《平行四边形的面积》的教学设计

时间:2024-11-11 17:09:32 教学设计 我要投稿

《平行四边形的面积》的教学设计

  作为一位优秀的人民教师,就有可能用到教学设计,借助教学设计可以让教学工作更加有效地进行。那么教学设计应该怎么写才合适呢?下面是小编为大家整理的《平行四边形的面积》的教学设计,仅供参考,大家一起来看看吧。

《平行四边形的面积》的教学设计

《平行四边形的面积》的教学设计1

  教学目标:

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学过程:

  一、情境激趣

  1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。

  2.引导学生观察它们的草皮各是什么形状?

  喜羊羊:平行四边形 灰太狼:长方形

  3、提问:长方形的面积怎么算?

  4、揭示课题:平行四边形的面积

  二、自主探究

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积

  一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找

  到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:平行四边形的面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (4)利用课件演示把平行四边形变成长方形过程。

  (5)观察并思考以下两个问题:

  A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  B.拼成的长方形的长与宽分别与原来平行四边形的.底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  (2)学生独立完成并反馈答案。

  三、巩固运用

  1.明辨是非

  2.你会计算下面平行四边形的面积吗?

  3.你能想办法求出下面平行四边形的面积吗?

  4.练习十五第3题。

  四、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

  五、教学设计

  平行四边形的面积

  长方形的面积 = 长 × 宽

  平行四边形的面积= 底 × 高

《平行四边形的面积》的教学设计2

  教材简析:

  《平行四边形的面积计算》九年义务教育北师大版小学数学五年级上册平行四边形的面积、。本单元共包括平行四边形的面积、三角形的面积、梯形的面积。《平行四边形的面积计算》是在学生学习了长方形和正方形面积计算公式之后,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。

  教学目标:

  1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、能力目标:通过教学活动,向学生渗透“转化”的思想,培养学生的动手操作能力、迁移能力,发展学生的空间观念,同时培养学生合作,交流的意识。

  3、情感与价值观:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  教学重难点:

  理解平行四边形面积的推导过程,并能运用公式解决实际问题。

  教具准备:

  多媒体课件

  学具准备:

  每人准备一张平行四边卡纸,一把剪刀

  教学过程:

  一、多媒体出示复习题:计算平行四边的高和底。

  二、新课

  (一)情境导入:

  师:同学们,有个施工队的设计人员这样设计了两个花坛(多媒体出示设计图:一个长方形,一个平行四边形)你会求它们的面积吗?你知道哪一个花坛的面积大吗?

  生:我会求长方形的面积,平行四边形的面积没有学

  师:这一节课我们就来一起探索平等四边形的面积计算公式。(板书课题:平行四边的面积)

  (二)探索新知:

  1、用数方格的方法探索平行四边形的面积。

  A、师:你能用什么方法求平行四边形的面积

  生:数方格

  师:我们可以用数方格的方法试一试

  (同学们拿出材料)

  师提示:同学们在数方格时,1个方格代表1平方厘米,不满一格的`按半格计算。

  让学生在情境中学习数学,使学生认识到生活中有许多数学问题。

  引导学生自己发现问题产生解决问题的强烈意识,变学生的被动听老师讲解为学生的主动探索。

  给学生提出明确的要求,教给他们正确的方法

  B、汇报数的结果

  C、小结

  用数方格的方法可以算出平行四边形的面积,但不精确,而且较大的面积也不好算,还有更好的方法吗?

  2、探究活动:

  a、师:既然同学们都意识到到平行四边形的面积与长方形有关,那我们能否把平行四边形转化成一个长方形来计算它的面积?

  给学生思考的时间,让学生观察手中的平行四边形,思考如何来操作。

  B、让学生动手实践,老师注意巡视和个别指导。

  c、让学生互相交流自己的方法

  学生在一般情况下可能会有以下两种割补的方法,都应给予肯定。

  有些同学通过割补拼出的图形可能不是长方形而是正方形,这时应通过长方形和正方形的关系来加以说明。

  d、引导学生小组讨论

  师:观察拼出的长方形和原来的平行四边形,你发现了什么?(同时出示问题引导学生思考交流)

  思考题:

  ①拼出的长方形和原来的平行四边形相比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

  鼓励学生大胆猜测,想像,为下一步探索提供思路

  对学生的大胆猜测给以鼓励,创设民主和谐的学习氛围。

  给学生探索的素材,探索的空间,培养学生勇于探索,勤于思索的精神。

  e、让学生叙述自己的推导过程,全班交流

  f、利用多媒体课件演示,平行四边形割、移、补的过程,学生注意观察。

  老师边演示边推导:我们把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,这个平行四边形的底和长方形的长相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  板书:平行四边形面积=底×高

  长方形面积=长×宽

  3、平行四边形面积计算公式的应用

  a、师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以怎样表示呢?

