮?

  4、铁道部门规定:身高不超过140厘米的儿童,坐火车时享受半价票优惠。这组同学的平均身高是137厘米。如果他们一起去坐火车,是不是就都可以享受半价的优惠?为什么?

  (有些同学可以,有些同学不可以的。乘火车是看每个人的身高,而不是看平均身高的)

  看来,我们要根据实际情况,选用平均数。

  四、课后总结

  师:平均数在我们的生活学习中是多么的重要啊,你还在哪些地方见过平均数?

  师:今天你有什么收获?请大家回去搜集一些有关平均数的资料,并利用平均数来解决身边的数学问题。

  五、作业:

  1、试一试

  甲种饼干第一季度销售量统计图乙种饼干第一季度销售量统计图200180160140120100806040200一月

  250200数量/包数量/包150100500二月三月一月二月三月

  (1)哪种饼干第一季度的月平均销售量最多?多多少?

  (2)分析一下乙种饼干的销售量越来越大的原因。

  (3)从统计图中你还能得到什么信息?

  2、评一评

  招聘广告:东方广告公司因工作需要,现招一名绘画水平高的专科毕业生,本公司月均收入1000元,欢迎有意者前来报名。

  小海被招聘入公司,第一个月只拿了600元月,他觉得上当受骗了,要去法院告广告公司,你觉得他能打赢这场官司吗?为什么?

  教学反思:

  《数学课程标准》中将“统计与概率”安排为一个重要的学习领域,强调要培养学生从统计的角度思考问题的意识,重要途径就是要在教学中着力展示统计的广泛应用。这是因为随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。

  有关平均数的知识,教学中我没有只停留在“简单地给出若干数据,要求学生计算出它们的平均数”上,而是把理解平均数的意义作为教学的重点,紧密联系实际,使学生体会到为什么要学习习近平均数,充分引导学生理解“平均数”概念所蕴涵的丰富、深刻的统计与概率的背景,让学生再实践应用中,去把握平均数的特征,理解平均数的

  意义。并能在新的情境中运用它去解决实际问题,从而获得必要的发展。

  怎样才能使四年级的'小学生感受到学习习近平均数是一种需要呢?课标上指出:小学中年级、高年级的学生开始对“有用”的数学更感兴趣。此时,学习素材的选取与呈现以及学习活动的安排更应当关注数学在学生的学习和生活中的应用应该是现实的、具体的问题解决。使他们感受到数学就在自己的身边,而且学数学是有用的、必要的,从而愿意并且想学数学。

  通过以上教学,使学生切实感受到数学的魅力与应用价值,为树立应用意识奠定了良好的基础,使学生初步形成了解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光观察世界,将数学课中的统计与生活有机的结合,体会到数学中的生活,生活中的数学,充分调动了学生学习的积极主动性。

  总之,在平均数的教学中,学生对平均数的认识,经历了从探索中发现,从发现中体验,从体验中发展的全过程。教师起到了一个组织者的作用,但交流者的作用体现不足,如能更好的与学生达到互动,相信效果会更好。在这节课中,学生一次又一次的认识了平均数,他们感到平均数就在身边,并获得了一次次成功的体验,学得兴趣盎然。

《平均数》教学设计11

  教学目标:

  1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。

  2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。

  3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。

  教学重点:体会平均数的意义,掌握求平均数的方法。

  教学难点:理解平均数的意义

  教学具准备:套圈统计图(每组一个)、多媒体课件

  教学过程:

  一、设疑引欲,提出问题

  看套圈比赛的录像,出示统计图。

  1、这幅统计图表示他们套中的个数,从中你知道了些什么?

  2、想一想,是男生套得准一些还是女生套得准一些呢?

  二、解决问题,探求新知

  1.产生求平均数的心理需求

  (1)学生讨论交流哪一队套圈套得准一些。

  (2)提问:怎样比才既合理又公平呢?

  (3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。

  2.自主探索平均数的意义和计算方法

  先求男生平均每人套中的个数,学生讨论交流。

  (1)通过移多补少,直观揭示平均数的意义

  (2)揭示“先求和再平均分”的求平均数的一般方法

  列式计算:5+9+8+6=28(个)28÷4=7(个)

  这里的28指的是什么?为什么要除以4?

  求女生平均每人套中的个数。

  (1)估一估

  (2)算一算:11+4+8+2+5=30(个)30÷5=6(个)

  这里的30指的是什么?为什么这里用总数除以的是5而不是4?

