解比例教学设计

时间:2023-09-20 18:43:58 教学设计 我要投稿

解比例教学设计

  作为一名无私奉献的老师,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么应当如何写教学设计呢?下面是小编为大家整理的解比例教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

解比例教学设计

解比例教学设计1

  教学目标:

  1、了解比在生活中的广泛应用。

  2、掌握按比分配的解题思路。

  3、学会灵活地解决生活中的实际问题。

  教学方法:

  分析、推理、合作交流,让学生自主探索知识。

  教学重点:

  学会用比的应用知识解决生活中的实际问题。

  教学难点:

  学会自主探索解决问题的方法。

  教学流程:

  一、导入新课

  学生展示收集的物品,体会比在生活中应用很广泛。

  师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。

  二、探索新知

  1、读题,理解题意。

  出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。

  出示例题,齐读,你知道了哪些数学信息?

  2、做实验。

  师:500ml的.稀释液是如何按1:4的比配制成的呢?我们通过下面的实验来了解一下。把水和浓缩液配制在一起,仔细观察看有什么变化?

  师:1份的浓缩液和4份的水制成的液体叫什么?你知道500ml的稀释液是几份吗?你是怎么想的?如果按1:3配制呢?按1:5配制呢?

  3、画线段图。

  师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。

  师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:

  4、解决问题。

  生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。

  5、归纳方法。

  方法一,先求每份是多少,再求几份是多少。

  方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。

  6、检验。

  师:这道题我们做的对不对呢?如何检验?

  三、巩固练习。

  1、我们按1:10的比把白米醋加水配制成一瓶550ml的稀释液,加热沸腾后给教室消毒,其中需要醋和水各多少毫升?

  2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法

  一般物体表面

  1:200

  10—30

  对各类清洁物体表面擦拭、浸泡、冲洗消毒。

  1:100

  10—30

  对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。

  果蔬

  1:250

  10

  将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。

  织物

  1:125

  20

  消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。

  排泄物

  1:4

  >120

  按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。

  周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?

  四、全课总结

  谈收获,图片欣赏。

解比例教学设计2

  教学内容:

  ?反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  设计理念:

  学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的`机会。

  教学目标:

  1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

  猜想

  师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

  师:从字面上看“反比例”与“正比例”会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1.探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2.小组讨论、交流。(教师巡回查看,并做适当指导。)

  3.汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母a和b表示两个相关联的量,用c表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4.做一做(略)

  5.学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1.基本练习。(略)

  2.拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”

  对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

  反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3.综合练习

  四、总结

  反思:

  ?数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

解比例教学设计3

  教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

  情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。

  教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

  教学过程:

  一、导入(略)

  二、探索新知

  1、教学比例尺的意义

  (1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的'比”,我们给它起一个名字叫做“比例尺”。(板书)

  (2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

  (3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

  2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

  (1)、说一说方法。

  (2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000

  3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程

  解:设地铁1号线的实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

  三、布置作业

  完成《练习册》第19页的练习。

解比例教学设计4

  教学目标

  1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

  3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。

  教学重点

  使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。

  教学难点

  利用比例的基本性质来解比例。

  教学过程

  一、旧知铺垫

  1、什么叫做比例?

  2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

  3、比例有几种表示形式?(板书:a:b=d:c a/b=d/c)

  二、导入新知

  同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。

  三、探索新知

  1、出示埃菲尔铁挂图

  这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

  2、出示例题

  (1)、读题。

  (2)、从这道题里,你们获得了哪些信息?

  (3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

  (4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

  (5)、还有一个条件是什么?(埃菲尔铁塔的'高是320米)

  (6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

  (7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

  (8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为X米”,把这个X代入这个数学模式中就组成了一个比例式(板书:X:320=1:10)

  (9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

  (10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

  (11)、指着X:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

  (12)、为什么可以写成这样的等式呢?10X=320*1(根据比例的基本性质)

  (13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

  (14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

  (15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

  (16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)

  (17)、解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)

  现在同学们会用解比例的方法来解决问题了吗?

