《方程的意义》说课稿

时间:2023-02-28 07:02:55 说课稿 我要投稿

《方程的意义》说课稿(精选9篇)

  作为一名教学工作者,时常需要编写说课稿,是说课取得成功的前提。那么应当如何写说课稿呢?以下是小编为大家收集的《方程的意义》说课稿,希望能够帮助到大家。

《方程的意义》说课稿(精选9篇)

  《方程的意义》说课稿 篇1

  各位评委老师大家好,我说课的内容是《方程的意义》

  一、 教材分析

  《方程的意义》是人教版五年级第九册第四单元第2节解简易方程的第一课时,这部分知识是在学生已经学会了用字母表示数的基础上进行学习的,方程在小学乃至初中整个学习过程中,都具有非常重要的地位。“方程的意义”这一节内容是学习其他方程知识的基础。对后面的学习有很重要的促进作用,有助于培养学生的抽象概括能力。

  二、 教学目标

  在认真分析了教材的地位和作用的基础上,根据教材特点和课标要求,我拟定了本科的教学目标是:1、使学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。2、初步理解等式的基本性质。3、学生在对式子的观察和比较中,培养学生分析、比较、归纳、概括、创新等能力。

  基于以上对教材的分析和教学目标的确立,结合学生的认知规律和已有知识经验,我认为本课的教学重点是:初步理解方程的意义,能判别一个式子是不是方程。教学难点是:通过观察和比较,培养学生的归纳、概括的能力。

  三、 教法学法

  根据本课教学过程的预设,并结合学生已有的知识经验,充分创设丰富的教学情境,课堂教学先后采用演示、实践等教学方法,尽量为学生创造一个宽松、自主、平等、愉悦的学习氛围,学生在充满趣味性、挑战性的各种数学情境中,充满自信,自主探究、合作交流的学习。所以本课的动手实践、合作探索,小组学习作为本课的学生学习的主要方式。既激发了学生的学习兴趣,提高了学习积极性,增强了学习的自信心,又掌握了所学基本知识,锻炼了学生的思维,培养了学生的创新等能力。

  四、 说学生

  五年级的学生好奇心强,求知欲旺盛,喜欢动手操作,但由于年龄所限,有的同学比较和概括能力还有待加强。

  五、 说教学过程

  为了突出重点,突破难点,并遵循《新课标》理念,通过多种手段让学生学得轻松,学得愉快,形成课堂上教师与学生交往互动,共同发展的情境。我把教学设计分为以下几个环节:

  第一环节:创设情境,生成问题

  上课伊始,我首先用谜语导入,引出本课的教具——天平,对于天平学生并不陌生,在实验室里使用到过,所以学生可以非常轻松地说出天平平衡的条件,即天平的左右两边相等。通过这一个环节的设计,把握住学生的好奇天性,学生的学习兴趣被充分地调到起来。把介绍平衡的条件放手给学生,尊重了学生的认知起点,学生从中也体会到数学与其他学科之间的联系,增强了学生学好数学的信心。顺势进入第二个环节——探索交流,解决问题

  这个环节我主要分四个层次进行。

  第1个层次,教师演示:在天平的'一端放一个空杯子,另一端放100克的砝码,这时平衡,你有什么发现?学生得出这个杯子的重量是100克。

  第2个层次放手给学生,让学生把水慢慢倒入空杯子内,进行左边与右边的比较。学生操作的结果一般有3种情况,

(1)往水杯的方向倾斜

(2)往砝码的方向倾斜

(3)平衡。

教师适时引导水的重量是未知的,在未知的情况下我们可以用自己喜欢的方式来表示它,如用x或其他的字母,进而用一个简单的式子表示自己所演示的情况。学生在融洽和谐的课堂氛围中体验称量成功的喜悦,学生体验到应有的满足感,既复习了旧知识,形成平衡与等式的印象,又为式子的分类打好了基础。

  第3个层次,学生集体交流,将式子进行比较,从而确定等式与不等式的概念。并能根据自己的理解,写出几个像100+x=250的等式。并比较共同点得出方程的概念:含有未知数的等式叫方程。并通过辨析进一步使学生会分辨哪种等式是方程,哪种不是方程。这是整个教学过程中最为重要的一个环节,教师为学生提供一个平等、和谐、愉悦的探究氛围,适时适当引导。学生自主探索,合作交流,既锻炼了学生的思维,又培养了学生的观察能力、发现能力、创新能力。学生是本节课中的真正学习主人,是名副其实的主角,经历着知识的构建与形成的过程。学生经历了式子分类的自主探索、合作交流过程,归纳,概括出方程的意义,培养了学生的归纳概括能力,语言表达能力。