  让每个学生都在练习本上写一写

  生回答:S=ah(同时在黑板上标示出来)

  b、解决问题:

  多媒体出示“做一做”:学生自己读题,然后尝试解答,指一名学生起来说一说自己的是如何解答的。

  三、拓展练习:

  1、逐一完成多媒体课件作业。

  2、完成书中的练习。

  四、全课总结:

  师:本节课你学会了什么?

  你收获了什么?

  板书设计

  平行四边形面积

  1、数方格法

  2、转化法平行四边形平移

  长方形=长×宽

  平行四边形面积=底×高

《平行四边形的面积》的教学设计3

  教学目标:

  1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。

  3、培养学生的合作意识和探究精神。

  教学重点:

  理解公式并会计算平行四边形的面积。

  教学难点:

  推导平行四边形的面积计算公式。

  教具准备:

  每人准备一个平行四边形纸片和一把剪刀,多媒体课件。

  教学过程:

  一、导入(媒体出示:)

  1、认识图形。

  2、口算长方形的面积。

  3、回顾平行四边形的特征。

  4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积

  二、自主学习

  1、学生用数方格的方法数一数,并把结果记载到80页的表格中。

  2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)

  3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的'方法把平行四边形转化成别的图形)

  4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。

  5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)

  板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)

  7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

  教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

  三、巩固提高

  1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。

  2、作业:练习十五第1题,第2题。

  3、拓展:(媒体展示)

  (1)下面哪个平行四边形的面积大呢?为什么?

  (2)一个长方形拉成一个平行四边形后,有哪些变化?

  四、课堂小结

  本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

《平行四边形的面积》的教学设计4

  [课程标准]

  探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

  [学情分析]

  学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

  鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

  [学习目标]

  1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)

  2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)

  [评价任务]

  评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

  评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

  [资源与建议]

  1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

  2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

  3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

  4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的`关系,从而顺利推导出平行四边形的面积公式。

  [教学过程]

  一、情境导入

  出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

  师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

  [设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

  二、探究新知

  1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

  (1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

  (2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

  (3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

  生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

  生:我发现平行四边形的面积=底×高

  师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

  [设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

  2、合作交流探究新知

  (1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

  (2)、活动4:动手操作

  以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

  (3)、活动5:学生汇报、交流。

  师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,

  (边演示边说剪拼过程,并贴剪拼图于黑板。)

  师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

  你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

  哪个小组和他剪的不一样?

  师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

  (4)、大屏幕演示不同的拼法。

  (5)、活动6:小组讨论

  师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

  小组讨论:

  a、拼成的长方形的面积和原来平行四边形的面积—————。

  b、拼成的长方形的长与原来平行四边形的底———————。

  c、拼成的长方形的宽与原来平行四边形的高———————。

  (6)学生汇报,教师总结板书:

  师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

  教师板书平行四边形的面积=底×高,

  (7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

  (8)介绍板书字母式。

  师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

  观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

  [设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

  三、实践应用

  活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

  [设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

  四、课堂检测

  1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

  2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

  3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

  [设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

  五、全课小结。

  想一想你这节课学到了什么?

  板书设计:平行四边形的面积

  长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  S=a×h

  =ah

  =ah

《平行四边形的面积》的教学设计5

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  附说课稿:

  一、 教材与与学情分析

  《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

  小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标:

  1、知识目标:使学生在理解的基础上掌握平行四边形的`面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  教学重点、难点:

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教具、学具准备:

  多媒体课件、长方形纸、剪刀、直尺、

  二、理念设计:

  1、运用信息技术手段,优化数学课堂教学。

  2、体现“数学从生活中来,再回到生活中去”。

  3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

  三、教法、学法

  教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

  学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  四、教学程序

  为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

  (一)复习旧知,导入新课。

  新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

  (二)动手实践,探究发现。

  1、剪拼图形,渗透转化。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

  教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

  2、动手实践,探究发现。

  在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。

  当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。

  (三)分层训练,理解内化。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

  第一层:基本练习:

  计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  2、把平行四边形模型拉近,它们的面积发生变化了吗?

