初中数学说课稿范文(精选20篇)
作为一位无私奉献的人民教师,就难以避免地要准备说课稿,借助说课稿可以更好地组织教学活动。优秀的说课稿都具备一些什么特点呢?下面是小编收集整理的初中数学说课稿范文(精选20篇),欢迎阅读与收藏。

初中数学说课稿1
一、教材分析
本节课主要是在学生学习了整式乘法、多项式乘以多项式的基础上,由图形的面积引出本节課的内容。在前面一节学生已学过"平方差公式",而这一节課继续探索完全平方公式。
完全平方公式不仅在整式乘法运算中有很重要的作用,也是今后分解因式、一元二次方程解法、二次函数等有关内容的基础知识。
二、教学目标
1、使学生经历探索完全平方公式的过程,进一步发展符号感和推理能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
3、了解(a+b)2=a2+2ab+b2的几何背景,向学生渗透数形结合的思想,让学生知道数学来源于实践,培养学生对数学的兴趣。
4、培养学生能在独立思考的基础上,积极参与对数学问题的讨论,并敢于表达自己的观点,体验到解决问题的成功感。
三、教学重难点确定
推导公式(a±b)2=a2±2ab+b2和对公式的正确理解是本节課的教学重点,对完全平方公式的运用是本节課教学的难点。
四、学情分析
1、在知识掌握上,前面,学生已学过多项式乘以多项式的运算,特别是已有推导平方差公式的基础,再推导完全平方公式不是很困难。但是对于几何图形如何用代数来表示,从而表示图形的面积,学生会有一定困难,另外,在运用公式时,对公式中a、b的理解,对"和""差"符号的区别也会有些障碍。
2、我所教的班级的`学生,对数学课有一定的兴趣,爱发表见解,但是学生好动,注意力有时不集中,所以在教学中运用图形的直观形象提出问题,引发学生的兴趣,并引导学生发表见解,培养他们有条理的思考和语言的表达能力。
五、教学策略
1、学生已经有多项式乘法的基础,前面又有了推导平方差公式的经验,所以,本节课主要以观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法和师生互动式教学模式。教给学生"多观察、多思考多动手"的学习方法,教学中利用板书和例题向学生提供较多的活动机会和空间,使学生在"动脑、动口、动手"的过程中,掌握本节课的知识内容,从而培养学生独立解决问题的能力。
六、教学程序设计
㈠复习提问,引入新课。
教师首先复习提问:
1、前面我们学过了多项式乘以多项式的运算,请计算:
①(2x+3)(x-2)=
②(2x+3)(2x-3)=
找学生口述,老师板演。
2、刚才的第②小题,同学直接得出正确结果。运用了什么公式?正确表达公式的内容(让学生回答)。前面我们已经学过了平方差公式,符合这种类型的多项式乘法运算很简便,今天,我们再来学习新的公式。
引出今天的课题。
㈡教师引导,推导公式。
1、教师用幻灯片演示教科书第33页第引例,让学生观察图片,并提出问题:图片中的图形面积可分为几部分?它们都是什么图形?每部分面积是多少?整个图形面积如何表示?有几种表示方法?它们的关系是什么?让学生四人一小组进行讨论、研究,最后在班级交流,由各组推举代表,回答上面的问题,教师统一同学们的意见,确定正确的答案。
2、教师再用幻灯片演示教课书中的"想一想",分别让三个学生到黑板板书,用乘法法则计算。
①(a+b)2=(a+b)(a+b)=
②(a-b)2=(a-b)(a-b)=
③2==
其余同学在下面练习本上计算。
同学们计算出正确结果后教师总结,今天所学的公式叫做"完全平方公式",教师板书公式后,再让学生练习用语言叙述公式。
㈢熟记公式,简单运用。
1、教师根据黑板书写的公式,请同学们观察两个式子有什么特点?引导学生观察项数、次数、符号、两个公式的异同点,学生先互相讨论,然后再回答。
2、师生共同完成例1。
教师先板演第⑴小题,教师板演时先讲清哪一项是公式中的a、b,正确按公式书写,最后再化简,教师演示过后,找二个同学板书第⑵、第⑶小题,其他同学在练习本上做,教师巡回检查,纠正错误。
㈣归纳总结,练习反馈。
1、师生共同完成例1后。师生共同总结今天所学的内容,教师提出问题,可以让学生回答,回答不准确、不完整,教师给予补充。
⑴今天学习了什么公式?如何表述?
如何用图形表示(a+b)2,如何用乘法法则计算(a+b)2、(a-b)2
⑵完全平方公式有什么特点?
⑶运用公式要注意什么?
要注意公式中的a、b可代表单个数字、单个字母或代数式,要分清"两数和""两数差"的公式中中间一项符号的区别。
2、学生独立完成教材第34页随堂练习,(补充两小题),完成后,同桌两人交换检查,教师抽查,把主要错误写在黑板上,表扬做得好的同学。
㈤布置作业,课后思考。
初中数学说课稿2
今天我说课的题目是《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。
一、教材分析
1、教材的地位和作用
本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了第一章有理数,对x有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的.重点确定为:有理数概念和有理数运算,难点确定为:负数和有理数法则的理解和运用
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1、知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识。
2、过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力。
3、情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。
三、教学方法分析方法:分层次教学,讲授、练习相结合。
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。
3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
学法指导
“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
1、教学环节设计
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:
创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。
运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦。
知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入二环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、
(7)当堂检测对比反馈
(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!