  那就做做下面这道题:育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?

  2、教学例3

  过渡:我们知道比例还有另一种表示形式,当是1.5/2.5=6/X这样形式的时候,又该怎么解呢?

  (1)、出示例3,问:这题与刚刚那个比例有哪些不同?

  (2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

  (3)、在这个比例里,哪些是外项?哪些是内项?

  (4)、解答(提问:你们是怎么解答的?)、检验。

  (5)、12/24=3/X

  3、巩固练习

  4、课堂小结。

  (1)、这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)

  (2)、现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)

  5、拓展延伸

  老师给你们出一道思考题:在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

解比例教学设计5

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的.?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

解比例教学设计6

  教学要求:

  1、使学生能正确判应用题中涉及的量成什么比例关系。

  2、使学生能利用正反比例的意义正确解答应用题。

  3、培养学生的判断分析推理能力。

  教学重点:

  使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  教学难点:

  学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

  教学过程:

  (一)复习

  1.说说正、反比例的意义。

  2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从a地到b地,行驶的速度和时间。

  (3)每块砖的面积一定,砖的块数和总面积。

  (4)海水的出盐率一定,晒出的盐和海水重量。

  3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

  (1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

  (2)一辆汽车从a地到b地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

  (二)新课

  例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的.公路长多少千米?

  (1)用以前方法解答。

  (2)研究用比例的方法解答

  题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

  能不能利用这个关系式列比例解答?

  解比例,同学自已完成,及时纠正。检验。

  改变例1中的条件和问题

  甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

  教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

  1、以前的发法解答。

  2、怎样用比例知识解答?

  3、讨论结果填书上。

  4、小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

  整理和复习

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、培养学生的思维能力。

  教学过程:

  知识整理

  1、回顾本单元的学习内容,形成支识网络。

  2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1、填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

  甲乙两数的比是5:3。乙数是60,甲数是()。

  2、解比例

  5/x=10/340/24=5/x

  3、完成26页2、3题

  综合练习

  1、a×1/6=b×1/5a:b=():()

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3、用5、2、15、6四个数组成两个比例():()、():()

  实践与应用

  1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

解比例教学设计7

  教学目标

  使学生进一步理解和掌握比例的基本性质,知道什么叫做解比例,掌握解比例的方法,并运用解比例的方法解决简单的问题。

  教学重点:

  进一步掌握和理解比例的基本性质。

  教学难点:

  掌握解比例的'方法。

  教学过程

  一、复习准备

  1、比例的意义是什么?比例的基本性质呢?

  2、运用比例的意义和比例的基本性质,判断下面哪一组中的两个比可以组成比例。

  3:4和1.5:2 1/4 :1/3和9:12 72:8和1.2:0.13 3:8和12:32

  二、导入新课

  今天我们要学习的知识——解比例

  三、1、教学例2

  这样知道比例中的任意三项,求另外一个未知项叫做比例,同学们能运用原来学习的知识求出3:8=15:x中x的值吗?

  学生讨论交流后,并让学生自己介绍这种解法的思路,请其他学生补充完。

  2、教学例2

  这道题和例2相比,有哪些地方不同?想一想,怎样解?学生讨论解答。“做一做”第2题中的比例。

  四、巩固练习

  学生独立完成练习十四第1题。

  创意作业:

  如果5a=3b,你能写出尽量多的比例式吗?并用含a的式子表示出b。大家来比赛谁找的多。

解比例教学设计8

  教学目标:

  1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

  2、学会应用比例的意义和基本性质解决实际问题。

  教学重点:

  掌握解比例的方法,会解比例。

  教学难点:

  应用比例的意义和基本性质解决生活中的实际问题。

  教法设计:

  讲解法、对比法、归纳法。

  学法设计:

  合作交流、对比归纳。

  教学准备:

  多媒体课件

  教学过程:

  一、复习铺垫,引入新课

  (一)汇报预习案上复习题。

  1、解下列方程.