  通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  (四)课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

  本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

  当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

《平行四边形的面积》的教学设计6

  教学内容:

  试验教材小学数学五年级上册内容。

  教学目标:

  1、用转化的方法探究并把握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

  2、经受探究平行四边形面积计算方法的过程,培育初步的观看力量、抽象力量,进一步进展空间观念。

  3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的亲密联系,培育初步的数学应用意识和解决简洁实际问题的力量。

  教学预备:

  学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

  教师:课件、投影仪

  教学过程:

  一、谈话引入,提出问题

  师:同学们,你们喜爱吃水产品吗?比方:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)认真观看图中的信息,你能提出什么数学问题?

  (1:虾池的面积是多少?2:虾池是什么外形的?……)

  师:虾池是什么外形的?(平行四边形)

  师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

  二、合作探究,解决问题

  1、猜测

  师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

  师:希不盼望通过自己的探究找到这个公式?

  师:信任你们肯定能行!在探究之前,先请同学们猜测一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

  (学生独立思索)。

  师:谁来说?

  (1、我猜平行四边形的面积计算公式是“底×邻边”。我是依据长方形的面积计算公式猜的。)

  师:谁有不同想法?

  (2、我猜平行四边形的面积计算公式是“底×高”。我发觉沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

  师:现在消失两种猜测,各有各的理由,而真正的计算公式确定只有1个。我们怎么办?(验证)

  师:对!我们要逐个进展验证,看看正确的公式毕竟是什么。

  为了便利大家探究,教师为每个小组都预备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮忙。在动手验证之前,教师有几点小提示,请看屏幕:(课件出示,指名读)

  1.小组同学先争论验证的方法,再动手验证。

  2.小组成员要团结合作,合理分工。

  3.每组推选1名代表进展汇报,其他组员可以补充

  4.使用学具时留意安全,用完后装入信封。

  2、验证“底×邻边”

  师:先来验证“底×邻边”这个猜测对不对。

  比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开头。

  (学生合作,教师巡察)

  3、沟通

  师:经过大家的动手操作,信任都有答案了。哪个小组情愿先来沟通?

  (我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜测公式算出的面积是35平方厘米。所以“底×邻边”的猜测是错误的。)

  师:听明白他们小组的做法了吗?(找两人共享)感谢你们的`介绍。还有不一样的小组吗?(没有)

  师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,依据“底×邻边”的猜测公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜测是错误的。虽然这个猜测是错误的,但我们要感谢提出这个猜测的同学,由于你的猜测很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地熟悉。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用其次个信封的帮忙再来验证“底×高”这个猜测对不对。肯定要沟通好验证方法再动手操作,开头。

  4、验证“底×高”

  (学生活动,教师参加)

  5、沟通

  师:信任大家又有了新的发觉和收获。哪组先来共享你们的讨论成果?

  (1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜测是正确的。

  师评价:他们小组的这种方法怎么样?我发觉他们小组很会利用资源。刚刚知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?留意听,看看他们采纳的毕竟是什么方法。)

  (2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发觉长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展现。)

  师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

  师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。依据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

  师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简洁问题了。

  师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)

  师:我还有其次个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

  (平行四边形没有“长”和“宽”。)

  师:说的真好,我们可不能混淆了。

  三.应用公式,稳固训练

  师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

  师:假如教师再给你供应这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

  师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162023(尾))

  师:听说你们很顺当的猎取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信念迎接挑战吗?

  (出示课件:四个挑战)

  1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

  为什么?(单位:厘米图略)

  2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

  3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

  4、聪慧小屋:下列图中正方形的周长是24厘米,平行四边形的面积是多少?

  师:真不错,挑战胜利。

  四.收获平台,课外延长

  师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

  (我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

  师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进展的?