初中数学说课稿3
一.教材内容分析
数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。
二.学情分析(学生情况分析)
本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。
三.教学目标
根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:
A、知识技能:
1、理解数轴概念,会画数轴。
2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
B、数学思考:
1、从直观认识到理性认识,从而建立数轴概念。
2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
C、解决问题:会利用数轴解决有关问题。
D、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。
四.重点、难点(说教学重点、难点)
本节课教学重点我确定为:数轴的概念。
因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。
本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。
因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。
教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。
五.学习方法和教学方法
1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。
根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。
2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。
“凡事预则立,不预则废”,充分的课前准备是成功的一半。
六.教学准备
老师:要充分备课,精心制作多媒体课件,准备教具
学生:要认真预习,准备直尺或三角板
七、教学过程分析
课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:
(一)、复习旧知
通过对已知知识的回顾复习,使学生更易于接受新知识。
(二)、创设情景,引入课题
为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:
观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。
学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。
接下来,我创设了这样一个情境:
在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。
前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:
再次观察所画情境图、温度计并引导学生观察、比较,将其抽象成一条直线。
这样,就把正数、0和负数用一条直线上点表示出来。
(三)、学习概念,解决问题
通过刚才的观察、比较,我引出了新课:
1)学习数轴的概念
我先进行讲解:
一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的'点表示数,当然这条直线必须满足以下三点要求:
(1)在直线上任取一个点表示数0,这个点叫做原点。
(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。
(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。
再画数轴师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。
设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。
3)在数轴上表示右边各数:
4)指出数轴上A,B,C,D各点分别表示什么数。
设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。
下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。
通过填空,老师引导学生做出课本第12页的归纳
设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力
课堂练习:
1)课本第12页的练习1、2题
2)强化练习:
(1)在数轴上标出到原点的距离小于3的整数。
(2)在数轴上标出-5和+5之间的所有的整数。
设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。
小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?
1)数轴的三要素:原点、正方向、单位长度。
2)画数轴的步骤:
1.画直线;
2.在直线上取一点作为原点;
3.确定正方向,并用箭头表示;
4.根据需要选取适当单位长度。
作业:课本第17页习题1.2第2题;学生用书同步训练
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
八、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
初中数学说课稿4
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:
两课时。本节课是第一课时,第二课时是梯形的判定及应用
(三)教学目标
1、知识与技能目标:
掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:
⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、
3、情感、态度与价值观目标:
让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四)教学重点、难点:
本节课的教学重点分成三个层次:
1、掌握梯形的定义,认识梯形的其他相关概念;
2、熟练应用等腰梯形的性质;
3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的.学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括
(六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:
1、平行四边形和梯形的区别和联系;
2、我看等腰梯形的特殊性;
3、解决梯形的常用方法。
以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形
(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、
六、有四点说明:
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。
2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写
4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。
初中数学说课稿5
一、教材分析
1、教材的地位和作用
《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。
2、学情分析
(1)说已有知识经验
学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。
(2)说学习方法和技巧
自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。
(3)说个性发展和群体提高
新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的.科学态度,使各类学生都有所收获、提高和发展。
3、教材重难点
重点:幂的乘方的推导及应用。
难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。
二、教学目标
新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:
1、知识与技能目标
(1)通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。
(2)掌握幂乘方法则。
(3)会运用法则进行有关计算。
2、过程与方法目标
(1)培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。
⑵体会具体到抽象再到具体、转化的数学思想。
3、情感、态度与价值观
体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。
三、教法与学法
教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。
学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。
教学手段:采用多媒体辅助教学。
四、教材处理
1、通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。
2、为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。
3、获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。
4、课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。
初中数学说课稿6
一、 说教材
(一)教材的地位和作用
本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,而这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。
(二)教学目标分析
根据新课标的要求和本节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,而我制定了如下三维教学目标:
1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,亦能解决一些与分式乘除有关的实际问题。
2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,这使学生在学知识的同时感受探索的乐趣和成功的体验。
(三)教学重难点
本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:
教学重点:运用分式的乘除法法则进行运算。
教学难点:分子、分母为多项式的分式乘除运算。
下面,为了讲清重点难点,使学生能达到本节课的教学目标,那么我再从教法和学法上谈谈:
二、说学情
1.学生已经学习分式基本性质、分式的约分和因式分解,要通过与分数的乘除法类比,促进知识的正迁移。
2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,而通过类比学习加快知识的学习。
三、说教法学法
(一)说教法
教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,这从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
(二)说学法
从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,再加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的`数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学"
四、说教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:
(一)提出问题,引入课题
俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1求容积的高是 ,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。(1) (2)
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则 】
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)
师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1.本节课我们学习了哪些知识?
2.在知识应用过程中需要注意什么?
3.你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题6.2 第1、2(必做) 练习册P (选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
初中数学说课稿7
各位评委:
大家好!今天我说课的题目是有理数的加法,所选用的教材为人教版7年级上册第一章第3课时,对于本节课我想做以下汇报:
一教材分析
1.地位和作用
本节课要求学生经历有理数加法法则和运算律的探索过程,理解和掌握有理数加法运算法则,并能运用加法运算律简化计算。
2.学情分析
初一年级学生学习基础较薄弱,学习能力还不够强。通过小学四则运算的学习,头脑中已形成相关计算规律,知道数都是指正整数、正分数和零等具体的数,因此学生可能会用小学的思维定势去认知、理解有理数的加法。但是学生已经知道数已经扩大到有理数,出现了负数,并且学习了数轴和绝对值,这些基础是学习新课的必备条件。为了学生能切实掌握所学知识,在教学中特别设计了反馈练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理。
3.教学目标
认知目标
(1)掌握有理数加法的法则,理解有理数加法的意义。(2)并能进行有理数加法的运算。 能力目标
①学生亲身经历探究有理数加法法则的过程,深刻理解数形结合的思想,由特殊到一般、由具体到抽象的认知规律。
②学生通过动手、发现、分类、比较类方法的'学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识。
情感目标
通过联系实际自主探究、自主观察、分类归纳有理数加法法则,能够体会到数学的应用价值;在合作学习中增强与他人的合作。
4.教学重点与难点
重点:有理数加法法则中符号的确定。
难点:异号两数相加的符号。
二、教学方法与教材处理
1.教学方法
师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初一学生的求知心理和已有的认知水平开展教学。学生通过熟悉的现实生活情景,发现有些计算方式是不够的,引发认知冲突,提出需要学习新的知识。引导学生类比探究有理数加法法则,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
2.学法引导
学法突出自主探索、研讨发现。知识是通过学生自己动口、动脑,积极思考、主动探索获得。学生在讨论、交流、合作、探究活动中总结有理数加法法则。在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性。
3.设计理念
《大纲》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。 本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比数形结合的思想、特殊与一般的辩证唯物主义观点。
三、教学过程
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:
前提诊测,复习提问: 复习旧知识的目的是对学生新课应具备的"认知前提能力"和"情感前提特征进行检测判断",所诊测的绝对值意义和数轴与新的内容有关。
提出问题,创设情景: 从实际问题引入,提出表示数量关系仅用正数表示是不够的,体现了数学源于生活。从而提出研究有理数加法的问题。
尝试指导,实施目标: 从实例出发,利用输赢球得分原理和在数轴上运动方向符号的特点,通过小组探究得出加法法则。
变式训练,巩固目标: 为了更好地理解、掌握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的例题。
(1)是整数的异号两数相加;
(2)是整数的同号两数相加;
(3)是小数和分数的异号两数相加。同时配有两个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能形成性测试,检测目标:把"反馈---调节"贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
归纳总结,纳入知识系统: 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
初中数学说课稿8
今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。
一、 教学内容
“平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行” 。
因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。
在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。
二、 教学目标
基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:
1、 让学生通过直观认识,掌握平行线的判定方法;
2、 会根据判定方法进行简单的推理并能写出简单的说理过程;
3、 运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。
同时确定本节课的重难点:
重点:在观察实验的基础上进行判定方法的概括与推导.
