《最大公因数》教学设计优秀

时间:2023-10-17 18:22:04 教学设计 我要投稿
  • 相关推荐

《最大公因数》教学设计优秀

  作为一位不辞辛劳的人民教师,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么教学设计应该怎么写才合适呢?以下是小编精心整理的《最大公因数》教学设计优秀,仅供参考,希望能够帮助到大家。

《最大公因数》教学设计优秀

《最大公因数》教学设计优秀1

  一.教学设计学科名称:

  北师大版数学五年级上册《找最大公因数》

  二.所在班级情况,学生特点分析:

  我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。

  三.教学内容分析:

  教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。

  四.教学目标:

  知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

  五.教学难点分析:

  教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  六.教学课时:

  一课时

  七.教学过程:

  (一)复习

  师:出示3×4=12,( )是12的因数。

  生:3和4是12的因数。

  (二)探究新知

  1、认识公因数和最大公因数

  (1)师:除了3和4是12的因数,12的因数还有哪些?

  生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。

  师:要找出一个数的全部因数,需要注意什么?

  生:要一对一对有序地写,这样才不会遗漏。

  师:照这样的方法,请你写出18的全部因数。

  生独立写后汇报:18的.因数有:1、2、3、6、9、18

  (此时出示集合图)

  师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。

  生做后汇报师板书于圈中。

  (2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。

  生找出12和18相同的因数有:1、2、3、6

  师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。

  师:这里最大的公因数是几?

  生:最大是6。

  师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。

  板书课题:找最大公因数

  (此时出示集合图)

  师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论

  (生分组讨论)

  汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。

  师:请大家完成这个题。(生做后订正)

  2、探索找最大公因数的方法

  (1)列举法

  刚才我们找最大公因数的方法叫做列举法。(板书:列举法)

  请大家用这种方法找出下面每组数的最大公因数。 9和15

  (2)利用因数关系找

  师:请大家翻到书第45页,独立完成第一题。

  生汇报:

  8的因数: 1、2、4、8

  16的因数: 1、2、4、8、16

  8和16的公因数: 1、2、4、8

  8和16的最大公因数是 8

  师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:8是16的因数,所以8和16的最大公因数就是8。

  师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)

  练习:找出下面每组数的最大公因数。 4和12 28和7 54和9

  (3)利用互质数关系找

  师:请大家独立完成第二题。

  生汇报:

  5的因数: 1、5

  7的因数: 1、7

  5和7的最大公因数是 1

  师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:5和7都是质数,所以5和7的最大公因数就是1。

  师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)

  练习:找出下面每组数的最大公因数。 4和5 11和7 8和9

  (4)整理找最大公因数的方法

  师:今天我们学习了用哪些方法找最大公因数?

  生:列举法,用因数关系找,用互质数关系找。

  师:我们在做题时,要观察给出的数字的特征选用不同的方法。

  (三)练习

  书46页3、4、5题。生独立完成,师巡视指导。

  (四)全课小结

  这节课你有什么收获?

  八.课堂练习:

  在括号里填写每组数的最大公因数

  6和18( ) 14和21( ) 15和25( )

  12和8( ) 16和24( ) 18和27( )

  9和10( ) 17和18( ) 24和25( )

  九.作业安排:

  完成练习册上的习题

  十. 附录(教学资料及资源):

  1、教师用书:北师大版五年级数学上册

  2、数字卡片

  十一. 自我问答:

  短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?

  教学反思:

  本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。

  在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。

  找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。

《最大公因数》教学设计优秀2

  教学内容:

  人教版小学数学五年级下册第60~62页

  教学目标:

  1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。

  2、渗透集合思想,体验解决问题策略的多样化。

  3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。

  4、以去“游乐园”游玩为契机激发学生学习数学的兴趣。

  教学重点、难点:

  理解公因数与最大公因数的定义;

  探索寻找两个数的最大公因数的方法。

  教学准备:

  多媒体课件 ;小奖品;小组学案各一份;方格纸每组5张、彩笔;每个人制作学号卡佩戴好。

  教学过程:

  一、复习铺垫———抢夺气球

  1、情境引入

  (1)、出示“数学游乐园”

  师:想去“数学游乐园”玩吗?(想)乐园里不仅有许多好玩的,表现好的还可以获得很多的奖励哦!