  (猜测--验证--结论。这是数学上常用的探究方法,信任你们在以后的学习中会常常使用它。这节课,同学们不仅仅学到了学问,而且把握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简洁的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间相互沟通一下。)

《平行四边形的面积》的教学设计7

  一、《课程标准》分析――确定教学目标

  《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究、合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生亲历学习过程,充分体验数学的精妙,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

  二、教材分析――确定教学的起点

  《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学习长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为学生进一步学习立体图形的表面积做准备。由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然地产生了。

  三、学情分析――确定教学的切入点

  五年级学生正处在形象思维和逻辑思维过渡的时期。他们有了一定的空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的语言和从生活中找数学,通过复习学过的长方形的面积入手,为下一步尝试探究做好准备,同时在猜测中激发学生的学习兴趣和求知欲望,及时点出课题使学生尽快地明确本节课的学习目标。

  四、精心设计教学活动过程,把握好学与导的关系

  1.创设情境,铺垫引入

  在小学数学课堂的.具体教学中,学生的思维活动是因遇到了问题且需要解决问题而引起的。学生对遇到的问题有兴趣,才有解决问题的愿望和要求,才能引起他们的积极思维。因此,在创设学习情境时要激疑引趣。

  在教学平行四边形的面积时,我设计了这样的学习情境。让学生看自己数学教材的封面,从而抽象出一个长方形,这个长方形有面积吗?是哪一个部分?怎样计算呢?自己动手测量并计算出结果。在此基础上,用这个长方形框架,捏住两个顶点,用力往外拉,得到了一个平行四边形。让学生思考:拉前与拉后发生了哪些变化?

  通过大胆猜想,动手验证(用学生已有的数方格的方法就可以),学生找到了初步的答案。接着就此提出疑问:“平行四边形的面积怎么计算?它与我们学过的长方形的面积有关吗?有什么关系?”

  2.实践操作,探索迁移

  《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”教师在数学教学活动中要充分体现这一点,发挥学生的主体作用。在教学活动过程中,教师要给学生充分的活动时间,在学生已有的知识经验基础上,始终鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样才能激发学生的积极性,激活学生的思维,让学生最大限度地参与探索新知的过程,顺利地到达目的地。在这一环节,我分了五个步骤来完成。

  (1)图形转换:面对问题,用“转化”的理念作指导,启发学生设法把所研究的图形转化为已经会计算面积的图形,以学生的自主探究与合作交流活动为主要形式,通过实践操作,把图形进行转换,渗透“转化”的思想方法。

  (2)探索联系:引导学生去主动探究所研究的图形与转化后的图形之间有什么关系。

  (3)推导公式:利用图形间的关系,找到平行四边形面积的计算方法,从文字表述到用字母表示。这样,学生在理解的基础上掌握面积的计算公式,印象深刻,思维也得到发展。

  (4)验证公式:动手测量,计算出前面我们拉出的平行四边形的面积,与数方格得出的结果进行比较,进行验证。

  (5)提问质疑:让学生阅读数学教材,把重点内容划一划,有什么疑问提出来,大家研讨解决。

  3.层层递进,拓展深化

  本节课的学习目标学生是否达成,可以通过设置算一算、选一选、画一画等问题进行检验。问题设置是为教学目标服务的,是检验教学目标是否达成的一个途径,在问题设计时应体现一定的层次性和灵活性。目的之一是夯实学生的基础,基础知识和基本技能是学生发展的根本,教学中不能淡化;另一方面让学生的思维走向深刻,着眼学生的后续发展。

  4.小结提升,画龙点睛

  通过这节课的学习,同学们有哪些收获?看来大家的收获还真不少。正像同学们说的,其实各种平面图形之间都有一定的联系,也是可以互相转化的,我们今天就是将平行四边形转化为已经学过的长方形,从而找到了计算平行四边形面积的方法。在以后的学习中,我们还将继续运用转化的方法来研究各种图形。

《平行四边形的面积》的教学设计8

  教学重点:

  平行四边形面积的推导过程.

  本课采用的教法:

  自学法、转化方法、小组合作法、实验法。

  学法:

  1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景,为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的'同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想

  三小组合作,培养学生的合作精神.

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.

  四例题独立完成,体现学生自己解决问题的能力.

  例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

《平行四边形的面积》的教学设计9

  教学目标:

  1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。

  2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

  3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)

  教学重点:

  掌握平行四边形的面积计算公式,能准确解决实际问题。

  教学难点:

  理解平行四边形面积计算公式的推导方法与过程。

  教学准备:

  两张格子纸,一张白纸,可变形的平行四边形

  教学过程:

  一、揭示课题:平行四边形(展示课件课本情景图)

  师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?