难点:方法的归纳、提炼;
例2教学中的辅助线的添加。
三、教学方法及手段
布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.
教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。
四、教学过程
1、 复习旧知,承前启后
如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;
在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系?
此问题旨在复习原来的知识,从而为新知识作好铺垫。
2、 创设情境、合作探究
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。
问题:如何判断一条纸带的边沿是否平行?
要求:
1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);
2、对工具使用不做限制。
对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的'时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。
最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。
⑴.推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;
其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。
⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;
而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。
⑶折的方法。
经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:
内错角相等,两条直线平行。
同旁内角互补,两直线平行。
其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。
3、 初步应用,熟悉新知
“学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。
找一找,说一说:
1.课本练习:如图,直线a,b被直线l所截,
⑴若∠1=750,∠2=750 ,则a与b平行吗?根据什么?
⑵若∠2=750,∠3=1050 ,则a与b平行吗?根据什么?
2.根据下列条件,找出图中的平行线,并说明理由:
图(1)∠1=1210,∠2=1200,∠3=1200;
图(2)∠1=1200,∠2=600,∠3=620。
对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。
例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行?并说明理由。
确定例题是难点,基于以下两点考虑:
1、 根据已有的条件与图形,无法解决问题时,要添加辅助线。
2、 将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。
因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么?这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件?当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。
4.练习反馈,巩固新知。
说一说,写一写:
1. 如图,∠1=∠2=∠3。填空:
⑴ ∵ ∠1=∠2( )
∴ ∥ ( )
⑵ ∵∠2=∠3( )
∴ ∥ ( )
2.如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。
练习的安排遵循了由浅入深的原则,让学生在观察后再动手。
说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。
因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。
附加题:
⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)?你能帮他们想想办法吗?
⑵一个合格的弯行管道,当 ∠C=600,∠B= 时,才能在经历两次拐弯后保持平行(AB∥CD)。请写出理由。
5.知识整理,归纳小结
用问题的形式引发学生思索本节课的收获
提醒学生在这两方面思考:
⑴在实验、合作、探究的过程中我们的收获……
⑵如果要判定两直线平行时,我们可以联想到……
6.布置作业 :
结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。
初中数学说课稿9
我说课的题目是选自华东师大版,八年级上册,第十四章第四节,因式分解,这是初中数学传统的经典,在新课标的理念下,重新理解它深刻的内涵。
为此,我设定说课程序是:
一、重新审视因式分解的教育价值
二、教材处理的设想
三、教学总体设计
四、教学过程概述
(一)重新审视因式分解的教育价值
传统的因式分解,是数学的工具使学生熟练掌握一些因式分解技能技巧,本来十分简单的问题演绎得十分复杂(如填数法,拆项法,凑和法,十字相乘法)
新课程把因式分解作为培养学生逆向思维,全面思考,灵活解决矛盾的载体。为此,淡化理论。简化难题,紧紧掌握最基本的教学方法(提取公因式法和公式法)即可。这是新课程体现教育价值最明显的变化。为此,在学生思维方法和对世上的事,要正,反两方面认识上下功夫,是这节课的重要所在。
通过整式乘法与因式分解互为逆向变换,使学生澄清这种逆是反过来的变换,不是逆运算—是教学的难点(逆运算,是在一个算式中,以两种形式不同实质不变的两种运算,而因式分解是一种恒等变换的两种说法)
为实现本节课的教育价值,在教学目标的确定上,重点考虑我的学生理解能力弱,善于模仿,满足于一知半解,我确定:
1、知识的能力目标:理解因式分解的意义,掌握提取公因式法和公式法,激发学生学习兴趣,培养学生创编因式分解题目的能力
2、方法与过程目标:采用自学自练的方法,逐见打开学生思维的大门,学会两分法看问题,体验知识发生过程就是学生思维发展的全过程
3、情感态度与价值观:通过情境教学,使学生在参与中激发学习情感,关注每一个学生的思维变化,鼓励成功全面体现学生的价值观,使学生满腔热忱,科学积极的态度,投入本节课的学习
(二)教材处理设想
我以我是教学资源的开发者的身份,重新组织教学内容,增加教学情境的创设,明确目的与动机,用实际问题是学生体验到这节内容的价值(见教学过程)
(三)教学总体设计
教学总体框架:教师设计生活中的实际问题,使学生在问题情境中展开思考→通过揭示因式分解的概念学习因式分解的意义→学生实践探索,发现提取公因式和公式法→熟练运用这种方法解题,发展学生的理性思维→通过学生的编题活动,培养学生思维创造性。
教学的主体是概念与方法20分钟训练上主题部分由学生自主探索,合作学习。
(四)教学过程概述
教学环节一:创设情境:“去过本溪吗?”“本溪的著名矿产是什么?”〈铁矿〉本溪歪头山的`铁矿石,每吨含铁75%,采矿工人第一天采矿石203吨,那么,第一天矿石含铁多少?(75%×203)第二天采矿石198吨含铁(75%×198)第三天采矿216吨,含铁(75%×216)现将这三天采矿石的含铁量总数用代数式表示:75%×203+75%×198+75%×216,还可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采矿数就有ax+ay+az=a(x+y+z)