  小结:通过比较,我们发现在这次比赛中,男生套得准一些。

  3.理解平均数的范围

  (1)比较

  男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

  女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

  (2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

  (3)小结:平均数是通过把多的部分移给少的.部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

  三、拓展练习,深入理解

  1.练习用“求和再平均分”的方法求平均数

  (1)出示校运动队三年级学生肺活量情况统计图(三名学生)

  提问:你能算出他们的平均肺活量吗?

  交流:把你的想法与同学们交流交流。

  (2)出示三年级部分学生肺活量情况统计图(四名学生)

  提问:算算他们的平均肺活量。

  比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。

  2.加深对平均数意义的理解

  (1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?

  (2)学生交流

  3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确

  (1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。

  我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)

次数第一次第二次第三次第四次第五次心率(次/分)150160180170140

  (2)提问:从表中你知道些什么?

  (3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?

  ①130次②160次③190次

  (4)根据平均数的这个特点,你能说出这个平均数的范围吗?

  (5)小明的运动量适宜吗?

  4.进一步理解平均数的意义

  (1)出示一高一矮两名学生

  指一指:他们俩的平均身高大概在什么位置?

  (2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)

  指一指:另一位体坛明星大概有多高?

  (3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)

  指一指:这位运动员的身高大概在哪里?

  猜一猜:他是谁?

  (4)出示新浪网上的NBA排行榜

  找一找:有平均数吗?

  想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?

  四、全课总结,提升认识

《平均数》教学设计12

  一、教材分析:

  《平均数》苏教版第六册第十单元的内容。在传统教材中侧重于从算法的水平理解平均数,这容易将平均数的学习演变为一种简单的技能学习,忽略平均数的统计学意义,也就是只会算,不理解。而新教材在理解平均数的意义上明显加重分量,其实平均数是描述数据集中程度的一个统计量,可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出整体之间的差别,可见平均数是统计中的一个重要概念,它表示统计对象的一般水平。从整个小学阶段的数学学习来看,平均数是一个持续的学习内容,到五年级学生还要学习稍复杂的平均数,六年级还要学习众数、中位数并进行比较。因此,我觉得这节课的重点不仅仅是会求简单的平均数,还要体会平均数的含义和意义。难点是平均数在统计意义上的理解和认识,感受平均的应用价值。

  基于我对教材这样的认识,结合学生的实际,我拟定如下的教学目标:

  1、知识目标:感受求平均数是解决问题的需要,使学生能结合实例理解平均数的意义,并学会计算简单数据的平均数。

  2、能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,会运用平均数的.知识解释简单的生活现象,解决简单的实际问题。

  3、情感目标:培养学生自主学习、合作交流的能力,建立学习数学的信心。

  二.学情分析:

  根据三年级学生的认知特点,他们已经具有一定的合作交流能力和新旧知识迁移的能力。同时,在学生已经认识了可能性的大小,条形统计图,并根据统计图表进行简单的分析的基础上教学平均数,这些都对本课的学习做好了充分的准备。

  三、教学设计理念

  由于平均数只是一个虚拟的数,意义比较抽象。因此根据新课程的理念,在教学中力图体现以生为本、“先学后教,以学定教,少教多学”的教学理念。在设计中我力求体现以内容定教法,教法为内容与学生服务的宗旨。同时,力求体现师生平等、启发式的教学方法,为学生创造贴近他们生活实际的情境,使学生感受数学与生活的密切联系。并通过师生互动式的讨论,使学生充满求知的欲望。为了实现教学目标、有效地突出重点、突破难点,在教学中创设情境,引入探究式的教法,以自主探究和小组合作学习的形式,充分调动学生学习的积极性、主动性,并通过分析、讨论等方法主动地获取知识,从而培养学生的自主学习,学会探究问题的方法。

  四、教学过程:

  (一)首先是创设情景,激发学生的学习兴趣

  为了使教学活动有效开展,我创设了学生熟悉的套圈游戏,出示男、女生套圈成绩统计图,分别说说从中可以得到哪些数学信息,为下面的两队比赛做好铺垫。

  (二)接着就利用游戏的进程,解决问题,探求新知。

  这里我设计三个比赛环节:让学生感受平均数的产生,是解决实际问题的需要。

  第一次比赛,人数相同,男女各3个人,比较两组水平可以直接比“总数”,但这个时候还显示不出计算平均数的的迫切性。

  第二次比赛,人数不同,男生3人,女生4人,男生3人每人套中4个,女生4人每人套中3个,让学生交流哪个对赢,从图上看,男生每人都比女生多套中1个,男生准一些,所以男生对赢了。明确人数不同时,比每人套中的个数,同时讨论为什么比总个数就不公平了。