  第4个层次,扩展阅读,出示小知识让学生通过阅读使学生进一步感受到数学的魅力以及深厚的文化底蕴,体会人们在数学中的探索。然后进入第三个环节。

  第三个环节——巩固应用,内化提高

  练习是学生领悟知识,形成技能,发展智力的重要手段,因此本课我遵循“由浅入深,循序渐进”的原则,以基础练习为主,如让学生在初步理解方程意义的基础上能熟练辨析方程。适当补充提高练习,促进学生的全面发展。

  第四个环节——回顾整理,反思提升

  通过提问:本节课你有哪些收获,让学生自己反思本课在知识技能、与他人合作方面的情感等,从而促进学生的全面发展,并通过同学之间的互相鼓励,发挥评价的激励作用。

  六、 说板书设计

  板书对启迪思维、开发智力、增强记忆,加深学生对知识的理解都起到画龙点睛的作用,因此在板书设计上,我力求重点突出,简明扼要帮助学生理解和建构知识体系。

  总之,本课我遵循《新课标》理念,以训练学生的思维为主线,在导入中启发学生思维,在新授中创新思维,在练习中发展思维,使学生在掌握知识的同时能力得到锻炼,情感态度价值观得到发展,真正实现学生全面发展的目标。

  《方程的意义》说课稿 篇2

  各位老师,大家好!

  我说课的题目是《方程的意义》,我将从教材分析、学情分析、教学流程三个方面展开说。

  一、教材分析:

  关于《方程的意义》这一内容,不同版本的教材编写有不同的安排:

  人教版教材将方程教学安排在五年级上册第四单元的第二部分,在学习完用字母表示数后紧接着认识简易方程及用方程解决问题。教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。为提供更为丰富的感知材料,教材一方面由小精灵要求:你会自己写出一些方程吗?另一方面通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。

  其次,“做一做” 给出了六个式子,让学生识别哪些是方程。

  再次,“你知道吗?”的阅读资料,简要介绍了有关方程的一些史料。

  而冀教版教材将《方程的意义》安排在小学数学五年级下册第三单元的第一课时。本单元是承接着学生在四年级学习的用字母表示数的知识。教材首先呈现了六幅不同的用天平表示物体质量关系的情境图(其中有两幅天平图两边物体的质量不同),提出了“观察天平图、用式子表示天平两边物体的.质量关系”的要求。在学生观察、按要求写式子,以及对式子进行分析归纳的基础上,认识等式和含有未知数的等式,帮助学生理解方程的意义。

  通过分析不同版本的教材,我觉得:在小学,只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断一个式子是不是方程就可以了。不必在概念上过分纠缠,更不必补充方程与恒等式的区别等等,以免加重学生负担。基于以上分析,我确定本节课的教学目标如下:

  1、认知目标:了解“等式”与“方程”的意义,能判断哪些是等式、哪些是方程,能根据具体情境列出方程。

  2、能力目标:通过自主学习、合作探究等活动中培养学生观察能力和抽象概括的能力。

  3、情感目标:主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。

  教学重点:了解“等式”与“方程”的意义。

  教学难点:理解“等式”与“方程”之间的关系。

  教学准备:课件,天平。

  二、学情分析:

  由于学生较长时期用算术方法解决问题,开始学习列方程解决问题时,往往受到算术思路的干扰。因此,在《方程的意义》的教学中,要注意过渡和对比,克服干扰,对于学生初步掌握列方程解决问题的思考方法和特点,初步体会列方程解决问题的优越性,具有重要意义。从这意义上说,以前学习用字母表示数,为本节课的学习打下了基础。

  三、教学流程:

  基于以上分析,我确定五大教学环节:

1、口算,

2、情境,

3、自学,

4、展示,

5、反馈。

  1、口算(3分钟)

  每生一张口算卡,12道小数加减乘除口算题,看谁算得又对又快,采用定量计时,对组交换口算本,一人报答案,互相评判。组长统计全对的,错的同学当堂订正。给全对的组加5分。坚持口算天天练,堂堂清。

  2、情境(3分钟)

  出示天平实物,师生交流有关天平的知识,情境创设力求有趣、简洁、为本课教学服务。

  3、自学(12分钟)

  自学环节分两步:

  (1)独学:

  出示教材中6幅天平示意图,仔细观察,独立思考:

  ○1用式子表示天平两边物体质量的关系。

  ○2这些式子可以怎样分类。

  师深入各组巡视,培养学生独立思考的习惯,尤其是关注学困生的点拨。

  (2)对学、群学:

  把在独学中遇到的问题和你的对子或小组同学共同探讨一下,组内成员互学,组长汇总形成共识,师深入小组,培养学生倾听、充分表达自己意思及补充质疑的能力,并确定每个组的展示重点。师及时对各组表现给予适当评价。

  4、展示(12分钟)环节分为三步进行:

  (1)小组展示所写的式子。并交流想法。小组全对的加分。

  (2)交流这些式子如何分类。师分类板书:

  预设1:

  平衡——相等

  20+30=50

  30+x=80

  x+20=70

  2x=100

  不平衡——不相等

  X>30

  40<x+10

  揭示等式的意义:等号连接的式子表示天平左右两边 ;大于号、小于号连接的式子表示天平左右两边 。进而揭示等式的意义。

  预设2:

  30+x=80

  x+20=70

  2x=100

  等式中含有未知数的式子

  20+30=50

  没有未知数的式子

  揭示方程的意义:含有未知数的等式是方程。学生读书进一步了解等式、方程的意义。用自己的话举例说说什么样的式子是方程,重点强调方程的两个因素:○1等式,○2含有未知数。

  (3)讨论:等式和方程的关系

  师提出:“方程一定是等式,等式也一定是方程。”这句话对吗?的要求,让学生充分发表自己的想法,并试着用自己的方式表示等式与方程的关系。通过讨论交流,最后得出:等式包含方程,方程一定是等式,但等式不一定是方程。

  展示中能充分表达,提出有价值的质疑的小组进行加分。

  5、反馈(10分钟)

  在反馈环节我安排了不同层次的练习。

  (1)出示试一试,判断是否是方程,并说明判断理由。

  (2)根据方程的意义让学生自己试着写两个方程。

  (3)练一练。

  第1题:让学生观察三幅图,说一说图中的信息,试着列出一个方程。

  第2题:让学生先读懂题,再试着列出方程。

  第3题:通过判断题加深对方程意义的理解。

  第4题:把文字叙述的数量关系用方程表示出来。学生独立完成。

  (4)将人教版中的“你知道吗?”作为本课的结尾,加强对学生的思想教育,渗透数学文化。

  教学反思:

  《方程的意义》是一节数学概念课,是今后学习更深一层知识,解决更多实际问题的知识支柱,因此在教学时应重视概念教学的开放性,自主性与概念形成的自然性。因此,本节课我注重了:

  实践操作,建立方程模型

  1、用天平创设情境直观形象,有助学生理解式子的意思。

  等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思。

  2、在“看”“说”和“写”中体会式子

  当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方程。

  通过反馈练习,学生对于等式、方程的意义理解得还是比较好的。

  《方程的意义》说课稿 篇3

  教材简析:

  《方程的意义》一课是人教版小学数学五年级上册第四单元《简易方程》中的内容。本节课的主要内容是根据天平写出式子,并通过类比分析归纳出方程的概念,并根据概念学会正确判断一个式子是不是方程以及利用方程概念解决问题。方程这部分知识,在初等代数中占有重要的地位,方程这部分知识的学习,是学生从算术方法解决问题到代数方法解决问题的过渡,因此,在教学中起着承上启下的作用。

  学情分析:

  学生在学习《方程的意义》之前,在低年级的数学学习中均有填算式中的括号、数字谜等不同形式的思维训练,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,这些都为理解方程意义起着铺垫作用。

  教学目标:

  1、了解方程的意义,弄清方程与等式的联系与区别。

  2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

  3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

  教学重点:

  了解方程的意义

  教学难点:

  完成数量关系到等量关系的过渡,构建方程的概念。

  教学过程:

  一、谈话导入,认识天平:

  同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

  对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

  其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的.,而是用来测量的,它就是天平。

  跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,形象生动,学生容易找到旧经验与新事物的联系,形成表象

  二、利用天平,写出式子

  在上一节数学活动课中,我们认识了天平,利用天平称量了物品的质量。

  下面我们就一起来利用天平来测量一杯水的重量。

  在这部分教学中,教师通过演示再现天平测量物体的过程,水的重量是未知的,用字母X来表示,这部分教学的重点是让学生经历了由形象的天平左右两边的平衡关系过渡到用抽象到数学符号表示的思维过程,为突破教学难点进行铺垫。