通过此例,揭示因式分解的概念:把一个多项式化成几个整式积的形式,就是因式分解,结合ax+ay+az=a(x+y+z)揭示,这种方法叫提取公因式法“正好相反”通过讨论,认识到整式乘法与因式分解不是逆运算,而是互逆变换,从而突破了教学难点,实现了教学的第一目标
教学环节二:思维在探索中展开:教学中,抓住“反过来”让学生从思维的逆向考虑,如何分解因式,这里在学生完成
a(x+y+z)=ax+ay+az的基础上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
(制课件)
整式乘法因式分解
原型单项式与多项式、多项式与多项式相乘单项式与单项式、单项式与多项式、多项式与多项式相加
结果多项式因式乘积
范围都能完成不能完成:3ab+5ac+7mn
在学生的实践过程中,认识到多项式的因式分解是有条件限制的,不是所有的多项式都能因式分解。因此,会观察,判断,十分重要。
教学环节三:思维在展开教学中定势:本节课重点,掌握1、提取公因式法2、公式法对于这一新知识点,学生感到陌生,必须先使他们头脑中牢记,这就是先形成的思维定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特点:1两项式2平方3异号
教学环节四:思维在编题中创新:学生在认识整式乘法与因式分解的关系后,就不难编出很多因式分解的题目来(要求编题中,简单,明了,易解)
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习情感,态度的价值观上发生深刻的变化。
初中数学说课稿10
[说教材]
一、教材分析
(一)、教材地位作用:《正方形的判定》是华东师大版义务教育实验教材数学八年级(下册)第20章第4节的内容,本节课注重新旧知识的联系与类比,注重图形的分析、判别;在学生学习了平行四边形、距形、菱形的判定之后,接触正方形的性质的基础上,引入了正方形的判定,这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形的判定进行综合的不可缺少的重要环节。
(二)、教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识目标:
1、掌握正方形的判定方法。
2、运用正方形的判定方法解决问题。
能力目标:
1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力,让其逻辑推理能力有进一步的提升。
2、灵活应用正方形的判定,培养学生的思维能力。
情感目标:通过对平行四边形、距形、菱形等判定方法的类比,进一步领悟类比的思想方法和数形结合的思想。
(三)教学重点与难点:根据数学课程标准的要求,结合学生的实际特点,确定教学的重点与难点:
重点:正方形的判定方法。
难点:正方形判定方法的应用。
(充分运用多媒体教学手锻,并把课件设置为比较生动、有趣容、易懂的动画,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直到布置作业,突出主线,层层深入,逐一突破重难点。)
[说学生]
二、学情分析:
初二学生经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。但我教了几年的数学中发现一些很严重的问题,也就是我最头痛的问题,学生很怕做几何题,特别是证明题,具体有两种情况:“不会看也不会写”、“会看但写不出来”,即文字表述无法用几何语言来表示,逻辑推理过程混乱。
[说教学法]
三、教法选择:
本节课的.内容虽然不多,但是前三节课内容平行四边形、菱形、矩形的判定进行综合,对学生的逆向思维与推理能力要求比较高,针对本班的学生的知识结构和心理特征,因此我采用了多媒体辅助教学,运用了“情境引入、动手操作、合作交流、引导提问、归纳论证、深化巩固”的启发式教学方法。教学中,引导学生经历“提出假设——操作验证——推理论证”的过程,充分感受教学思维的特点,进一步提高逻辑推理的能力,增强探索新知识的兴趣。
四、学法指导:
结合本课内容特点和新课标精神,学生在学习中发挥主体作用。采取“假设、操作、观察、思考、讨论、论证、类比、应用”的探究式学习方法,在掌握新知识的同时,培养大胆猜想、独立思考、合作交流、勇于探索的良好习惯,提高操作观察能力和逻辑思维水平。
[说教学过程]
五、教学过程:
根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:
六、教学评价
本节课是我前几天刚上的内容,在教学设计上,我依据教材、《课标》及学生实际情况,坚持了以学生为中心的教学思想,运用了引导启发式的教学方法,教学内容的组织考虑了逻辑顺序与心理顺序的结合、知识学习与技能人格发展的统一,取得较好的效果。但还有一部分的学生在课堂上已掌握,但过几天后就忘记了,这些学生都存在很多问题,如少练、厌学的现象。所以在以后的教学工作中还要努力改进。
初中数学说课稿11
一、教学内容与学情分析
本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础,关于二次根式在《数学课程标准》中提出要求:
1、了解二次根式的概念及其加、减、乘、除运算法则;会用它们进行有关实数的简单四则运算(不要求分母有理化);
在本章内容新授过程中,老师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。彻底地贯彻课程标准所提出的要求,完成九年级学生应完成的任务。
2、本课知识点与前后知识点的联系
本课内容是综合性复习,所讲知识点学生基本都熟悉,只不过是没有真正的理解透彻,甚至有些学生可能都已经有部分渐渐淡忘。本节内容的教学其实从本质上讲就是为学生理清知识点,建立一个完整的知识体系与结构。把已学知识系统、全面地呈现在学生的面前,同时也是为了让学生能够对二次根式的理解与运算真正落实到位作出努力。
其实,本课内容的教学不单单是为了复习巩固,更重要的是让学生对本章的知识在初中数学教材中明确地位与作用,让学生感受本章知识的重要性,为即将学习后面的知识做好铺垫工作。
3、学生已有的知识基础
由于新课内容结束离综合性复习时间较长,可以说大多数学生对本章的知识并不是非常熟悉,但学生已具备的知识基础从理论上讲应该是完全具备的,只不过需要一个回顾的过程。同时,随着知识面的拓广以及一些章节中对二次根式的应用,逐步让学生对二次根式这一章的内容也有了更多的认识。在复习时,学生应该说还是很易于接受的。
4、学生学习新知的障碍
在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。本节教学内容的新知并不是真正的"新的知识点、新的知识技能、新的知识能力",而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。这也正是学生在这方面的缺憾,需要老师的有效引导与分析。这更是学生的主要障碍。
二、目标的设定及重难点
1、目标的准确与完整
知识目标:
(1)能够有效回顾本章的重要基础知识;
(2)二次根式的计算与化简;
情感目标:
(1)对章节内容的总体把握,全面分析;
(2)体会对问题的解决办法的优化处理;
能力目标:
(1)提高学生善于处理问题的能力;
(2)培养学生构建知识体系,形成知识系统的能力;
2、重点、难点确立及依据
二次根式的计算与化简是新授时的重点,更也是复习课上的重点。前面的公式、运算法则等都是为了这些计算与化简服务的,学生真正体现所学的基础知识应就是在解决这些问题上。故此,本课教学内容的重点设定为:
二次根式的计算与化简;
伴随着重点内容的出现,学生的问题也得以体现。要熟练地解决二次根式的计算与化简问题,需要学生真正理解所要求的基础知识,并灵活的运用基础知识解决问题。继而重新回归到重点内容上。然而这些都是学生的困难之处。也就是说本课的重点内容就是难点内容。