  χ=×

  2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

  6∶10和9∶155∶1和6∶2

  3、在括号里填上适当的数。

  3:9=():156:0.8=():4

  可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)

  看到课题你想了解些什么?(出示学习目标)

  二、自主探究,合作交流,完成预习案。

  三、汇报展示,引导点拨

  1、从题目中你获得了哪些信息?

  2、理解题意

  根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为(   ):320=1:10

  根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):

  3、列式解答

  指名板演,老师点拨。

  小结:这种方法叫做用比例解决实际问题。

  4、小结解比例的方法及应注意的问题。

  四、知识检测,达标提升

  1、解下面的比例

  2、解下面的比例

  (1)8︰12=X︰45

  (2)0.4︰X=1.2︰2

  3、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?

  五、拓展延伸,总结激励

  作业布置:

  练习八7、10题。

  板书:解比例

  1、什么叫做解比例

  例:1.5:2.5=6:X

  解2.5×6=1.5X

  1.5X=15

  X=10

  X:320=1:10

  解10X=320

  X=32

  教学内容:

  教材第42页例2、例3。

  教学目标:

  1、知道什么叫做解比例。

  2、会根据比例的性质或比例的意义正确地解比例。

  3、培养学生认真书写和计算的习惯。

  过程与方法:

  1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

  2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

  教学重点:

  解比例

  教学难点:

  解比例的方法。

  突破方法:

  引导学生小组合作探究、交流,掌握解比例的根据。

  教法与学法:

  教法:创设问题情境,引导发现。

  学法:独立思考,自主探究。

  教学准备:ppt课件。

  教学过程:

  一、复习准备

  1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)

  2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。6:10和9:152:80和5:200

  3、利用比例的一些知识,还可以帮助我们解决一些实际问题。

  出示比例:3:9=():15

  师:这个比例中的两个外项和两个内项分别是多少?

  (外项是3和15,一个内项是9,另一个内项未知的。)

  师:你能利用比例的知识求出这个未知的内项吗?

  可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

  师:像这样,求比例中未知的项,叫做解比例。(课件出示)。

  今天这节课就利用比例的有关知识解比例。(板书课题)

  二、探索新知

  1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

  2、出示例题,教学例2。学生读题。

  师:1:10是谁与谁的比?

  教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。

  师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)

  师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)

  师:这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?

  板书:解:设这座埃菲尔铁塔模型的高度是x米。

  X:320=1:10

  师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?

  为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。

  师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)

  师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)

  师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。

  那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们

  知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)

  出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的.意义(把结果代入题目中看看对应的比的比值是不是能成比例.)或比例的基本性质来检验。

  解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)

  3、巩固例2练习

  (1)出示练习题p44第8题

  (2)学生独立完成,二名学生板演讲解分析

  (3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)

  4、这个比例你能解答吗?出示例3:1.5/2.5=6/X

  (1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)

  (2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项

  (3)学生独立练习,求出未知项

  (4)同学间互相交流,发现问题及时解决

  5、指导学生梳理教材的知识点,完成p42“做一做”。

  三、巩固练习

  课件出示基本练习和提高练习,学生独立完成,指名板演。

  四、本课小结

  这节课主要学习了什么内容?

  五、布置作业

  p44第8题、第9题、第10题

  板书设计

  解比例

  例2模型高度:原塔高度=1:10

  未知项(x)320米

  解:设这座模型高x米。

  X:320=1:10

  10X=320x1

  X=320÷10

  X=32

  答:这座模型高32米。

  教学反思:

  解比例一课是在学习了比例的基本性质后学习的,教学解比例之前,教师先复习根据比例的意义和除法中各部分的关系可以求出比例里的未知项:然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。所以,在实际授课的过程中,由于学生提前对这一部分进行了预习,对比例的意义和比例的基本性质也掌握的很扎实,所以对授课内容比较了解,教学组织和实施都比较顺利。遗憾的是,虽然扶放结合的课堂效果很好,利于大部分学生掌握知识,但是如果对例2的教学大胆放手,让学生直接板演并讲述思路,然后教师从旁点

解比例教学设计9

  教学目标:

  使学生进一步理解和掌握用比例知识解答应用题的方法。

  抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

  通过与算术方法解答相比较,加强知识之间的'联系,使学生进一步理解能用比例知识解答应用题的数量关系。

  教学过程:

  师:谁能够说说用比例知识解应用题的关键是什么?