  三、合作探究,认识方程

  1、测量物品,写出式子

  下面请同学们再次利用天平测量桌面上物品的质量,或者利用天平比较物品的轻重,并且根据天平的平衡关系写出式子。最后将你们小组写出的式子按照一定的标准进行分类。

  《课程标准》中明确指出,数学课要让学生积累数学基本的活动经验。数学作为一种普遍适用的技术,是人们生活、劳动和学习必不可少的工具,因此基本的数学活动经验要在小学数学课中显得尤为重要。在这部分的教学中,我经历了实验---不实验——再实验的设计过程。第一次教学中,我采用了让学生动手操作,但在实验中,学生由于对天平的好奇以及操作的不熟练,使大部分时间浪费在了感知新事物上,没有完成教学任务;第二稿中,我放弃了实验,让学生直观看教师的大屏幕演示,然后写出式子,学生再根据图片,写出式子,结果整节课学生就在不停地对着抽象的符号写和算,对知识没有形成表象,练习效果不佳。后来,在网络备课和教研员的指导下,我在课前加入了数学活动课,让学生熟悉天平的操作过程,在课堂中,将重点放到利用天平写出式子这一环节,学生目的明确,操作熟练,高效完成了预设的教学目标。

  2、交流汇报,归纳概念:

  教师选取了每个小组有特点的式子将其呈现在黑板上,学生根据自己的经验进行分类,同时教师进行板演:

  等式 不等式

  含有未知数 3x=180 50+2b>180

  100+y=50×3 80<2a

  不含未知数 50×2=100 100+20<100+30

  根据板书,教师讲解:像 3x=180、100+y=50×3这样,含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

  "领悟数学基本思想"是新课标中数学中最核心的要求。数学思想是数学知识和方法在更高层次上的抽象与概括。在本节课中,我更注重了对知识的类比归纳,()让学生感知方程与等式的关系,与不等式的区别,最后归纳总结出方程的特征。

  3、概念演绎,建立模型:

  刚才同学们根据天平所写的式子中还有方程吗?

  老师在测量中的这几个式子中哪个是方程?

  你能根据方程的意义也写出几个与众不同的方程吗?

  通过这三个内容的练习,既完成了对概念的基本理解与应用,同时又将前面教学中只有乘法和加法的方程式子进行补充,学生写出了将含有减法与除法的方程,使方程的基本模型更清晰准确。

  四、练习应用,巩固新知

  在练习中,我设计了这样几个题目:

  1、 判断式子是不是方程

  2、 根据线段图写方程

  3、 根据数量关系写方程

  4、 判断是否是方程

  5、 方程与等式的关系

  通过由浅入深的练习,学生从基本的判断到实际的应用,从具体的图片写方程到文字的数量关系写方程,最后通过一道判断题,将等式与方程的关系用集合图来表示,使学生对方程的概念的理解更准确,应用更灵活。

  五、拓展延伸,感受文化

  早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

  数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此通过这部分知识的讲解,学生对方程有了更全面的了解,同时激发了学生的学习钻研热情。

  《方程的意义》说课稿 篇4

  一、教材分析,学情解析,目标定位

  (一)教材分析:

  《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

  《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  (二)教学目标:

  结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

  1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

  2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

  3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

  (三)教学重难点

  列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

  基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

  (四)学情分析:

  课前我们对学生进行了调研,调研内容主要有三项:

  一、求未知数

  这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

  二、给式子分类,并写出每类的特点。

  设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

  三、你们在生活中见过与跷跷板类似的物品吗?

  设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

  (五)教法:

  新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

  1、用直观的操作和演示,让每位学生理解和归结出结论。

  2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

  3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

  (六)、学法

  为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

  二、教学过程

  教学活动主要安排了五个环节:

  1、创设情景,抽象出等量关系,理解等式的性质

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

  活动一:感知平衡,体会等式含义,理解等式性质。

  课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的.性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

  活动二:观察发现,抽象出不同的式子

  创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。

  2.引导分类,抽象出方程的意义

  运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  3.讨论比较,辨析、概念——等式与方程的关系

  为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。

  4.巩固深化,拓展思维——练习

  在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

  5.小结新知,明确收获

  让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

  《方程的意义》说课稿 篇5

  一、引言

  我们的教学究竟要赋予学生什么?是知识,还是方法?我认为方法比知识更重要。一个学生一旦掌握了科学的学习方法,他对后继的学习将会产生积极效应。那么在数学课堂上如何教给学生学习的方法?又如何在课堂教学中体现“高参与,高自主,高协同,高愉悦,高效能”的教学理念?带着这样的思考我设计了《方程的意义》一课,并在参加2013年西乡优质课大赛中荣获一等奖。

  二、教学背景介绍

  1.学生的认知水平与认知特点。

  认知水平:《方程的意义》是九年义务教育六年制小学教科书第九册第四单元内容。是在学生已学了一定的算术知识,初步接触了一点代数知识的基础上学习的。本节课之前学习了用字母表示常见的数量关系,运算定律,计算公式,用字母表示数量,以及根据含有字母的式子求式子的值。