3、重、难点突破方法
本课内容的重点也就是难点,突破的方法都在于如何有效地理解二次根式的模型,以及如何运用基础的知识去解决较为复杂的问题。而这些都在基础的回顾上让学生得以重新的认识,所以,突破的方法之一就来源于学生对已学知识的掌握程度,另外,通过对比以前所学的知识可以让学生进行方法的探索以及能力的培养,这正是重难点突破的`方法之二。
三、教法设计
自主复习基础知识(整理知识点)、复习测评→→合作探究→→达标训练→堂清检测四。学法设计
1、学生学习本课知识应采取的方法
由于本课是复习课,更多的情况之下学生参与课堂的比例很大。所以,在课堂上,学生学生应积极参与课堂,通过对比新授与复习之间的不同,在课堂上形成新的认识,老师更是注重对学生系统分析问题的能力的培养。
2、培养学生能力采用的方法
复习课是对学生所学知识的一个升华的阶段,在本节课上应着重关注前后学习方法,问题的思考方式的对比,让学生主动的讲,主动的暴露更多的问题才能让学生获得真正的技能,真正的提高学生的能力。
3、学生主题作用体现的方法与手段
合作交流(师生交流、生生交流)是解决本课内容所采取的一个必要环节,敢于质疑更是解决本课内容的关键所在。在整个教学中学生的主体地位得到进一步的确立,老师只是通过问题的形式以及组织课堂活动的形式将学生的思维联系在一起,而学生在课堂上无疑是一个真正的主宰者。
五、教学过程
①基础回顾与测评:将本章的基础知识都以一些常见的基础问题的形式展现,便于学生理解更便于学生对二次根式的模型的真正理解;
②整理知识点:一个问题整理一个知识点,让学生能对号入座,便于掌握与分析;
③合作探究:对本章中典型的计算与化简进行专门的探究讲解,突出重点,突破难点;
④达标训练:对所复习的知识点进行巩固训练,已达到进一步掌握;
⑤堂清检测:针对不同的学生,不同的问题进行不同的检测,以确定其对本章所学知识的掌握情况,达到实现面向全体教学的目标;
五、作业设计
1、作业设计目标
根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于A类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;
2、难易梯度和针对性
学生学习新知掌握的程度不同,对新知进行训练的要求就不同。然而,作业的目的都应针对本课内容的教学,故本课作业应完成课后第1~5题。第1、2题是一个基础性的问题,学生大体上应能解决。而第3~5题是与本课教学相对应的相关程度的问题,A类的学生应能较好的解决,B类学生则要求积极的尝试。
初中数学说课稿12
一、说教材
1、教材的地位与作用
等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点
本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。
二、说教学目标
1、学情分析
我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。
2、三维目标
根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征 ,我制定如下目标:
知识与技能目标:
了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。
过程与方法目标:
通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。
情感态度与价值观目标:
通过对等腰三角形的'观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人. 感受合作交流带来的成功感,树立自信心.
三、说教法与学法
1、教法
根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。
2、学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。
四、说教学流程
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。
(一)创设情境,激发兴趣。
1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形? (等腰三角形、四边形、梯形)
2、四幅图中都有哪种几何图形?(等腰三角形)
(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)
ァ(二) 观察实物,形成概念。
活动1:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。
接着,我利用电脑演示等腰三角形定义的数学语言表达方式。
(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)
初中数学说课稿13
一、教材分析
本章的主要内容是单项式、多项式、整式的有关概念,合并同类项、去括号法则、整式的加减运算。这些知识是以后学习分式、根式运算以及函数等知识的基础。同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。
这节课作为本章起始课显得很重要,核心概念是单项式与多项式,及由此归纳出的整式的的概念。这也是本节课教学重点。通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性。
二、学情分析
在小学和前两课时,已经学习了用字母表示数、列代数式表示现实世界中简单的数量关系,学生已经对整式具有了一定的感性认识。但在学习本课重点----单项式的概念、系数和次数,理解多项式的.概念和正确确定多项式的次数和项数这些新出现的概念与名词时特别要处理好本课教学难点:
①系数是负数、分数、±1或含有π时的情形。
②多项式的次数和项的次数混淆。
三、教学目标设计。
知识技能目标:
(1)理解并掌握单项式的概念、系数和次数;
(2)理解并掌握多项式的概念和正确确定多项式的次数和项数;
过程方法目标:通过小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
情感态度目标:培养学生的自学能力和乐于探索、勇于创新的科学精神。
四、课堂结构设计。
本节课堂教学采用“问题—探究—应用—拓展—提高”课堂结构,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
五、教学媒体设计。
①多媒体辅助教学②小组合作讨论式教学两种方式。
六、教学过程设计。
(1)引入
多媒体展示一组都是数字与字母的乘积的思考题,学生独立思考完成。完成后请学生汇报,然后确认并板书:引导学生一同分析上述各式子,指出各式的共同点。
(2)归纳出单项式的概念
提出“单项式”的概念,并举例说明系数、次数的概念。这是本课第一个重点内容。
通过一组练习帮助学生学会识别单项式以及单项式的系数与次数,特别弄清负数做系数,强调系数包括前面的符号。还要弄清只含有字母因数的单项式的系数是1或-1,系数1常省略。
(3)通过一组思考练习题归纳出“多项式”的概念
从单项式到多项式的概念提出,是一个从特殊到一般的一个过程,也有一个类比的思想。多项式也是一个重点内容,指出共同点,着重指明多项式是几个单项式的和。
(4)通过一组练习题识别多项式及多项式的项与次数,帮助学生掌握多项式有关的概念。
(5)归纳出“整式”的概念。
设计一个小练习,给出若干代数式,让学生把判断哪些是多项式。既加深对单项式、多项式概念的掌握,同时归纳出整式的概念。
(6)巩固练习
设计一组综合练习题,巩固单项式、多项式和整式的概念
(7)拓展提高
加深对概念的掌握,并能够应用概念解决相关问题
(8)课堂小结
引导学生小组间进行民主小结,本课学到哪些知识?