  生:平行四边形、长方形、圆形......

  师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)

  生:面积(学生回答面积后,马上追问,什么是面积?)

  师:什么是面积?

  生:面积就是一个图形所占平面的大小。

  师:那么我们学过那些图形的面积?

  生:长方形和正方形。

  师:它们的面积怎么求?

  生1:长方形的面积=长×宽

  生2:正方形的面积=边长×边长

  师板书:长方形的面积=长×宽

  师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?

  (设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)

  师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)

  二、新授

  师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)

  生:能

  师:怎么看出来?

  生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。

  生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。

  师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!

  生操作。(拿出1号方格纸,不满一格的都按照半格计算)

  师:看看同学们都是怎么数的?

  生:20个满格,8个半格,一共24个格,面积是24平方米。

  师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?

  (引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)

  猜测一下:平行四边形的面积可能与什么有关?

  生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)

  师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的`底是多少?高是是多少?

  生1:底是6米。

  生2:高是4米。

  生3:6×4=24,所以平行四边形的面积是底×高。

  师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?

  (拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。

  生操作

  出示学生的作品,介绍一下是怎么想的。

  生1:用拼的方法,拼成一个长方形,再数出面积。

  生2:也是拼,剪掉上面的拼下面,剪下面拼上面。

  师:刚才他们都用到了一个动词,是什么?(生:拼)

  师板书:拼

  生4:整块简拼,移到右边。

  师:拼的过程其实也是我们数学当中的平移的过程。

  师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。

  3、出示3号白纸,学生自己画一个平行四边形

  学生操作,小组讨论。

  (此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)

  展示学生作品

  师:这样的平行四边形要怎样计算面积呢?还能数方格吗?

  小组讨论,学生操作剪一剪,拼一拼。

  生1:不沿高剪得

  生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。

  师板书:长方形的面积=长×宽。

  师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?

  师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?

  学生讨论

  生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。

  生2:这两个图形的面积是相等的。

  师总结:验证成功,平行四边形的面积=底×高

  (汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)

  师板书:平行四边形的面积=底×高

  3、如果用字母S表示面积,a表示底,h表示高

  你会用字母表示平行四边形的面积吗?

  生:S=a×h

  利用公式来计算

  出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。

  拓展练习:

  (1)选择题:平行四边形的底是5米,高是4米,它的面积是()

  A 20米B 20平方米C 18米D 18平方米

  (2)出示图形(强调高和底是相对的)

  (3)画出一个底是3cm,高的5cm的平行四边形。

  师总结:等底等高的平行四边形面积相等,但是形状不一样。

  三、拓展探究

  1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程

  师:那么这个平行四边形在拉成长方形时面积发生改变了吗?

  学生讨论

  学生1:没有改变

  学生2:改变

  学生辩论

  师:周长一样长的平行四边形和长方形,面积不一定也一样。

  四、总结

  这节课我们学习了什么,回顾整堂课的过程。

  用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。

  预知后事,自己分晓。

  板书设计

  新面积不变平行四边形的面积=底×高

  拼数

  已学(转化)长方形的面积=长×宽

  S=a×h

《平行四边形的面积》的教学设计10

  教学内容:小学数学(人教新课标实验版)五年级上册第79~81页。

  教学目的:

  1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:平行四边形的面积的计算

  教学难点:平行四边形的面积公式的推导过程

  教具准备:课件、方格纸、平行四边形若干个

  学具准备:平行四边形四个,三角板,直尺,剪刀。

  教学过程:

  一、课件出示单元主题图

  (1),引入课题

  师:(1)从图中你发现了哪些图形?

  (2)你们会计算它们的面积吗?

  (3)从今天开始我们就来学习第5单元多边形的面积的计算,(板第5单元多边形的面积)在这个单元中包括平行四边形,三角形,梯形,及组合图形面积的计算,这节课我们先来学习平行四边形的面积的计算。(板平行四边形的面积)

  师:下面我们就以这两个花坛为例。课件出示(2)

  二:通过数方格图,初步感知

  (1)你觉得这两个花坛哪个更大一些?

  生1:

  (2)怎样比较两个花坛的大小?

  (3)你会计算的平行四边形面积吗?

  (4)用什么样的方法能计算出它的面积?

  (5)下面就用数方格的方法在小组内来试一试。课件出示(3)

  (6)最后你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形的面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  (7)根据你的发现你还能想到什么?