  认知特点:四年级孩子对知识的认识是比较感性的,他们必须让数学与生活有联系才能产生兴趣,这个年段的孩子已经能逐步学会区分出概念中本质的东西和非本质的东西,学会掌握初步的科学定义和独立进行逻辑论证。同时,要达到这样的思维活动水平,也离不开直接的和感性的经验,所以仍然具有很大成分的具体形象性。

  2.教学内容的功能与地位。

  《方程的意义》是义务教育课程标准实验教科书小学数学五年级上册第四单元的内容,它是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时又是将学习的“解方程”的基础。

  《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  三、教学过程反思

  《新课程教学现场与教学细节》一书中说“细节在教学过程中的功能和作用,在促进学生发展中的意义和价值,举轻若重。”确实,在一定程度上,课程是由课堂上无数个细节共同组成的,它们就象一颗颗星星点缀着黑暗的夜空,而夜空也因为有了星星的点缀才会更加炫烂。《方程的意义》一课,我精心地设计了一个个教学小细节,正是因为这些小细节的点缀这节课才能在西乡优质课比赛中大放异彩,同时我认为这些细节也正好是“高参与,高自主,高协同,高愉悦,高效能”课堂的最好体现。

  细节片段一:教材与现实的交接

  在出示天平后,学生根据天平的平衡情况说了两个等式,接下来

  师问一个学生;你的身高是多少?生回答:不知道。

  师:我们可以用什么字母来表示?

  生1答:X。生2、A…

  师:老师现场请一个老师来和你比比身高。(师请一个老师与学生背对背站好。)

  师:有没有什么办法让他俩看起来一样高?

  生1:让赵晓同学站到凳子上。

  师:好,听你的。(师现场拿出一个凳子)师;这个凳子老师已经测量过了,它的高度是25厘米。

  (老师和学生背靠背站到一块儿,正好一样高。)

  师:你能根据这个情境写一个等式吗?

  气氛顿时活跃起来了,学生纷纷举手要求回答。

  生1:X+25=162,赵晓的身高加上凳子的高度等于老师的身高。

  生2:162-X=25,老师的身高减去凳子的高度等于赵晓的身高。

  反思:

  数学新课标的一个重要理念就是突出了数学的现实性,数学教学应该源于现实,用于现实。我想数学不应再是演算纸上的智力游戏,她应该就在我们身边,活生生的存在于生活事实之中。其实这个片段就是北师大版四年级下册98页的`一个练习,但是我在设计的时候巧妙地让它与现实相结合起来,事先安排了一个学生站在25厘米高的凳子上与教师刚好一样高的孩子来配合我完成这个片段的教学(但是其他学生不知道是我事先安排好的,所以他们都觉得很神奇)。这也成为本节课的一个亮点,让纸上的数学走进孩子的世界,真正成为孩子认知世界的工具,让孩子们领悟数学知识的本来面貌,学生不仅知道了知识在生活中的真实存在,且在这个过程中培养了他们探究的品质和素养,这比获得知识本身更重要。实践证明这样的教与学,教者教得得心应手,学者学得从容不迫。

  细节片段二:分类辨析

  师要求学生把黑板上的所有式子进行按天平的平衡情况进行分类。

  师:哪位同学愿意第一个来汇报。

  生:根据天平的平衡情况,我是把带等号的分一类。不带等号的又分一类。(生边说边移动黑板上的式子)

  师:这样分有道理吗?还有哪些同学和他分类的标准是一样的?

  师:在数学上,像这样含有等于号的式子,我们把它叫做等式,(板书),像这样的一类,就叫做——生齐说:不等式。看来,你们还真抓住了关键来分。

  师:现在我们再观察这些等式,我们能不能在等式的基础上再分一分。

  2、揭示方程含义:

  师:请同学们仔细观察这一类式子,和其它式子相比,它们具备怎样的特点?

  生:它们又有未知数,又是等式。

  师:在数学上,像这样的含有未知数的等式,我们把它叫方程。(板书)

  师:今天同学们表现真棒,通过自己的努力把方程的含义总结出来了,劳动的果实得来不易啊,我们一起把方程的含义读一遍吧。

  生齐读

  师:你们读得真好,但是老师觉得缺少了点拟阳顿挫,再读一遍吧,把你们认为重点的词读重一点好吗?

  生听了教师的提示读得非常好。

  师:你把哪个词读重了?

  生:未知数,等式。

  师:你们读书的声音真好听,简直就是天簌之音。那这些不是方程的式子我们就把它们摘下来吧,但是把它人摘下来总要有个理由吧,凭什么说我不是方程啊?