  判断下题中各量成什么比例?并说明理由?

  指导学习题例。

  让学生独立解答例7。

  在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

  相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

  不同点:第一种解法是直接设所求问题为X。

  第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

  师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

  学习例6

  师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

  对比小结

  比较例5例6有什么不同?分别是根据什么关系来解答的?

  (强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

  算术解法和比例解法的比较和联系。

  观察算式(例5)

  练习巩固

  笔答题:教材117页1~3题。

  全课总结(略)

解比例教学设计10

  教学内容:

  义务教育课程标准实验教科书数学六年级下册p49、50“练一练”和练习十一的第3、4、5题

  教学目标:

  1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

  2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

  教学重点:

  能按给定的比例尺求相应的实际距离或图上距离。

  教学难点:

  能按给定的比例尺求相应的实际距离或图上距离。

  设计理念:

  本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

  教学步骤

  教师活动学生活动

  一、复习旧知

  引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

  2、什么叫比例尺?求比例尺时要注意哪些问题?

  学生练习,找出图上距离与实际距离,再写出比例尺。

  二、理解明确

  实践运用

  1、出示例7,明确题意

  找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

  2、分析比例尺1:8000所表示的意义。

  引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

  3、尝试列式

  根据对1:8000的理解你能尝试列出算式吗?

  师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

  4、归纳、选择、

  教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

  5、练习

  教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的.比一定与哪个比相等?你能根据这样的相等关系列出比例式?

  学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

  学生分析1:8000表示的意义。

  学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

  学生可能出现的方法:

  1、5×8000=40000……2、5×80=400……

  3、5/x=1/8000……

  图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

  学生列式5/x=1/8000并计算。

  三、尝试练习

  巩固提高1、做“试一试”。

  先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

  2、做“练一练”先独立解题,在组织交流

  3、做练习十一第4题

  引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

  3、做练习十一第5题。

  引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

  学生练习

  在图中表示医院的位置。

  学生练习后交流

  四、全课总结

  回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

  2、你还有什么疑问,或你能给同学提出什么新问题?

  五、知识拓展

  激发兴趣p51“你知道吗?”

  1、收集地图资料,展示给学生观看。

  2、介绍国家基本比例尺地图。

  学生观看

  阅读后适当交流

解比例教学设计11

  【教学目标】

  1.使学生认识比例尺的意义,学会求一幅平面图的比例尺。

  2.使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

  【教学重点、难点】

  根据比例尺的意义和图上距离或实际距离,求出实际距离或图上距离。

  【教学准备】

  课件

  【教学方法】

  自主、合作、探究

  【学习流程】

  一、情境创设,导入新课

  上节课,我们初步认识路比例尺。并能根据一定的比例画出物体表面的示意图其实比例的应用还有很多,你知道富区离齐市有多远吗?你知道富区有多大吗?你知道水立方有多大吗?画一张小小的示意图,这些问题都可以迎刃而解,今天我们来学习比例尺的应用。板书课题:比例尺的应用。

  二、运用知识,分层练习。

  1.课件出示幸福小学新建校园示意图,组织学生根据地图测量有关数据,展开教学。

  2.①找一找地图上的比例尺,写在黑板上,并说一说比例尺的意义。

  ②将找到的比例尺互化。

  ③组织学生根据地图测量校园长、宽图上距离,根据比例尺求出其实际距离然后求出校园占地面积,就此展开练习教学。

  ④师生交流,总结点评。

  3、课件出示学校平面图,各小组分别选择一个建筑的平面图,根据有关的数据,求出这个建筑的实际占地面积。(教学楼、操场、办公楼、语音室、花坛、图书馆)

  ①想一想,议一议,根据问题应该先求什么?