  (2)、看现在乐园里正在举行“抢夺气球”的活动呢!谁想来抢呢?(回答课件中的问题,答对一个获得一个奖励)

  3的因数有:6的因数有:

  8的因数有:12的因数有:

  二、讲解新授

  1、游乐园的储存室长16dm,宽12dm。如果要用边长是整分米的正方形地砖把储存室的地面铺满(使用的地砖都是整块)。可以选择边长是几分米的地砖?边长最大是几分米?

  你知道铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)

  2、合作探究

  (1)阅读并讨论

  用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)

  (2)合作与交流

  A、交流边长是“4” 为什么?

  问:你们觉得行吗?

  答:铺满

  B、交流边长是“2” 出示一个角

  问:你觉得长边、短边可以分别铺几块呢?

  答:铺满

  C、交流边长是“1” 铺一个角

  问:你觉得长边、短边可以分别铺几块?

  答:铺满

  认识公因数和最大公因数

  (1)讨论交流

  还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?

  宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的

  (2)抽象公因数概念

  我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?

  (1、2、4不仅是16的因数又是12的`因数。1、2、4是12和16的公因数)

  同意吗?

  那我们就用以前的方法找找16、12的因数。

  16的因数有:1、2、4、8、16 12的因数有:1、2、3、4、6、12

  你发现什么?

  我发现1、2、4既是12的因数又是16的因数。

  能不能简单的说说,它们是12和6的什么数吗?

  1、2、4是12和16公有的因数,1、2、4是12和16的公因数

  板书“公因数”

  说能说一说什么是公因数

  几个数共有的因数,就是这几个数的公因数

  那16和12的公因数有:1、2、4

  (3)用集合圈表示

  我们可以用集合圈来表示两个数的公因数

  现在中间的表示什么呢?应该填?

  那这圈里的(指左边、右边)填?表示?

  (4)认识最大公因数

  边长最大是几分米? 你是怎么想的?

  (从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)

  实际上这4就是16和12的最大公因数,板书“最大公因数”

  16和12的最大公因数是4

  2、合作交流、探索方法

  怎样求18和 27 的最大公因数。(看哪组的方法多)

  小组谈论,实践交流。 交流反馈、小结方法。

  这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。

  3、找一找,填一填

  8的因数: 16的因数:

  8和16 的公因数: 8和16 的最大公因数:

  想一想:8和16之间有什么关系?与它们的最大公因数有什么关系?

  小结:如果较大数是较小数的倍数,那么较小数就是它们的最大公因数。

  找一找,填一填

  5的因数: 7的因数:

  想一想:5和7的公因数有哪些?

  小结:像这样的两个数:公因数只有 1 的两个数,叫做互质数 。

  互为质数的两个数的最大公因数是1。

  三、巩固练习

  1、游戏:看谁站的对。

  座位号是 12 的因数而不是 18 的因数的同学站左边、是 18 的因数而不是 12 的因数的站右边、是 12 和 18 公因数的站中间。

  四、全课总结:学生畅谈本节课的收获。

《最大公因数》教学设计优秀3

  教学内容:

  课本 P79~81 例 1、例 2。

  教学目标:

  1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。

  2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。

  3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。

  教学重点:

  理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。

  教学难点:

  了解求两个数的最大公因数的计算原理。

  教学用具:

  自制课件。

  教学过程:

  一、复习导入

  1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?

  2.叙述:同学们学以致用的能力还真是很强,知道会用因数的`知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片。

  [从学生的实际生活引入,可以激发学生的学习兴趣。]

  二、探索新知

  1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。

  2.探究方法。

  同学们先独立思考,再小组交流、讨论。

  3.全班交流。

  (1)说一说你是怎样安排的?

  (2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画

  4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?

  过渡语:今天我们就重点来研究最大公因数。

  5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?

  6.说一说:最大公因数和公因数有什么关系呢?

  7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?

  8.练习:口答最大公因数。

  4 和6 24和8 5和7 6和11

  问:你是怎样答出的?能说一说过程吗?

  9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?

  分解质因数法。

  10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。

  [在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]

  三、巩固练习

  1.选两个数求最大公因数

  12 和 18

  99 和 132

  24 和 30

  39 和 65

  2.找最大公因数。

  (1)A=2×2×5×7

  B=2×3×7

  (A,B)=?

  (2)甲数=A×B×C

  乙数=D×E×F

  (甲数,乙数)=?