(9)当堂反馈
设计一组涵盖本课主要内容的检测题,时间5分钟。检测题要充分体现本课的重点与难点。
初中数学说课稿14
尊敬的各位考官:
大家好,我是今天的X号考生,今天我说课的题目是《平方根》的第一课时内容:算术平方根。新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教版初中数学七年级下册第六章第一节内容《平方根》。算术平方根的概念和性质的教学是对无理数的认识,数域从有理数到实数范围扩充的一个前提,也是之后学习二次根式及其运算的一个基础,在整个代数学习中有举足轻重的作用。
二、说学情
接下来谈谈学生的实际情况。七年级的学生已经有着良好的学习习惯,上课时能积极的思考,主动、创造性的学习,而且各个方面都已经发展的比较完善,具备了一定的分析问题能力和解决问题的经验,对于教学相对比较顺畅。所以教学中,尽量将课堂交给学生。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
(二)过程与方法
经历算术平方根概念的形成过程和求完全平方数的算术平方根的过程,发展数感。
(三)情感、态度与价值观
锻炼克服困难的意志,建立学习数学的信心,提高学习热情。
四、说教学重难点
我认为一节好的数学课,从教学内容上一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。根据授课内容可以确定本节课的教学重点是:算术平方根的.概念和求法。教学难点是:算术平方根的概念和求法。
五、说教法和学法
数学教学要让学生亲身经历数学知识的形成过程,学生通过教学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我始终以学生为本,以学生为立足点,借助多媒体,引导学生观察、探究,充分调动学生学习的积极性,并创设情境,给学生机会去自主探究,把课堂还给学生。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节,我将采用创设情境的导入方法。讲述教材中给到的问题:美术比赛需要剪裁画布的情境,并请学生帮助小鸥同学解决画布边长的问题。由于学生之前已经掌握了乘法口诀表以内的完全平方数,根据正方形的面积和边长之间的关系,学生可以解决这个问题。由此我会继续提问:为什么是这样呢?引发学生思考从而导入课题。
设计意图:通过创设情境的导入方式,将生活中的问题放到数学课堂上来,激发学生的学习兴趣,请学生帮助解决问题可以有效建立学生学习的信心,最后通过提问引发学生思考,有效引入课题。
(二)讲解新知
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组讨论法等。
首先我会提问:请说一说,你是怎样算出画布的边长等于5dm的呢?学生已经掌握了乘法口诀表内的完全平方数,而且也知道正方形面积和边长的关系,所以对于这个问题,学生可以解决,我预设学生会根据这两个知识点解释为何画布的边长等于5。
接着为了多一些观察的数字,我会组织学生完成已知正方形面积求正方形边长的表格的填写。完成表格填写之后,我会引导学生观察表格中的数字特点,并提问:填写这个表格的过程是一个已知什么求什么的过程?并组织学生小组讨论,然后请小组派代表回答。通过讨论学生能够发现:边长和面积的关系实际上就是已知一个正数的平方,求这个正数的问题。然后基于此,我会进行总结,总结内容包括算术平方根的概念,被开方数的概念,以及算术平方根的写法和读法。
接着告诉学生0的算术平方根是0,并提出问题:负数有算数平方根吗?为什么?由此引发学生思考,这个问题比较简单,学生能够知道一个数的平方不可能是负数,所以负数没有算术平方根。
至此学生已经知道了算术平方根的概念。接着我会出一道例题,检验学习成果,也加强学生对算术平方根的理解与记忆。请学生求下列个数的算术平方根,分别是100、1、49/64、0.0001,并请学生说一说过程。通过求解完全平方数的算术平方根,我会引导学生观察上述计算过程和结果,并通过问题“被开方数的大小与对应的算术平方根的大小之间有什么关系呢?”引导学生去思考,然后师生共同总结:对所有正数,被开方数越大,对应的算术平方根也越大。
至此,本节课要讲的新知内容已经在师生共同配合下学习完毕。
在新知过程中,我通过让学生观察多组完全平方数及其算术平方根,引导学生共同得出算术平方根的概念及其相关知识,让学生经历了知识的形成过程,而且在观察的过程中组织学生小组讨论,说一说他们观察到的特点,锻炼了学生的观察能力、合作交流能力以及语言表达能力,体现了以学生为主体的教学理念。
(三)课堂练习
接下来是巩固提高环节。我设置了几道判断题,请学生判断对错。包括:5是25的算术平方根;-6是36的算术平方根;0的算术平方根是0;0.01是0.1的算术平方根;-3是-9的算术平方根等。通过这样的问题的设置,让学生对算术平方根的知识进一步巩固,为后面开平方奠定基础。
(四)小结作业
最后是小结作业环节,我会提问学生今天有什么收获?