  ②解答。

  ③师生交流,总结点评。

  本组练习题主要是训练学生在熟练掌握公式的基础上,能够灵活运用知识,并融会贯通,使学生会进一步理解与巩固知识。

  第三组:综合运用、深化发展

  请根据下列描述,先算出有关数据,再按1:20xx的比例尺和绘图要求画出旗杆的'位置。

  旗杆的位置离学校南墙有30米,离学校西墙100米。

  ①学生解答

  ②师生互动交流,并加以个别指导、点拨并分析、评价。

  本次练习题主要是训练学生能综合运用所学的知识解决简单的实际问题的能力,发展动手操作能力。

  三、作业

  1、设计根据中华人民共和国地图上的有关数据求出富区到齐市的实际距离的应用题,并解答。

  2、利用网络收集水立方的相关信息,根据比例尺1:20xx求它的占地面积,并画出示意图。

  四、回顾整理,反思提升

  这节课学习了什么内容,(板书课题)你学到了什么?在本节课的学习中有什么体会?

解比例教学设计12

  学情分析

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  教学目标

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点和难点

  教学重点:认识反比例关系的意义。

  教学难点:掌握成反比例量的变化规律及其特征。

  教学过程

  一、复习导入

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、教学新课

  1.教学例4。

  出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

  点名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例5。

  出示例5。

  按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

  (板书:每袋重量和袋数的积一定)

  乘积8000是什么数量,这种数量关系用式子怎样表示?

  [板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

  3.概括。

  (1)综合例4、例5的共同点。

  提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例4、例5里两种相关联的量,它们是什么关系的量呢?

  像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

  问:两种相关联的量成不成反比例的关键是什么?

  (乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的'。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

  4.具体认识。

  (1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么?

  例5里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)做练习八第4题。

  让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

  (4)判断。

  现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  三、巩固练习

  1.做“练一练”第l,2,3,4,5题。

  指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

  2.拓展应用。

  3.综合练习

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

解比例教学设计13

  【教学内容】

  义务教育课程标准实验教科书《数学》(人教版六年级 下册)教材P59―60内容。

  【教学目标】

  1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

  2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

  3. 发展学生的应用意识和实践能力。

  【教学重点】运用正反比例解决实际问题。

  【教学难点】正确判断两种量成什么比例。

  【教材分析】

  解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数 列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.

  【学情分析】

  解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

  【设计理念】

  利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点.正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣.首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答.这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

  通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.

  【教学过程】

  一、铺垫孕伏(课件演示:比例的应用)

  判断下面每题中的两种量成什么比例关系?

  1、速度一定,路程和时间.

  2、路程一定,速度和时间.

  3、单价一定,总价和数量.

  4、每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5、全校学生做操,每行站的人数和站的行数.

  【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】

  二、探究新知

  (一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的.知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)

  (二)教学例5(课件演示:教材对话主题图)

  例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?

  学生利用以前的方法独立解答:

  先算出每吨水的价钱,再算10吨水的多少钱?

  12.8÷8×10

  =1.6×10

  =16(元)

  【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】

  2、利用比例的知识解答.

  思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)

  哪种量是一定的?你是怎样知道的?(水的单价一定.)

  用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)

  教师板书:单价一定,水的数量和总价成正比例

  教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)

  怎么列出等式?

  解:设李奶奶家上个月水费x元.

  8x=12.8×10

  x=16

  答:李奶奶家上个月水费16元.

  3、怎样检验这道题做得是否正确?(学生自主完成)

  4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?

  【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】

  (三)教学例6(课件演示例6主题图)

  例6: 一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?

  1、学生利用以前的算术方法独立解答.

  20×18÷30

  =360÷30

  =12(包)

  2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的——————是一定的,__________和__________成__________比例.所以两次捆书的__________和__________的__________是相等的.

  3、如果设要捆x包,根据反比例的意义,谁能列出方程?

  30x=20×18

  x=360÷30

  x=12

  答:每捆12包.

  4、变式练习

  一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?