  3.反馈练习。

  (1)直接写出下面各组数的最大公因数。

  (27、9)(17、51)(13、39)((3、8)

  (13、11)(15、16)(4、6)(6、8)

  (8、24)(15、30)(16、48)(5、11)

  (11、12)(13、17)

  (2)填空。

  小于10的最大偶数与最小合数的最大公因数是( )。

  小于10的最大奇数与奇数中最小的质数的最大公因数是( )。

  最小的质数与最小的合数的最大公因数是( )。

  自然数中最小的两个质数的最大公因数是( )。

  小于10的最大两个合数的最大公因数是( )。

  甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。

  四、全课总结

  你对今天的课有什么评价?谈谈你的感想好吗?

  板书设计:

  最大公因数

  16 的因数:1,2,4,8,16

  12 的因数:1,2,3,4,6,12

  16=2 × 2 × 2 ×2 18= 2 ×3×3

  12=2 × 2 × 3 24= 2 ×2×2×3

  (16,12)=2 × 2=4 (18,24)=2×3=6

《最大公因数》教学设计优秀4

  教学内容:

  人教版五年级第十册66—69页最大公因数。

  教学目标:

  1、理解公因数,最大公因数和互质数的概念。

  2、初步掌握求最大公因数的一般方法。

  3、培养学生思维的有序性和条理性。

  4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。

  教学重,难点:

  1、理解公因数,最大公因数,互质数的概念。

  2、求最大公因数的一般方法。

  教具准备:

  多媒体教学课件。

  教学过程:

  一,师生共研,学习新知:

  我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?

  出示课件:

  16的因数有:1、2、4、8、16

  12的因数:1、2、3、4、6、12

  那么既是16又是12的因数是:1、2、4

  16和12的公有因数中最大的一个是:4

  出示课件:

  16的因数:1、2、4、8、16

  12的因数:1、2、3、4、6、12

  8的因数:1、2、4、8

  师:我们就把1、2、4叫做16、12和8的什么呢?

  生:公因数

  师:4就是16、12和8的什么呢?

  生:最大公因数。

  师:请同学用自己的话说一说公因数是什么意思?

  生:几个数公有的因数,就叫公因数。

  生:就是几个数都有的因数,就叫公因数。

  师:同学谁能说一下什么又是最大公因数呢?

  生:几个数公因数里面最大的一个,就叫最大公因数。

  师生共同总结概念:

  公因数:几个数公有的因数,叫做这几个数的公因数。

  最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数

  二、巩固练习,加深理解:

  出示课件:

  同学们能不能找出15和18的公因数,再找出它们的最大公因呢?

  15的因数18的因数15的因数18的因数

  不清

  15和18的公因数

  三、合作探究,认识互质数

  1、5和7的公因数和最大公因数各是多少?

  5的因数:1、5.7的因数:1、7。

  5和7的公因数有:1.5和7的最大公因数是:1。

  2、7和9呢?

  7的因数:1,7.9的因数:1,3,9。

  7和9的公因数有:1.7和9的最大公因数是:1

  指名回答:并让学生说出自己的看法和理由。

  师总结:公因数只有1的两个数,叫做互质数。

  同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?

  四、深化练习、掌握方法:

  那么大家想一想18和30的最大公因数怎么去求呢?

  小组讨论方法:小组代表发言汇报讨论结果。

  师引导出用分解质因数的方法,18=2×3×330=2×3×5

  归纳出:18和30的公有的质因数是2和3,那么最大公因数就是2×3=6

  能不能用更简便的方法呢?

  把两个短除法合并成一个短除法

  21830→用公有的质因数2除

  3915→用公有的质因数3除

  35→除到两个商是互质数为止

  把所有的除数乘起来,得到18和30的最大公因数是

  2×3=6

  学生总结短除法求最大公因数的方法。

  求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。

  鼓励学生用不同的方法去完成练习。

  求12和20的最大公因数

  学生动手练习,师巡视指导,学生上黑板演示过程。

  五、小小能手、我来闯关:

  第一关:填一填

  1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是()。

  2.8和9的`公因数有(),最大公因数是()

  第二关:判一判

  1、公因数有1的两个数是互质数()。

  2.12的因数只有2、3、4、6、12。()

  3、成为互质数的两个数一定都是质数。()

  第三关:做一做

  木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?