课后作业是教科书6.1习题第1、2题。
这样的总结方式不仅能够提高学生的总结概括能力,还能够便于我进一步掌握学生本节课的学习情况。
七、说板书设计
我的板书设计遵循简洁明了的原则,突出了本节课的重点部分。
初中数学说课稿15
一、教材分析
1、从教材的地位与作用看:
⑴本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用。 ⑵它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;
⑶是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例。
⑷它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野。更是今后学习因式公解、分式运算及其它代数式变形的重要基础。
2、从学生学习过程的角度看:
⑴ 学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构;
⑵ 由于学生初次学习乘法公式,认清公式结构并不容易,因此,教学时不可拔高要求,追求一步到位;
⑶ 学生在本节课学习过程中出现的错误,迸发出的思维火花、情感都是本节课较好的教学资源。
3、教学目标分析
(1)知识与技能
1、经历探索平方差公式的过程、
2、会推导平方差公式,并能运用公式进行简单的运算、
(2)过程与方法
1、在探索平方差公式的过程中,培养符号感和推理能力、
2、培养学生观察、归纳、概括的.能力、
3、情感与价值观要求
在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美、
让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战、勇于探索的精神和善于观察、大胆创新的思维品质。
教学重点
平方差公式的推导和应用、
教学难点
理解平方差公式的结构特征,灵活应用平方差公式、
教学关键:“认清结构,找准a、b”。
二、教学程序分析
教学流程安排:
活动1:创设情境 激趣引入
活动2:自主探究 归纳发现
活动3:解释运用 解决问题
活动4:反馈练习 拓展应用
活动5:反思小结 布置作业
三、教法学法分析
1、学情透视:
(1)有利因素:
学生已经具备了导出平方差公式的知识与技能;同时,有了对整式运算“快”,“准”的积极心理;
学生独立探索,合作交流的习惯正逐渐养成。
(2)不利因素:
两个多项式相乘的形式复杂多变,学生较易被假象所迷惑;
部分学生对多项式相乘还不够熟练和细心,学生学习能力也参差不齐。
2、学法指导:对于数与代数的学习来说,重要的是让学生学会探究模式、发现规律、而不是死记结论,死套公式和法则。[]只有经过自己的探索,才能不仅“知其然”,而且知其“所以然“,才能真正获得知识,懂得公式的意义,掌握公式的应用。而且通过探究公式的活动,可以提高探索能力,也有利于掌握数与代数的运算和规律。因此通过创设“速算”的情境来激发学生的探究兴趣。
(1)自主探究:指导学生认真思考,细心观察,大胆发现得出平方差公式,学会探索,学会学习。遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中
(2)合作交流: 有学生之间的交流,也有师生之间的交流,在课堂中构建和谐,民主的气氛。
3、教学构思:
(1)教学方法:我采用的是探究性学习教学模式,利用多项式的乘法,探索归纳出平方差公式,领会a,b 的含义,从操作活动中探索公式的几何背景,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学合作交流、反思等,构建对知识的形成和运用。这样不仅能够理解、归纳平方差公式的特点,而且充分感受到数学演绎的过程和数学知识的整体性,学会进行有条理的表达。使教法、学法和谐统一,形成由感性到理性认知过程,促进学生全面发展。
(2)教学手段:利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率
四、设计说明与思考
《新课程标准》中明确指出:“数学教学是数学活动的教学,学生数学学习的主人。教师的职责在于向学生提供从事数学活动家机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学设计时,以课标理念为指导思想,以多媒体教学课件为辅助手段,突出对平方差公式的推导和应用。自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生的有效学习。
在教学活动的组织中始终注意:
(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,更好地使用教科书,创设问题情境。
(2)探究是一个活动过程也是学生的思维过程,对学生的发展来说是最重要的。在对比中学,在对比中用,在对比中再进行比较,从基本类型的题目到变化多端的题目,从单一题型到复杂题型,从式中的位置、符号、系数、指数、项数等逐一对比,引导学生多角度思考问题,抓住公式、法则的实质,达到运用自如的效果。让学生认知内化,形成能力。
(3)促进学生发展是活动的目的。数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点。因此,本节课组织上活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。
我紧紧抓住这节课的教学重点:平方差公式的推导和应用;突破一个难点:理解平方差公式的结构特征,灵活应用平方差公式,注意符号问题;在例题教学中,让学生深刻理解这节课的关键:识别完全相同的项a和互为相反数b;精心选择练习题,培养学生熟练运用公式能力,尽量满足不同层次学生的要求。
通过这节课我认为今后的教学还需要备好学生、备好教材(要深挖),设计好自己的教案,注重学生的主体地位,渗透数学想方法,把握好知识的发生过程,不是机械的记忆,简单的叠加,而要做到理解的基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。
初中数学说课稿16
一、本课数学内容的本质、地位、作用分析:
《从问题到方程》是苏科版数学教材七年级上册第四章第一节的内容。
方程是中学数学的重要内容,方程思想也是中学数学的重要思想之一。这节课设计的主要意图是想让学生意识到方程的出现是源于解决实际问题的需要,是刻画现实世界的有效的数学模型,为后面解一元一次方程以及用一元一次方程解决实际问题作铺垫,是后续学习的基础。从数学学科本身来看,方程是代数学的核心内容;从数学教学来看,它对于培养学生运用数学解决实际问题的应用意识、提高解决实际问题的能力和体现数学的应用价值都具有重要的作用和意义。
二、教学目标分析:
1、知识与能力目标:
①探索实际问题中的相等关系,并用方程描述;通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。
②在学生根据问题寻找相等关系并根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。
2、过程与方法目标:
让学生经历将一些实际问题抽象为方程问题的过程。经历运用数学符号和图形描述现实世界的过程。
3、情感态度与价值观目标:
①通过对多种实际问题的分析,培养学生克服困难的意志品质。
②体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
4、教学重点、难点:
重点:
1、理解题意,寻求数量间的相等关系并列出方程。
2、让学生初步感受方程是解决问题的方法。
难点:寻找实际问题中的相等关系。
三、教学问题诊断:
我设计了以下四个环节来完成教学的。
在(一)“体验问题,感受方程魅力”环节中,我现场用学生的年龄和老师的年龄编题,并设置了两个问题:
问题(1):算老师的年龄,激发了学生的好奇心,借此拉近老师和学生情感上的距离,激发学生学习兴趣。
问题(2):没有立刻解决,而是设置了一个悬念,激发学生的学习热情。引出了本课课题:从问题到方程!