  三、学生动手操作,自主探究

  用数方格的方法可以得到平行四边形的面积。如果要我们计算我们学校的占地面积,这样就比较麻烦。下面我们不用数方格的方法还有没有更简便的方法呢?课件出示(4)

  自主探究,推导公式

  (组内学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。)

  请三个小组的学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件(5)(6)演示剪——平移——拼的过程。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。出示讨论题。(7)

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,课件演示(8)

  学生讨论板书出平行四边形面积公式:

  长 方 形 面 积 === 长 × 宽

  ‖ ‖ ‖

  平行四边形面积 === 底 × 高

  一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:s==a×h==a·h===ah

  师:刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边

  四:巩固新知,反馈练习。

  1、课件出示例1(9),读题理解题意。学生试做,交流作法和结果。

  2、实践应用(10)

  3、思维拓展

  (1)出示课件 (11),引导学生思考

  (2)组织学生讨论

  (3)课件演示等底等高的两个平行四边形的面积相等

  五:课堂总结:通过今天的学习,你有那些收获?还有那些遗憾的地方?

  评析:

  王彬老师这一节课的教学是在64名学生的大班中实施的,可后,听课老师的一致评价是学生学得扎实,理解的透彻,教师多媒体课件展示效果好。也曾看过上海潘晓明老师执教此课的案例,比较之后,有下列思考:

  一:大班教学中的放与收的问题

  新课程的.数学教学提出国成型目标这一概念,即让学生体验知识产生、形成的过程,强调学生自主的思考与实践。在潘晓明老师的课例中,学生直接拿出纸上印好的平行四边形,然后自己动脑筋、想办法计算出纸上平行四边形的面积,教师参与学生活动,并适时启发、引导。很显然,这样的课堂是开放的,对于每一个学生也确实是一种挑战,但潘晓明老师执教的班级只有30名学生,对于64人的大班,这样开放的问题会导致一些学生无从下手,教师的指导也必然照顾不全,再加一节课的时间有限,所以,“放”到怎样的程度,如何能照顾到全体,王彬老师的课堂设计给我们做了一个很好的示范:从生活情境中一比大小引入,在学生已有的数方格的经验中先让学生感知平行四边形的面积与底河搞有关系,为下一步的学习进行铺垫,在进一步的探索中,学生指向明显,很快通过剪拼的方法将平行四边形转化成长方形。在此过程中,有教师的引导,也有学生的独立探索与思考,很好的把握了大班教学中放与收的关系。

  二、多媒体课件演示的时效性问题

  本课的多媒体课件使用避免了当先许多老师课件使用走形式,无时效的弊病,体现了以下特点:

  1、现实情境的真实感让学生体会到数学学习的价值;

  2、生动形象的过程演示,使学生充分理解算理;

  3、丰富多彩的课后练习,拓展了学生的思路,开阔了学生的思维。

  一节好课的标准很多,如何在一节课中既落实双基,又培养能力、发展智力,同时情感、态度、价值观也得到提升,这是我们每一位教师追求的目标,可在一节课的教学中,我们很难将这些目标全部落实,但我们可以以某一方面为着眼点。王彬老师的这节课或许能给与大家更多的启发。

《平行四边形的面积》的教学设计11

  教学内容:苏教版第八册第42页“平行四边形面积的计算”

  教学目标:

  1、发现平行四边形面积的计算方法。

  2、能类推出平行四边形面积的计算公式。

  3、能准确进行平行四边形面积的计算。

  4、培养学生的动手操作、观察、分析、类推能力。

  5、渗透转化思想,培养学生的空间观念。

  教学重点:掌握平行四边形面积的计算公式,准确计算平行四边形面积。

  教学难点:平行四边形面积公式的推导过程。

  教学具准备:自剪平行四边形,作业纸,课件。

  教学过程:

  一、复习铺垫:

  1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)

  2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?

  3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)

  二、引导探索、揭示新知:

  1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答)

  有谁知道它的面积是多少?你怎么知道的?

  那不数方格,能不能也象计算长方形的`面积那样,用一个公式来计算平行四边形的面积呢?

  这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)

  2、实验操作

  (1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)

  (2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!