  六、全课小节、畅谈收获:

  学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。

  七、板书设计:

  最大公因数

  公因数:几个数公有的因数。

  最大公因数:公因数里最大的一个。

  互质数:公因数只有1的两个数。

  把18和30分别分解质因数

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  18和30的公有质因数是2和3,因此:

  18和30的最大公因数是2×3=6

  合并两个短除法

  21830→用公有的质因数2除

  3915→用公有的质因数3除

  35→除到两个商是互质数为止

  把所有的除数乘起来,得出18和30的最大公因数是2×3=6

  教学反思

  教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。

  1、借助操作活动,经历概念的形成过程。

  本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

  2、预设探究过程,增强学生主体意识。

  为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

  3、提倡思考方法的多样化。

  在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力

《最大公因数》教学设计优秀5

  教学目标:

  1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。

  2、培养学生分析、归纳等思维能力。

  3、激发学生自主学习、积极探索和合作交流的良好习惯。

  教学重点:

  理解公因数和最大公因数的概念。

  教学难点:

  理解并掌握求两个数的最大公因数的方法。

  教具准备:

  课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。

  教学过程:

  一、创设情境,引导动手操作

  1.情境导入

  2.出示问题,明确要求。(理解重点要求,如整分米数,整块)

  3. 学生猜测可选用几分米的地砖。

  4.介绍教具,明确活动要求.

  5.小组活动。

  二、自主探索,形成概念

  1.展示学生作品,得出结果。

  2.教师将不同铺法展示到课件上。

  3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)

  4.引出公因数和最大公因数的概念,揭示课题。

  5.巩固练习课本80页做一做。

  三、自主探究,掌握方法

  1.怎样求两个数的最大公因数。

  2.出示例2,独立思考,做在练习本上,指名板演,集体订正。

  3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的'最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)

  四、巩固练习,总结提升

  1.81页做一做,独立思考,指名回答,集体订正。

  2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)

  五、小结

  谈谈本节课有什么收获。

《最大公因数》教学设计优秀6

  教学目标:

  1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

  2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的.体验,树立学好数学的信心。

  教学重点:

  求两个数的公因数和最大公因数。

  教学难点:

  理解求公因数和最大公因数的方法。

  教学准备:

  小黑板

  教学过程:

  一、铺垫准备

  1.直观演示,作好铺垫。

  出示边长6厘米和边长5厘米的两个正方形。

  提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

  2.引入新课。

  谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

  二、学习新知

  1.认识公因数。

  (1)出示例9,了解题意。

  启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

  交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

  结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2 186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3 184=4……2)

  (2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

《最大公因数》教学设计优秀7

  教学目标:

  1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  2、探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。

  基本教学过程:

  一、创设活动情境,进行找因数活动:

  1、用乘法算式的方式分别找12和18的因数。

  2、用集合的方式找出12和18的因数,分别填在各自的圈中。

  3、同位交流找因数的方法。

  二、自主探索,总结找两个数的公因数的方法:

  1、交流方法

  2、激趣导思

  ①小组讨论:

  两个集合相交的部分填那些因数?

  ②小组汇报:

  ③师总结:揭示公因数和最大公因数的`概念。

  这两个集合相交的部分填的这些因数就是12和18的公因数,其中最大的一个就是它们的最大公因数。

  ④还有其他方法吗?

  小组讨论:

  小组汇报:

  ⑤总结找两个数公因数的方法

  3、拓展引思:

  ①15和5014和3512和484和7

  说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。

  注意:教师出题时,数字不要太大,要注意把握难度要求。

  ②练一练,第42页第1题。第2题。第3题。

  ③第43页第4题:

  让学生找出这几组数的公因数后,说说有什么发现?

  ④第43页第5题:

  ⑤数学探索:

  三、总结。

  教学反思:

《最大公因数》教学设计优秀8

  教学目标:

  1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

  重点难点:

  初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的'应用。

  教学方法:

  自主学习、合作探究

  教学过程:

  一、激趣导入

  (约5分钟)

  课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

  二、自主学习

  (约5分钟)

  1、几个数( )叫做这几个数的公因数,其中最大的一个叫做( )

  2.16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。

  3。A=225,B=235,那么A和B的最大公因数是( )。

  4、用短除法求出99和36的最大公因数。

  三、合作交流

  (约13分钟)

  小组合作学习教材第62页例3。

  1、学具操作。

  用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是 厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

  2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

  3、总结。

  解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

  四、精讲点拨

  (约8分钟)

  根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

  五、测评总结(约9分钟)

  1、达标练习

  (1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?