  生一个个上台摘式子并汇报。(注,学生汇报相当的精彩,有个别孩子还用上了不仅…还……,虽然…..但是……这类的关联词,教师都及时地对孩子的语言表达能力进行了表扬。)

  反思:

  方程教学是一个概念教学,概念教学如果离开了孩子们的自主探索,自我总结那么这个概念的教学就是失败的,虽然可以通过死记硬背,但那是枯燥无味的,孩子们也将失去学习的兴趣。本节课中我借鉴了其他老师的教法加入自己的一点理解,注意在‘引’字上下功夫,遵循由浅入深、由易到难、由具体到抽象的教学原则,引导孩子们在动手、动脑、动嘴中总结出方程的概念并在这个过程中不断地加深对方程意义的理解,自然而然地“水到渠成”。

  细节片段三:融入生活

  师:方程在我们的生活应用得很广泛,我们一起来看看方程在我们衣食住行都有哪些表现?

  (课件画面出示衣食住行四个字。)你们想先接受谁的挑战?

  每一个字链接一幅图。

  (衣:画面出示一件衣服X元,三件衣服共120元,根据图意写一个方程。)

  (食:一个汉堡包的价钱7元,二杯可乐,一杯可乐的价钱是X元,共17元,根据图意列方程。)

  (住:一大壶水刚好倒满二个小水壶和一个杯子。杯子200亳升,小水壶一个X亳升。根据图意列方程)

  (行:一辆公共汽车到站后下来8人,又上来6人,这时车上共有45人,车上原有多少人?)

  反思:

  著名数学家华罗庚说过:“人们对数学早就产生了枯燥乏味神秘难懂的印象,成因之一便是脱离实际” 。确实,数学知识具有高度抽象性,这与小学生思维的具体形象性产生矛盾。如果我们教师在教学时不能把知识更好地融入生活,不能从生活中提炼生活情境应用于教学,学生怎么能对那些没有生命的枯燥数字产生兴趣呢,而生活本身是一个广阔的数学课堂,生活中就存在着大量的数学现象,在本节课上,我成功在把方程的练习融入人们的衣食住行中,让孩子们在衣食住行中体验方程,认识生活。在本节课中孩子们在课堂上置身于生活情境中,情绪高涨,积极参与探索,课堂教学异常活跃,教学效果非常好。

  细节片段四:激励语言的应用

  德国教育家第斯多惠说:“教学艺术不在于传授本领,而在于激励、唤醒和鼓舞。”在课堂教学中,教师经常使用一些赞美的语言激励学生有助于激发学生学习动力,拉近师生之间的距离, ,达到心灵的沟通。本节课中我注意运用多种多样的激励的语言对孩子的学习行为和学习过程进行点评,这些温馨的语言如春风化雨着滋润学生的心田,让孩子们在课堂中找到了学习的方向,乐意与老师共同探索知识。如:

  上课前我与孩子们进行互动时:

  师:同学们,今天老师有幸来到华胜学校与同学们一起学习,老师好高兴,我早就听说华胜的同学们学习上善于思考,发言积极大方,声音洪亮,老师对华胜早已心神向往。看同学坐得多端正啊,你们都准备好了吗?

  学生读出方程概念时:

  师:你们读书的声音真好听,简直就是天簌之音。老师还想听一次,可以吗?

  学生发现问题时:

  师:你能用数学的眼光去发现问题,老师真为你感到骄傲。

  师:真是英雄所见略同,老师也是这样想的。

  学生提出意见时:

  师:你的建议真棒,就按你说的来办。

  等等……

  反思:

  这些激励语言的应用对本节课的成功起到了不可磨灭的功劳,让学生整节课都处于乐学、向学的积极状态中。教学中,在学生探讨出方程意义后,我赞许的一笑,学生受到鼓舞,顿时争先恐后各抒己见,课堂变成师生研讨的场所。课堂中,当我夸奖学生和数学家一样时,学生的心里一定是美滋滋的,有了更多学习数学的兴趣,也坚定了学好数学的信心。在获取知识的过程中,教师把学生是否获得了积极的情感体验作为自己的事,从学生的角度去感受,并参与学生的探索求知过程,和他们一起研究、探索、获取,分享他们的快乐,教学就会达到师生和谐相处、课堂上的其乐融融。

  四、不足之处:

  1、学生在练习时其实想到了很多种列方程的形式,但是因为是比赛课,怕后面的时间不够,还有很多学生想要展示自己的想法,我居然很残忍地直接说到下一题了,想来真是不应该。课后评委老师评课时也说到这是一个小遗憾,课堂就是学生展示的舞台,作为教师就应该为学生提供这个展示的舞台。

  2、列方程解决问题,找出题中的等量关系对于少部分学生还是有难度,在有限的时间感觉还是不能很好的帮他们有效理解题意。

  3、方程的意义应是含有未知数的等式,而我呈现给学生的却是含有字母的等式,数学概念是严谨的,差之毫厘,谬之千里.我觉得也应该给学生讲清楚这个未知数的表现形式不仅仅只有字母。

  五、再教设计思路:

  1、引入部分:

  我看了很多教师这节课的引入都是多天平开始,我想能不能从其他的情境引入?如:

  一场篮球比赛,红、蓝两队打得还挺激烈的。现在场上的比分是:26:33你会用数学式子表示两队比分的关系吗?(得出:26 < 33)

  红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,刚上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎样呢?