  【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】

  三、全课小结

  用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

  四、随堂练习

  1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

  (2)王师傅4小时生产了200个零件,照这样计算,__________?

  2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  3、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】

  五、布置作业

  1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

  2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

  3、P60---做一做

  【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】

  【板书设计】

  解比例应用题

  例5: 例6:

  单价一定,总价和数量成正比例。 总数量一定,每包本书和包数成反比例。

  解:设李奶奶家上个月水费x元. 解:设要捆x包

  30x=20×18

  8 x=12.8×10 x=360÷30

  x=16 x=12

  答:(略) 答:(略)

  【教学后记】:正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

解比例教学设计14

  教学目标:

  1.经历读平面图,根据比例尺和图上距离解决简单问题的过程。

  2.能读懂平面图,能根据比例尺解决和平面图上有关的实际问题。

  3.体验数学与生活的联系,感受比例尺在生活中的广泛应用。

  教学方案:

  教学环节:

  教学预设:

  一、读平面图

  1、教师谈话,说明一些场所也可以按比例画出它的平面图。

  师:同学们,前面我们知道了可以按一定的比例画出一个物体表面的示意图。一所学校、一个公园、一个商场也可以按一定的比例画出它的平面图。

  板书:平面图。

  2、让学生读某小学的平面图,交流从图中了解到的信息。给学生充分交流不同信息的机会,教师可以作为参与者交流。

  师:现在,请同学们打开书第54页,认真观察某小学的平面图。

  给学生一点时间观察平面图,再交流。

  师:谁来说说从这幅图上,你了解到什么?

  学生可能回答:

  这是某小学的整体设施平面图

  平面图上画了教学楼、语音室,教学楼在学校的西北边,语音室在教学楼的西南方向。

  办公楼在学校的东北方向,图书室在学校的东边,微机室在学校的东南边。

  操场在学校的南方,花坛在操场的正北方向……

  平面图的比例尺是1:20xx。

  3.让学生说一说比例尺1:20xx表示什么意思。然后,教师介绍比例尺1:20xx的两种表示方式,并板书出来。

  师:谁知道比例尺1:20xx是什么意思?

  学生可能会说:

  生:1:20xx的意思是图上的1厘米表示实际的20xx厘米。

  师:说的很好!1:20xx,比的前项是图上距离,比的后项是实际距离。

  比例尺就是图上距离和实际距离的比。1:20xx还可以写成不同的形式。

  教师边说边板书:

  比例尺=1:20xx

  或比例尺=

  4、参照兔博士的话比例尺的一般意义,并板书比例尺的两种书写方式。

  师:根据比例尺就是图上距离与实际距离的比,我们还可以得到比例尺的一般表达式。

  教师边说边板书:

  图上距离:实际距离=比例尺或=比例尺

  二、自主学习

  1.提出:“求校园长的实际距离”的问题,师生合作实际测量后,让学生自主计算。

  师:根据平面图上的比例尺,我们知道图上的1厘米,表示实际的20xx厘米。想一想,如果要想知道校园长的实际距离,怎么办?

  生:需要先量出校园长的图上距离。然后根据比例尺1:20xx,就可以求出实际距离。

  师:好,请同学们量一量平面图上的校园长是多少。

  学生测量。

  师:谁来汇报你测量的结果?

  生:图中的校园长是10厘米。

  板书:图上距离:10厘米

  2.全班交流计算的过程和结果。最后说明:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米作单位。

  师:校园长的实际距离到底是多少呢?请同学们试着算一算。

  学生试算,教师巡视个别指导。

  师:谁来说说你是怎样想的?

  学生可能出现以下算法:

  因为图上的1厘米表示实际的20xx厘米,现在校园长图上距离是10厘米,实际距离就是10个20xx厘米,用20xx×10=20000(厘米)。

  我用20xx×10=20000(厘米),20000厘米=200米,所以校园长的实际距离是200米。

  随学生的回答教师板书:

  实际距离:20xx×10=20000(厘米)=200米

  如果学生没有换算单位或出现错误,教师给予提示。

  3、提出:“求学校宽的实际距离”的问题。鼓励学生独立完成,然后交流,解释自己的计算过程和结果。

  师:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米。

  师:学校宽的实际距离是多少呢?请同学们自己测量出图上距离,并试着计算。

  学生自主测量、计算,教师巡视并对有困难的学生进行指导。

  师:谁来说一说你是怎么做的?计算的结果是多少?