  (3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)

  (4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)

  3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。

  第一步画:从平行四边形一个钝角的顶点向对边作高。

  第二步剪:沿高把平行边形剪成两部分。

  第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。

  4、公式推导

  (1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?

  根据回答板书:

  长方形的面积长宽

  平行四边形的面积底高

  (2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书

  同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。

  请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。

  师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。

  5、教学字母公式

  如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:

  s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍

  三、应用公式、尝试例题

  1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?

  问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做

  (1)指名板演(其余学生做在课堂练习本上)

  (2)集体评讲

  2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?

  四、巩固练习

  同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)

  五、全课总结

  通过这堂课的学习你有什么收获?

  师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。

  六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?

  机动思考题:

  1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?

  2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?

《平行四边形的面积》的教学设计12

  一、教学目标:

  1、使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。

  2、使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。

  3、使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”与“不变”的辩证思想。

  二、教学重点:

  理解并掌握平行四边形的面积公式。

  三、教学难点:

  理解平行四边形的推导过程。

  四、教学过程:

  一、回顾导入:

  提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?

  小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。

  (一)、探究新知:

  1、教学例1。

  出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。

  讨论:数格子和移一移的方法,哪个更方便?提问:通过刚才的操作,你能说说我们是怎样比较的?

  指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是计算图形面积的一种常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)

  (设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。

  2、教学例2。

  出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。学生操作后,交流:谁愿意把自己的'操作过程说给同学听听?

  预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。

  预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移转化成长方形。

  投影演示后,追问:还有不同的剪法吗?

  比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)

  追问:为什么都要沿着平行四边形的高剪开?

  指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。

  (1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?

  (2)动手操作,然后小组讨论:

  转化成的长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?③根据长方形的面积公式,怎样求平行四边形的面积?

  (3)全班交流:你是怎样知道平行四边形的面积的?为什么说平行四边形与转化成的长方形面积相等?

  指出:从转化过程可以看出,这两个图形尽管形状变了,但面积没变。指名读表中每个平行四边形的底、高和面积,提问:根据这几组数据,你认为平行四边形的面积与它的底和高有什么关系?

  进一步指出:大家的想法究竟对不对呢,我们再做进一步研究。

  (4)分析关系,推导公式。

  提问:要求平行四边形的面积,就是求哪个图形的面积?为什么?长方形的面积公式是怎样的?它的长、宽与平行四边形的底、高有什么关系?平行四边形底与高的乘积是长方形的面积吗?也是平行四边形的面积吗?

  根据交流形成板书:因为

  长方形的面积=长×宽

  转化为平行四边形的面积=底×高

  提问:如果用S表示平行四边形的面积,a表示底,h表示高,你能用字母表示平行四边形的面积公式吗?板书:S=a×h,齐读。

  (二)、回顾:

  谁来说说我们是怎样推导平行四边形的面积公式的?你从推导过程中有什么体会?

《平行四边形的面积》的教学设计13

  教学内容:

  人教版小学《数学》五年级上册,平行四边形的面积。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

  3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重点:探索并掌握平行四边形的面积计算公式。

  教学难点:理解平行四边形的面积计算公式的推导过程。

  教学过程:

  一、巧设情境,铺垫导入

  师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

  (根据学生的回答,教师适时板书:长方形的面积=长×宽)

  师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

  师:这样一拉,形状变了,面积变了吗?

  师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?

  (平行四边形的面积等于相邻两条边的乘积)

  师:究竟这个猜想是否正确,下面我们一起来验证一下就知道了。

  请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.

  师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

  二、合作探索,迁移创造

  1、图形转换

  师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

  师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

  2、探讨联系

  师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

  师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  3、推导公式

  师:我们知道长方形的'面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

  (教师根据学生回答板书:平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  (教师根据学生回答板书:S=ah)

  4、验证公式

  师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

  师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

  师:这证明我们所推导出来的平行四边形面积公式是正确的。

  5、提问质疑

  师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

  三、层层递进,拓展深化

  1、算一算

  师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  2、选一选

  师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  3、画一画

  师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)

  4、想一想

  师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)

  师:你发现了什么规律?(引导学生理解等底等高的平行四边形

  面积相等。)

  四、总结全课,提高认识

  回顾刚才我们的学习过程,你有什么收获?