  你能用数学式子来表示比分可能出现的几种关系吗?

  从篮球赛的比分中引入不等式和等式,再分出方程,可行不?

  2、小结概念部分。

  2011年10月有幸听北京市特级教师赵震上了一节《方程的意义》,他在处理方程的概念时是这样的:

  他在学生把方程和等式都分出来后说:同学们,我们今天学习的课题就是认识方程,老师可以告诉你们,象这样的式子就叫方程。那么,请大家讨论看看,方程得有什么?

  教学中直接把结果呈现给学生,再让学生通过讨论交流、探索得出这个概念的关键词是什么,这种倒置的教学方式我想也值得我试试呢。

  3、练习部分:

  因为我在巩固练习时没有加入用线段图列出方程的练习,我觉得下次再教时是不是把根据线段图列出方程也做为练习的一种。

  《方程的意义》说课稿 篇6

  说教材

  一、教材的地位和作用。

  本课时是“解简易方程”的第一课时。在小学阶段,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判别一个式子是不是方程就可以了。在这部分教材中,首先通过天平演示引出等式和含有未知数的等式,接着通过实例让学生根据图意写出含有未知数的等式,帮助学生理解方程的意义。然后再借助集合图,说明等式与方程这两个概念的关系。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

  二、教学目标和重点、难点。

  教学目标:

  1.知识目标:理解并掌握方程的意义,弄清方程与等式之间的关系。

  2.能力目标:正确地应用方程的意义辨别方程,帮助学生建立初步的分类思想。培养学生认真观察、思考的学习品质及抽象概括能力,在合作学习中增强学生的合作意识。

  3.情感目标:加强师生的情感交流,使学生在民主和谐的气氛中获取新知;

  教学重点:建立方程的概念。

  教学难点:正确区分等式与方程的含义。

  说教法

  新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了以下三个方面的教学手段:

  1.用直观的操作和演示,让学生在动手操作的过程中理解和归结出结论。

  2.恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

  3.充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

  说学法

  为了使学生获取“方程的`意义”这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

  说教学过程

  一、导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、新知学习

  1、实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有未知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  2、写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  三、巩固应用

  1、反馈练习。完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  2、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

  3、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

  四、全课总结

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看“课外阅读”,了解有关方程产生的数学史。

  《方程的意义》说课稿 篇7

  一 、教材分析

  教材内容选自义务教育课程标准实验教科书(人教版)五年级(上册)第53页——54页。做一做。练习十一 1——3题。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

  为提供更为丰富的感知材料,教材提出:你会自己写出一些方程吗?然后通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。

  在“做一做”里,教材给出了6个式子,让学生识别哪些是方程。要让学生明白,未知数还可以用不同的字母表示。

  “你知道吗”的阅读材料,简要介绍了有关方程的一些史料。通过让学生阅读,了解一些有关方程的历史和发展。

  二、学法指导

  学生在学习了用字母表示数量关系以后通过一定的情景进一步学习方程的意义,列方程和用方程表示简单的数量关系。学生要在熟悉用含有字母的式子表示数量关系的基础上理解和掌握方程的意义。在天平的演示情景中观察,思考,讨论,探究。说出方程的特点并由不等的式子到相等的式子,从而推导方程的意义并能扩展到根据方程的意义列出简单的方程和用方程表示简单数量关系。

  三、教法

  1.指导思想

  本课教学是以天平的演示实验为情景引入教学内容的,教学引导学生充分地观察,探究,主动掌握有关知识和技能;进行合作学习和探究,培养学生的交流意识,发现意识。

  2.教学方法

  根据五年级学生的知识结钩和认知水平,从生活实际中的情景——用天平称量物体重量入手,通过教学课件的使用使学生观察“等式”——“不等式”——“方程”的演示过程,深刻理解方程是含有未知数的等式。然后结合几道判断题让学生举例深化对方程意义的理解,最后设计二组情景让学生列出方程和用方程表示数量关系使方程的概念得到拓展和沿伸。