  生:我先量出宽的图上距离是6厘米,因为比例尺是1:20xx,实际距离就是6个20xx厘米,用20xx×6=12000(厘米)=120(米)。

  4、提出“求学校占地面积”的'要求,学生算完后交流。

  师:我们已经求出了校园长和宽的实际长度,你能计算出校园的占地面积吗?试一试。

  学生计算后交流。答案:

  200×120=24000(平方米)

  三、尝试应用

  1、提出教材试一试中的问题(1),先让学生讨论一下:求学校操场的面积,应该怎么办?然后自己解答,最后交流。

  师:根据平面图和比例尺,我们可以算出校园长和宽、占地面积等。如果要求操场的面积,谁知道应该怎么办?

  生:先测量图上操场的长和宽,再计算出操场长和宽的实际长度。最后,计算出操场的面积。

  师:请大家自己完成。

  学生自主测量、计算,教师巡视并对有困难的学生进行指导。然后,指名交流。

  2、提出教材试一试中的问题(2),先让学生讨论一下:要在示意图上标出旗杆的位置,应该怎么办?使学生了解:应该先根据实际距离求出图上距离。

  师:同学们真棒,根据平面图和比例尺解决计算问题。现在,老师提一个比较难的问题。在学校内距南墙30米、西墙100米的位置,竖着学校的旗杆。如果要在示意图上标出旗杆的位置,你知道应该怎么办吗?

  生:应该先根据实际距离求出旗杆距南墙、西墙的图上距离,然后在图中测量、标出旗杆的位置。

  3、学生尝试计算,然后交流计算的过程和结果。

  师:说的很好!请大家先试着计算出旗杆距南墙、西墙的图上距离。

  学生尝试计算,教师巡视,帮助学习有困难的学生。

  师:谁来说一说你是怎么做的?

  学生可能出现以下做法:

  因为图上1厘米表示实际20xx厘米。旗杆距南墙的实际距离是30米,30米中有几个20xx厘米,图上距离就是几厘米。30米=3000厘米,3000÷20xx=1.5,所以旗杆距南墙的图上距离就是1.5厘米。同理,旗杆距西墙的实际距离100米,100米=10000厘米,10000÷20xx=5,图上距离就是5厘米。

  因为=比例尺,所以图上距离=实际距离×比例尺。

  30×=0.015米=1.5厘米

  100×=0.05米=5厘米

  第(2)种方法如果没有出现,不予介绍。

  师:很好,同学们计算出了旗杆距南墙、西墙的距离。现在,在图中测量、标出旗杆的位置。完成后,同桌互相检查一下。

  四、课堂练习

  1、练一练第1题,先让学生说说“红红家住房平面图”所包含的信息,再独立完成各小题。

  师:请同学们看练一练第1题,这是红红家住房的平面图。从图中你知道了哪些信息?

  学生可能会说:

  这幅平面图的比例尺是1:200

  红红家的客厅在阳面。

  在红红家的东南角、西北角各有一个卧室。

  师:比例尺1:200是什么意思?

  生:就是图上的1厘米表示实际200厘米。

  师:请同学们独立完成(2)(3)两个问题。

  学生独立完成练习,教师巡视并指导学习有困难的学生。

  五、课外延伸

  2、练一练第2题,由学生课外独立完成。

  师:我们一起解决了红红家住房中的一些问题,请同学们课下用1:200的比例尺画出你自己的卧室的平面图。

解比例教学设计15

  教学内容:

  苏教版九年义务教育六年制小学教材第十二册p49-50。

  教学目标:

  1、使学生进一步理解比例尺的意义以及比例尺在现实生活中的应用,会根据比例尺求图上距离或实际距离。

  2、进一步培养学生分析、抽象、概括的能力,体会数学知识与现实生活的紧密联系。

  教学重点:

  根据比例尺的意义求图上距离或实际距离

  教学难点:

  设未知数时单位的正确使用。

  教学准备:

  布置前置作业。小黑板。小组分工。

  教学内容:

  一、小喇叭主持

  讲数学小故事。

  师:谢谢你给我们带来的小故事。其实生活处处有数学。好了。同学们打开小研究本,把做好的前置作业小组里进行交流。一会儿派代表起来汇报。

  二、新课引入

  1、小组内交流数学前置小作业。指生汇报。

  “哪个组起来汇报?”

  2、谈话:我们在前面学习了比例尺的计算方法。今天我们就来学习比例尺在生活中的应用。

  三、探究新知

  (一)学习求实际距离的方法。

  师(出示例7及右图):这道题已知什么,让我们求什么?比例尺1:8000表示什么意思?(学生自由读题思考,小组里互相说一说,指生回答。)

  师:那么,根据题意怎样才能求出实际距离是多少?你能想出几种办法来呢?

  请同学们先试着在研究本上做一做,然后在小组里讨论交流。(师巡视辅导。)

  师:你是怎么想的?你觉得做的时候特别要注意什么?哪个小组到台上来汇报?

  老师提个要求,别人回答问题的时候,请同学们认真倾听,你们能做到吗?

  生1、生2、生3

  师:刚才同学们还想到了用解比例的方法求出了实际距离,真不简单!

  那你说说你是根据什么列出比例式的?

  首先解设什么?设未知数时用什么做单位呢?

  为什么不用米做单位?做的时候要注意什么呢?

  小组里再互相说一说。

  师:你们认为这个小组做的怎样?其他小组还有没有要说的?你还能挑出这个小组的问题吗?还有更好的方法吗?

  生1、生2、生3

  师:我们知道了已知图上距离求实际距离,既可以按照实际距离与图上距离的倍数关系解决来解答,还可以按“图上距离:实际距离=比例尺”列出比例,用解比例的方法求出结果了。

  师:那这些方法当中,你最喜欢用那种方法?为什么?

  还有什么不明白的地方吗?还有要补充的吗?小组里互相说说,遇到不懂的可以提出来。其他同学帮忙解答。

  (二)学习求图上距离的方法。

  (出示“试一试”:明华小学正北方240米处是医院。先算出学校到医院的图上距离,再在图中表示出医院的位置。)

  师:好了,请同学们用你喜欢的方法试着做一做。然后在小组里互相说说你是怎么想的?

  (小组互动,师巡视。指生汇报。)

  生1、生2、生3、生4

  师:你们当中谁用算术方法做的.?说说你的想法。

  谁是用比例解的?你能说一说根据什么列比例的吗,应该将谁设为x?单位是什么?列比例之前首先要干什么?(单位换算)

  生1、生2

  师:图上距离求出来后,这道题做完了吗?还有补充的吗?

  师:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以根据比例的意义及性质列出比例,再解比例求出结果。

  师:还有不懂的问题吗?同学们自学课本52-53,不明白的提出来,小组里其他同学帮忙解答。

  四、反馈练习

  1、练一练。

  先在练习本上独立做,再小组交流,指生汇报交流。

  2、选择:(出示小黑板(1)(2))

  读题思考。指生回答。

  五、小结

  师:今天这节课我们学习了什么?你有什么收获?

  六、作业

  练习十一第三题。

  七、课后拓展

  课后找时间测量出学校操场的长和宽,然后选用适当的比例尺画出操场平面图。

【解比例教学设计】相关文章:

《解比例》教学设计07-28

《解比例》教学设计15篇04-29

《解比例》教学设计(15篇)04-29

《解比例》教学设计(通用11篇)05-27

解比例的教学反思02-25

解比例教学反思02-07

解比例教案设计参考08-30

《解比例》教学反思通用05-24

六年级《解比例》教学设计07-01