  (2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?

  (3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?

  2、全课总结

  这节课你都学到了什么知识?有什么收获?

  3、作业布置

  练习十五5,6题。

《最大公因数》教学设计优秀9

  【 教学内容】

  《义务教育课程标准实验教科书数学》(人教版)五(下)第79 —81 页。

  【设计理念】

  小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。

  【 教学目标】

  1 、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。

  2 、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。

  3 、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。

  【 教学重点】

  理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。

  【 教学难点】

  初步应用求两个数最大公因数的方法解决生活中的简单实际问题。

  【 教学准备】

  多媒体课件

  【 自学内容】

  见预习作业

  【 教学过程】

  一、自学反馈

  1 、通过自学你已经知道了什么?

  (1 )书上介绍了( )和( )两个数学概念。

  (2 )问:你认为公因数和最大公因数与什么知识有关?

  生:公因数和最大公因数都与因数有关?

  (3 )追问:那你认为可以怎样求两个数的公因数和最大公因数?

  生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。

  (4)你会求18 和24 的公因数和最大公因数吗?请大家试一试。

  二、关键点拨

  1 、列举法求两个数的最大公因数及公因数和最大公因数的意义。

  (1 )你是怎样求18 和24 的最大公因数的,谁来说说?

  (2 )学生反馈:

  18 的因数有1 ,2 ,3 ,6 ,9 ,18 。

  24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

  18 和24 的公因数有1 ,2 ,3 ,6 。

  18 和24 的最大公因数是6 。

  师:18 和24 公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。

  【设计意图 :在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的'“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】

  2 、求两个数最大公因数的其他方法

  师:你还有不同方法求两个数的最大公因数吗?

  生1 :筛选法

  先写出较大数的因数,24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

  从大到小找24 的因数中谁是18 的因数就是它们的最大公因数,24 、12 、8 都不是18 的因数,6 是18 的因数。

  所以,18 和24 的最大公因数是6 。

  生2 :分解质因数法

  18 =2 ×3 ×3

  24 =2 ×2 ×2 ×3 ,把18 和24 的相同质因数相乘的积就是它们的最大公因数,18 和24 的最大公因数=2 ×3 =6 。

  师问:你在哪里见到过这样的方法?

  生介绍书上81 页小知识:分解质因数法求两个数的最大公因数。

  师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?

  师介绍缩倍法:把24 缩小到它的2 倍是12 ,12 不是18 的因数;把24 缩小到它的3 倍是8 ,8 也不是18 的因数;把24 缩小到它的4 倍是6 ,6 是18 的因数。所以,18 和24 的最大公因数是6 。

  3 、沟通因数、公因数和最大公因数的区别和联系

  仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?

  生1 :公因数和最大公因数都是因数中的一部分。

  生2 :公因数都是最大公因数的因数,最大公因数是公因数的倍数。

  4 、优化方法

  仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?

  生1 :我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。

  生2 :我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。

  生3 :我更喜欢分解质因数法,……

  5 、集合表示法介绍

  师:还可以用下面的图来表示:

  【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】

  三、巩固练习

  1 、请选择你喜欢的方法求出下面每组数的最大公因数。

  4 和8 18 和54 1 和7 8 和9

  (1 )学生独立求最大公因数,教师巡视指导。

  (2 )反馈交流:4 和8 的最大公因数是4 ,18 和54 的最大公因数是18 ,1 和7 的最大公因数是1 ,8 和9 的最大公因数是1 。

  (3 )问:你能根据最大公因数的特点把上面4 组数分成两类吗?

  4 和8 ,18 和54 分成一类;1 和7 ,8 和9 分成一类。

  (4 )问:你为什么这样分?说说你的理由。

  生1 :4 是8 的因数,8 是4 的倍数,它们的最大公因数是较小数4 ;18 是54 的因数,54 是18 的倍数,它们的最大公因数是较小数18 。1 和7 ,8 和9 的最大公因数都是1 。

  生2 :我知道1 和7 是互质数,8 和9 也是互质数,所以它们的最大公因数是1 。

  (5 )追问:你是怎么知道互质数这个数学概念的?

  生:我是从书上83 页的小知识中看过来的。(生介绍书上83 的小知识:互质数——公因数只有1 的两个数叫做互质数。)

  (6 )你能很快说出下列各组数的最大公因数吗?