  第三次比赛,先交流看哪队赢,比什么,明确人数不同比每人套中的个数;接着和第二次比赛进行比较,第二次比赛每人套中多少个一下子可以看出来,而现在每人套中的有多有少,让学生探索有什么方法可以从图上一下子看出平均每人套中的个数,探索并总结出移多补少的方法,并初步认识平均数。

  我成功引入了平均数,并介绍了移多补少的方法后,接着完成两道用移多补少方法求平均数的练习,巩固求解方法。

  刚才只有三盘苹果,学生一下子就看出怎么移了,接下来还有几盘苹果,你能一下子就移好它吗,有信心吗?出示之后学生惊讶了,苹果多了,盘子也多了,用移多补少的方法有点困难了。这时马上追问:那么现在该怎么办?探究先合后分的方法。

  在学生掌握了两种求平均数的方法后,让学生口答几组数据的平均数,并探究平均数的范围。这里鼓励学生大胆的说,用自己的语言说,让模糊的概念越说越清晰,可能学生会说的不科学,但在表述中,逐渐走进抽象的理解,逐渐理解概念。

  (三)练习

  新授离不开联系实际,拓展应用。所以练习的设计我始终遵循科学性原则、层次性原则和针对性原则来进行,而且素材全部取材于学生的生活,主要突出平均数在生活中的应用。因此我设计了

  1.三(3)班第二小组的身高情况统计表,要求学生不计算,直接估计他们的平均身高,让学生再次领悟平均数应该在最大值和最小值之间。

  2一条河的平均水深为110厘米,小明的身高是135厘米,小明会出现危险吗?这一生活的现实情境,为孩子们思维碰撞搭建了新的平台,争论中,通过对“平均水深”的深刻理解,得出结论“可能会有危险”,在解决实际问题时,平均数代表是一个整体水平,而不是每个地方都是110厘米。

  3、辩一辩,说一说。

  目的:通过学生辨析,帮助学生进一步深化对平均数的认识。

  4、想一想,选一选。

  目的:巩固新知,不仅要掌握平均数的计算方法,更是对平均数的深入练习。

  5、最后还介绍了演唱比赛中,选手的平均得分是怎样产生的。让学生进一步体验到数学与生活的联系,同时也丰富了他们的课外知识。

  (四)总结评价。

  总结评价中,我设计下面问题:通过这节课的学习,你有什么收获?

  让学生谈谈本节课的收获,能有效地刺激学生的主观能动性,既让学生加深了对平均数意义的理解,又可巩固求平均数的方法。同时有利于学生对知识的理解和能力的发展以及兴趣的培养。

《平均数》教学设计13

  教学目标

  1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  教学重点

  理解平均数的意义,学会求简单数据的平均数。

  教学难点

  理解平均数的意义

  教学准备

  多媒体课件,作业纸

  教学过程

  一、谈话导入

  谈话:同学们,你们喜欢玩游戏吗?你们经常玩些什么游戏呢?

  追问:图上的小朋友们再玩什么游戏啊?(套圈游戏)

  二、创设情境,自主探索

  1.呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:这是三年级第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈。

  2.引入平均数。

  出示男、女生套圈成绩统计图。

  谈话:老师已经分别把男、女生的套圈成绩制成了统计图。看。

  提问:看了这两张统计图,你知道了什么?

  主要引导学生读出男女生每人的套圈个数。

  提问:根据这两张统计图,你能提出一些什么问题呢?

  谈话:男女生套完圈以后,他们想要知道到底是男生套得准一些还是女生套得准一些,想请我们的同学做小裁判帮帮他们,你们有什么方法去比较呢?先请小组4人交流一下。

  结合学生的想法,相机进行引导。

  想法一:因为吴燕套中的个数最多,所以女生队套得准(比最多)。

  追问:用一个人的成绩代表整个队的成绩,这样合适吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  谈话:那请同学们口算一下男生一共套了多少个?女生呢?