  教学反思:

  本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。

  1、前后呼应,浑然一体

  利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。

  把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。

  2、合作探索,迁移创造

  在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。

《平行四边形的面积》的教学设计14

  设计说明

  在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:

  1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。

  2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。

  3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。

  课前准备

  教师准备 PPT课件 平行四边形纸片 方格纸剪刀

  学生准备 硬纸板做的平行四边形 三角尺 剪刀

  教学过程

  ⊙创设情境,提出问题

  1.出示公园里的一块长方形空地的示意图:长10米,宽6米。

  提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?

  生:10×6=60(平方米)

  师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?

  生:数方格。

  2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。

  提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?

  3.学生回答后引入新课:这节课我们就来学平行四边形的面积。

  设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的`兴趣及积极性。

  ⊙猜想尝试,获取新知

  1.出示教材53页问题一。

  师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?

  学生讨论,猜想求这块空地面积的方法。

  预设

  生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。

  生2:把平行四边形的相邻的两边相乘。

  过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?

  2.借助方格纸数一数,比一比。

  师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?

  (1)请大家仔细观察方格纸上的两个图形,数一数。

  (2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。

  (3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?

  引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。

  提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?

  设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。

  3.推导平行四边形的面积计算公式。

  师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。

  (1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?

  释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。

  (2)师生共同总结。

  ①通过剪一剪、拼一拼,把平行四边形变成了长方形。

  ②剪拼后的长方形与原来的平行四边形相比,面积不变。

  ③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。

  (3)推导平行四边形的面积计算公式。

  长方形的面积=长×宽,得出:平行四边形的面积=底×高。

  字母公式:Sah

  (4)梳理平行四边形面积计算公式的推导方法。

  师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  (学生汇报)

  师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。

  设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。

《平行四边形的面积》的教学设计15

  教学基本

  内容苏教版小学数学五年级(上册)第12—14页例1、例2、例3,试一试,练一练及练习二。

  教学目的和要求

  1、使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。

  2、引导学生操作、观察、比较,发展学生的空间观念,使学生初步知道转化的数学思想方法。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点及难点

  正确地运用公式进行计算

  教学方法及手段

  引导学生操作、观察、比较,使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。

  学法指导

  观察,归纳,集体备课个性化修改

  预习

  1、谈话:同学们,你们认识哪些平面图形?

  2、在这些图形中,你会求哪些图形的.面积?

  教学环节设计

  1、教学例1:

  (1)出示例1中的第1组图

  提问:下面的两个图形面积是否相等?

  在小组里说一说你准备怎样比较这两个图形的面积。

  (2)出示例1中的第2组图要求:不用刚才的方法还能比较这两个图形的大小吗?

  (3)揭示课题:今天我们运用已学过的知识来研究新图形的面积计算公式。板书“平行四边形面积的计算”。

  2、教学例2:

  (1)出示一个平行四边形

  你能想办法把这个平行四边形转化成学过的图形吗?

  第一种:

  ①沿着平行四边形的高剪下左边的直角三角形。

  ②把这个三角形向右平移,到斜边重合。

  第二种:

  ①沿着平行四边形的任意一条高将其剪为两个梯形。

  ②把左侧的梯形向右平移,到斜边重合。

  (2)用课件演示转化过程并小结。

  沿着平行四边形的任意一条高剪开,通过平移,可以把平行四边形转化成一个长方形。

  (3)组织小组讨论:

  a转化后长方形的面积与原来平行四边形面积相等吗?

  b长方形的长与平行四边形的底有什么关系?

  c长方形的宽与平行四边形的高有什么关系?(4)板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  3、教学例3:

  (1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第127页上任选一个平行四边形剪下来,试一试。

  转化成的长方形平行四边形

  长宽面积底高面积

  (2)用字母表示面积公式:S=ah(板书)

  4、完成试一试,教师评议:明确求平行四边形的面积要有两个条件,底和高。

  作业

  1、完成练一练:强调底和高的对应关系。

  2、完成练习二的第1题。

  3、完成练习二的第5题。引导学生操作,得到结论。

【《平行四边形的面积》的教学设计】相关文章:

《平行四边形面积》教学设计08-15

平行四边形面积教学设计10-11

《平行四边形的面积》教学设计09-24

平行四边形的面积的教学设计03-05

平行四边形的面积教学设计08-23

平行四边形的面积教学设计12-09

平行四边形面积教学设计04-10

《平行四边形的面积》教学设计11-08

《平行四边形的面积》的教学设计11-11