  45 和15 51 和17 13 和39

  1 和15 45 和46 2 和9 13 和18 3 和11

  生报答案,教师板书。

  (7 )仔细观察,你认为什么样的两个数会是互质数,它们的最大公因数是1 。

  生1 :1 和任何一个大于1 的自然数都是互质数。

  生2 :相邻的两个自然数(0 除外)是互质数。

  生3 :任意两个质数都是互质数。

  生4 :一个质数和一个合数,只要没有倍数关系就是互质数。

  ……

  (8 )你能很快抱出54 和48 的最大公因数吗?你认为求两个数的最大公因数要注意什么?

  2 、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?地板砖的边长最大是几分米?

  3 、提高练习:

  (1 )综合题:两个自然数的和是52 ,它们的最大公因数是4 ,最小公倍数是144 ,这两个数各是多少?

  (2 )开放题:有两个50 以内的两位数,这两个两位数的最大公因数是6 这两个两位数分别是多少?

  【设计意图:练习形式多样,层次分明,让学生体会数学的综合性和应用性,注重认知结构的深化和发展,能有效地培养学生的创新思维。】

  四、全课总结

  这节课你们学了哪些知识?有什么收获?

  附:预习作业

  1 、内容:课本第79 至81 页例1 和例2 及做一做。

  2 、方法:一边看书一边画出你认为重要的信息,并理解。

  3 、解决问题:

  (1 )书上介绍了( )和( )两个数学概念。

  (2 )既是18 的因数又是24 的因数的有( ),其中最大的一个因数是( )。

《最大公因数》教学设计优秀10

  教学内容:

  课本P81的学习内容和练习十五的练习。

  教学目标:

  1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。

  2、能在练习的过程中发现求两数最大公因数的两种特殊情况。

  3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。

  教学重点:

  掌握找两个数的最大公因数的方法

  教学难点:

  掌握两种特殊情况下求两个数最大公因数的方法。

  教学过程:

  一、激趣引入

  师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。

  15的因数:1,3,5,15

  20的因数:1,2,4,5,10,20

  15和20的公因数有( ),最大公因数是( )。

  (指名口答加课件订正)

  师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。

  (板书:求最大公因数)。

  二、交流展示

  1、小组交流预习成果,初步归纳求最大公因数的方法。

  师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。

  2、预习成果展示,掌握求最大公因数的方法。

  师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?

  生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。

  18的因数:1,2,3,6,9,18

  27的因数:1,3,9,27

  18和27的最大公因数是9。

  师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。

  3、交流互动,感受求最大公因数方法的多样性。

  除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。

  预设

  (1)课本第二种

  18的因数:1,2,3,6,9,18

  其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。

  师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)

  师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的`因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)

  (2)其它的方法

  分解质因数法和短除法根据实际情况灵活处理。

  三、质疑点拨。

  1、预习评价,纠错巩固。

  师:通过刚才的学习,你掌握了求最公因数的方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)

  2、阅读课本,提出质疑。

  师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)

  3、方法归纳,点拨提升。

  其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)

  师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)

  师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。

  四、练习提高。

  师:现在老师马上考考大家,你有信心做对吗?

  1、求下面每组数的最大公因数。

  15和12 30和45

  2、找有倍数关系的两个数、互质数关系两个数的最大公因数的规律。

  师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本P81做一做,完成后在小组里订正和说一说自己的发现。

  4和8 16和32 1和7 8和9

  (1)汇报最大公因数答案。

  (2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)

  师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。

  (3)教师小结

  师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。

  3、选出正确答案的编号填在横线上。

  (1)9和16的最大公因数是()。

  A、1 B、3 C、4 D、9

  (2)16和48的最大公因数是()。

  A、4 B、6 C、8 D、16

  (3)甲数是乙数的倍数,甲、乙两数的最大公因数是()。

  A、1 B、甲数 C、乙数 D、甲、乙两数的积

  师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。

  4、写出下列各分数分子和分母的最大公因数。

  ( ) ( ) ( ) ( )

【《最大公因数》教学设计优秀】相关文章:

最大公因数的教学设计07-02

《公因数和最大公因数》的教学设计06-18

《找最大公因数》教学设计06-29

《公因数和最大公因数练习课》教学设计07-11

《公因数和最大公因数》的教学反思07-16

公因数和最大公因数的教学反思06-19

《最大公因数》教学反思01-15

最大公因数教学反思03-06

最大公因数教学反思03-06