  男生:28个女生:30个

  谈话:如果比总数看起来是女生获胜了,男生对这样的比法有意见吗?为什么?

  追问:这种想法已经注意到从整体的方面去比较,但是这样比公平吗?为什么?(他们两队人数不相等)那可以怎么办呢?

  想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。

  追问:这样比公平吗?(公平)我们就用“求平均每人套中的个数”这种方法试一试。(板书:求平均每人套中的个数)

  想法四:去掉一个女生或者添上一个男生。

  谈话:这样的想法是不错的,可是女生谁也不愿意被去掉,而且男生也没有人了。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  3.理解平均数。

  操作:男生平均每人套中多少个呢?下面请同学们仔细观察男生的统计图,先在小组里讨论用什么方法找出男生的平均成绩,再完成作业纸上的问题1。看哪些小组想的办法又多又好。

  提问:你是怎么找到男生平均每人套中的个数?

  学生可能出现两种方法:一是移多补少;

  让学生讲解移的过程。

  二是先合后分。

  学生说一说怎样用先合后分的方法求平均数,并引导列式:6+9+7+6=28(个),28÷4=7(个)。

  提问:第一步算得是什么?这里的7表示什么意思?

  【说明:将学生对平均数的探求发端于操作和讨论,让学生在活动中获得有关平均数的多种求法。】

  谈话:统计图中的红色线条表示什么?

  根据学生回答,板书课题:这就是我们今天要研究的`统计中的平均数。(板书课题:统计—平均数)

  观察:男生套圈的平均数是7,这四个男生套中的个数分别是6个、9个、7个和6个,从图上看你能猜测一下平均数和每人套中的个数相比较,它在哪两个数之间呢?你是怎么想的?

  引导:平均数不可能比最大的数大,也不可能比最小的数小,因此平均数的范围在最小的数和最大的数之间。

  多媒体出示平均数的取值范围。

  提问:根据我们刚才的发现,谁能估一估女生队平均每人套中的个数在什么范围之间?

  谈话:女生平均每人套中多少个圈呢?请你结合作业纸上的第二幅图和问题2,自己动手做一做。

  反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?

  提问:现在你能判断男生套得准还是女生套得准吗?

  小结:通过刚才的活动,我们认识了什么?那你认识了平均数的哪些知识呢?

  小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

  【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。】

  三、巩固深化,拓展应用

  1.完成“想想做做”第1题。

  先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。

  2.想想做做2

  谈话:要求的是这三条丝带的平均长度是多少,那你能估计一下平均长度在什么范围之间呢?

  学生回答后谈话:那请你动手算一算,看看你得到的结果和你估计的结果是否符合。

  3.谈话:生活中有很多事都是和平均数有关的,请看,这是我校篮球队的情况(出示想想做做3)

《平均数》教学设计14

  一、教学目标

  (一)知识与技能

  理解平均数的意义,初步学会简单的求平均数的方法。

  (二)过程与方法

  学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

  (三)情感态度和价值观

  感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

  二、教学重难点

  教学重点:理解平均数的含义,掌握求平均数的方法。

  教学难点:借助“移多补少”的方法理解平均数的意义。

  三、教学准备

  课件、实物投影。

  四、教学过程

  (一)创设情境

  1.谈话引入。

  以幻灯片形式出示教师家的书橱。

  现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。

  2.感知课题。

  (1)学生思考,想象移动的过程。

  (2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?

  (3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。

  今天,我们就来认识一下“平均数”这个新朋友,好吗?

  (板书:平均数)

  (二)探究新知

  1.引发质疑,探索新知。

  教师:看到这个课题,你想通过这节课学习到哪些知识?

  预设:

  (1)平均数是一个什么数?

  (2)怎样计算平均数?

  (3)平均数在生活中有什么用?

  2.理解含义,探求方法。

  出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。

  仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?

  预设:

  (1)小红比小兰多收集多少个瓶子?

  (2)小明再给小亮几瓶,他俩的瓶子就一样多?

  (3)他们平均每人收集了多少个瓶子?

  你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?