最后通过天平的动画演示让学生感受方程是表达数量之间相等关系的“天平”,让学生对方程有直观的感受。
在(二)“解剖问题,建立方程模型”环节中,我也设计了两个问题:
问题一:排球联赛的题目:
这道题目是以问题串的形式呈现,从最简单的问题入手,不急于告诉学生是用方程来解决问题,而是由易到难,让学生逐步体会方程解法的优越性。
关于学生对问题(3)的解答,我预设了两种情况:
1、如果学生只会用算术方法,就继续让学生思考能否只列一个式子就能把问题解决,再进一步引导学生找出实际问题中的相等关系列出方程。
2、如果有个别学生用方程解法,就因势利导,让他和算术方法比较,感受方程解法在解决这个问题时更简便,体会方程解法的优越。
排球联赛的问题主要是让学生感到用算术方法解决复杂问题时的困难,体会方程解法的优越。
问题二:试一试的题目:
这是一开始上课时设置的疑问,通过对前一个问题的剖析,让学生尝试用方程来解决刚才设置年龄问题的悬念,体会到用方程方法解决这个问题简单易懂。同时师生共同归纳出用方程解决问题的几个关键步骤,为下面的教学做了铺垫。
在(三)“探究问题,领悟方程内涵”环节中,我设计一道有关气温变化的题目。用白居易的诗句“人间四月芳菲尽,山寺桃花始盛开”引出,让学生感受生活中处处有数学,数学离不开生活。我的.预设如下:
1、这题由学生独立完成。学生在分析问题、寻找相等关系时,可能思路不同,得出的相等关系不同,从而所列方程也不同。只要是正确的,我都会加以鼓励,让学生都能体验成功的喜悦。
2、这里有一个难点就是如何理解“海拔每升高100m,气温下降0.60度”。我利用动画演示当海拔升高100米、升高200米、…升高xm时气温下降高度的变化,从而分化难点。
3、师生通过引导学生归纳总结从问题到方程的一般步骤,培养学生归纳概括的能力。为后面用方程解决问题埋下伏笔。
在(四)“运用模型,实践方程作用”环节中,我设计了两个问题让学生独立完成,实践方程作用。
学生可能会直接列方程而没有设出未知数,也可能在间接设未知数时不知道选择最简便的方法。所以本环节一方面培养学生运用知识解决问题的能力,另一方面规范解题格式,巩固所学内容。同时使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力,再次感受数学源于生活。
在学习感悟的环节中,主要让学生围绕两个问题谈谈自己在这节课中的收获。目的是明确知识,培养抽象概括能力,提高学生的思维水平。
最后以数学大师笛卡尔的名言小结,“夸大”方程的作用,在学生心目中产生名人效应,对今后方程的学习与应用更加充满兴趣,同时提高了学生的数学文化素养。
四、本节课的教法特点以及预期效果分析
本节课主要采用师生共同探究学习法进行教学,由教师引导,学生自主探索、观察、归纳。在教学设计中,以生活中的实际问题为例来创设情境,引导学生关注身边的事。在课堂上努力营造一种学生自主探究的氛围,引导学生去分析思考和归纳总结,进而达到对知识的“发现”和接受的目的。有意识地给学生创造一个欣赏数学、探索数学的平台,渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想。利用多媒体和动感天平演示来辅助教学,充分调动学生的积极性。
在教学过程中我主要在以下几个方面做了新的尝试:
1、体现学生的主体意识。本设计中,教师始终把学生放在主体的地位,让学生通过对列算式与列方程这两种主要方法进行比较,分别归纳出它们的特点,让学生感受到从算术方法到代数方法是数学的进步,让学生通过合作与交流,得出同一个问题的不同解答方法,让学生对本节课的学习内容、方法、注意点等进行归纳。
2、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系、设未知数及作业的布置等环节中,让学生展示不同层次的思维活动,经历合作探究新知的过程。
3、渗透方程建模的思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
初中数学说课稿17
一。教材分析
1.教材的地位和作用
这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2.教学目标和要求
(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。
3.教学重点:对二次函数概念的理解。
4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
二。教法学法设计
1.从创设情境入手,通过知识再现,孕伏教学过程。
2.从同学们活动出发,通过以旧引新,顺势教学过程。
3.利用探索、研究手段,通过思维深入,领悟教学过程。
三。教学过程
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?
解:s=πr?(r>0)
例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)?
=100(x?+2x+1)
= 100x?+200x+100(0
教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的'最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3.为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5.b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。
【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)?+1
(2)s=3-2t?
(3)y=(x+3)?- x?
(4) s=10πr?
(5) y=2?+2x
(6)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm.
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。
【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。
四。教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以同学们为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
初中数学说课稿18
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。
充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。
数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境—提出问题、自主探究、合作交流、反思评价、巩固练习、总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的'学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意
识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea———Class纯软多媒体教学网几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生
增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式
方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的
能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用
知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美—激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16、1分式和16、2分式的运算时,几乎每一节课都运用类比的思想—分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:
一、拓展内容要与所学内容有有机联系。
二、拓展内容要符合学生实际认知水平,不要任意拔高。
三、拓展内容要适量,不要信息过载。
活动3:讲练结合,分析增根
活动5:布置作业,深化巩固(略)
初中数学说课稿19
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的`减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
四、过程分析:
教学环节
教 学 活 动 设 计
设 计 说 明
创设情境
自然引入
1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。
初中数学说课稿20
【教材分析】
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
【教学目标】
1.使学生理解单项式乘法法则,会进行单项式的乘法运算。
2.通过单项式乘法法则的推导,发展学生的逻辑思维能力。
【教学重点难点】
重点:掌握单项式乘法法则。(这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:多种运算法则的综合运用(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
【教学方法】
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的.单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
【教学过程】
本节课的教学过程主要包括以下五个环节:1、 创设问题情境 2、新课学习 3、反馈练习 4、小结 5、作业布置。
(1) 创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题1、问题2的设置进而明确本节课的学习内容。
(2) 新课学习
新课学习包括单项式乘法法则的推导和例题讲解。
① 单项式乘法法则的推导
由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。
在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。
② 例题讲解
本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
例 1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。
在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。
(3) 反馈练习
根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。
(4) 小结
本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。
(5) 布置作业
数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。
【教学评价、反馈措施】
本节课采用了不同的反馈手段和较多的反馈练习。
1、设计分段练习。例如练习一-------练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。
2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。
3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。
【初中数学说课稿】相关文章:
初中数学说课稿03-23
初中数学《圆》说课稿03-19
初中数学说课稿06-24
初中数学函数的说课稿06-25
初中数学数轴说课稿09-14
初中数学说课稿05-11
数学说课稿初中06-07
初中数学说课稿10-18
初中数学《梯形》说课稿07-06
初中数学面试说课稿11-03