  学生汇报交流。

  小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。

  小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。

  (14+12+11+15)÷4=13(个)。

  【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。

  3.理解平均数的含义。

  教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

  引导学生体会13不是每个人真正收集的.矿泉水瓶数量,而是4个人的总体水平。

  小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

  教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

  预设:

  (1)本周平均最高气温6摄氏度。

  (2)三年级学生的平均身高是140厘米。

  (3)四年级2班五位同学平均每人捐10本图书。

  (4)李莉同学平均每天上学路上花费15分钟。

  【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。

  (三)知识应用

  1.判断。

  (1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

  ( )

  (2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。

  ( )

  (3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。

  ( )

  【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。

  2.选择。

  小明家平均每月用水( )吨。

  A.(16+24+36+27)÷365

  B.(16+24+36+27)÷12

  C.(16+24+36+27)÷4

  【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。

  (四)全课小结

  今天你有什么收获?

  再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?

《平均数》教学设计15

  一、教学内容

  人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2

  二、教学准备

  多媒体课件,姓名笔划数统计表每人一张。

  三、教学目标与策略选择

  平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:

  (一)教学目标:

  1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。

  2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。

  3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。

  (二)教学重点:理解平均数的意义和求平均数的方法。

  (三)教学难点:理解平均数的意义。

  四、教学流程设计及意图

  教学流程

  设计意图

  (一)创设情境,激发兴趣

  师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)

  师:谁又能知道老师的姓名呢?

  学生说一说后,出示自己的姓名。

  师:能完成这表格吗?(学生数一数,完成表格)

  师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)

  师巡视指导,搜集、选择教学信息。学生完成后作简单交流。

  (二)解决问题,探索新知

  1、在解决问题中感知概念

  师:请观察老师姓名的笔画数,你能提出什么数学问题?

  预设生(1)每个字笔画数的多少?

  (2)比多少?

  (3)发现数字间的规律。

  (4)求总数?(师追问:你是怎样算出来的?)

  师:知道了笔画数的总数,你现在又能解决什么问题?

  预设生:可以求出平均每个字的笔画数。

  师:平均每个字的`笔画数,你是怎么得来的?

  预设生(1)通过计算(10+11+16)÷3=12?1

  (2)通过移多补少得到。

  2、在对话交流中明晰概念

  师:袁老师的姓名平均笔画数12画,这又表示什么?

  预设生(1)表示袁铭璟三个字笔画数的平均水平。

  (2)表示老师姓名笔画数的一般水平。

  师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?

  (学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)

  预设生(1)有关系的,是他们的中间数。

  (2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。

  (3)平均笔画数在笔画最多的数字与笔画最少的数字之间。

  (4)平均笔画数就在这三个字笔画数的中间位置。

  师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把12叫做袁老师姓名笔画数的--平均数。(板书课题)

  师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)师生交流计算的方法与结果。

  3、在比较应用中深化概念

  出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)

  师:比较他们姓名中每个字的笔画数,你有什么方法?

  预设生(1)比笔画数的总数。

  (2)比平均笔画数。

  (让学生先在小组内讨论,然后组织全班汇报交流。)

  预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。

  (2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。

  学生运用平均数进行比较,然后组织交流。

  师:比完后你有什么感想?(生回答略)

  师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?预设生:既可以用平均数来比,也可以用总数来比。

  师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。

  出示(1)文成县实验小学四年级平均每班有学生56人。

  (2)四(3)班上学期期末考试数学平均分是81分。

  师:你猜这些数据是怎么得来的,是什么意思,有什么用处?

  (学生小组讨论,然后全班汇报交流。)

  预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。

  (2)略

  (三)尝试解题,自主归纳

  师出示例题:

  有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?

  师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。

  预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。

  学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5师:你们知道这位同学是怎么想的吗?

  预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。

  学生计算,注重计算方法的选择。然后交流。

  师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。

  (学生小组合作,交流看法,教师参与讨论。)

  学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。

  《平均数》教学反思

  《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。

  突出主体地位,创造了自然和谐的环境

  在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。

  本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。

  尊重个体差异,设计了满足不同需求的练习

  家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。

  本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。

  思维深度延伸,激活了学生内在的发展潜能

  在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:

  1.什么样的情况下,可以(142+140)÷2? 2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?

  2.这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。

【《平均数》教学设计】相关文章:

《平均数》教学设计03-08

平均数教学设计06-24

《平均数》教学设计04-18

平均数教学设计03-09

《平均数》教学设计06-10

人教版平均数的教学设计08-03

《求平均数》教学设计06-18

人教版平均数的教学设计07-31

求平均数教学设计06-19

平均数教学设计范文07-04