  四、 教学流程

  1.旧知练习,学前准备

  这一部分共安排了4道填空题。目地是通过复习用含有字母的式子表示数量关系来为本节课的内容作铺垫从而引入本课的课题“方程的意义”。

  2.情景引入,探究新知

  从天平的认识入手,让学生了解一些天平的使用知识。然后演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡的情况下空杯子的重量和珐玛的重量是相等的。从而为等式的引入作铺垫。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x》100的不等式。再增加珐码,又得到100+x《300的不等式。最后天平逐渐平蘅,左右两边相等,得到100+x=250这样一个含有未知数的等式,称为方程。使学生理解,方程应该是一个等式,而且是一个含有未知数的等式。这样就让学生初步掌握了方程的意义。接着将式子中的`x换成b,式子还是方程。说明方程中的未知数可以用不同的字母表示。

  3.深化概念,加强理解

  先出示一组式子判断是不是方程,说出判断的理由,使学生对方程的概念作初步的理解和判断。讨论m+n=3是否是方程,让学生知道方程中的未知数可以不只一个。最后让学生写出一些方程和举出反例是对学生知识和技能及运用能力的培养。

  4.联系实际,应用拓展

  (1)列出第62页第2提的方程是让学生在熟悉的情景中根据方程的意义列出方程。

  (2)用方程表示数量关系的情景是对用含有字母的式子表示数量关系和方程的意义的整合运用。引导学生列出方程,还可启发学生列出不同的方程。

  5.总结全课:对教学内容进行梳理。

  6.课堂作业:当堂练习或课下完成。

  《方程的意义》说课稿 篇8

  各位尊敬的评委:

  大家好!今天我说课的内容是:人教版小学数学五年级上册教材53-54页的《方程的意义》。我的说课分为以下几部分:教材分析、教学目标、重难点、教学过程和板书。

  一、教材分析

  方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材在编排上注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。

  二、教学目标

  知识目标:1、理解并掌握方程的意义,体会方程与等式之间的关系。2、会列方程表示生活情境中简单的等量关系。

  能力目标:学生在观察、比较、抽象中,经历将现实问题抽象成等式与方程的过程,积累将现实问题数学化的'体验。

  情感目标:感受方程与现实生活的密切联系。

  三、教学重点:

  方程意义的理解以及在具体情境中建立方程的模型。

  教学难点:寻找等量关系列方程。

  四、教学过程:

  (一)谜语导入,了解天平。

  谜语导入,引出天平这个公正的大法官,使得学生对天平感兴趣,从而请学生说说对天枰的了解,接着视频介绍天平的原理。

  (二)创设情景,抽象出等量关系

  情景1:演示天平左边放两个50克的砝码,右边放一个100克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50+50=100)

  情景2:演示天平左边放上两盒一样重的饮料(250克),右边放上另一瓶饮料(500克),再次请学生用式子表示天平所处的状态。(板书:250+250=500)

  这两个情景学生非常熟悉,既让学生从天平"平衡"中体会到等式的含义,又能较好地激发了学生学习的乐趣。

  然后我还创设2个情境,让学生观察天平从不平衡到平衡的变化过程,真正体会天平左右两边的质量相等,可以用等式表示。

  情景3:演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡,即空杯子的重量和珐玛的重量是相等的,空杯子的重量=100克。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x>100的不等式。(板书:100+x>100)

  再增加珐码,又得到100+x=250的等式。(板书: 100+x=250)

  情景4:天平左边放一个球,右边方一个50克的砝码,根据不平衡状态得到y<50的不等式。(板书:y <50)接着在左边增加一个同样大的球,天平平衡了,得到y+y=50或2y=50的等式。 (板书:y+y=50或2y=50)

  以上的板书都做成贴片形,可随时移动位置,方便下一环节进行分类。

  (三)引导分类,概括方程的意义

  在得出这么多的等式和算式后,学生小组合作,进行分类,并交流分类的标准。学生在分类的过程中逐步概括出方程的定义:含有未知数的等式叫做方程(板书)。在此基础上,再次让学生观察,讨论与交流,得出方程两个要素:一必须含有未知数(未知数不一定用X表示,未知数不一定只有一个)、二必须是等式(也就要有"=")。

  这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

  (四)层次练习,巩固方程的意义

  在这一环节中,我编排了三个层次的练习。

  (1)"找方程",即教材62页第1题:下面的哪些式子是方程?

  X+3.6=7 3-1.4=1.6 ax2<2.4采用同桌交流的方式进行交流,不是方程的题目要说明理由。

  (2)"写方程", 让学生写出一些方程和举出反例,巩固方程的意义。

  (3)数学游戏:教师出示式子,学生做动作。如果式子是方程,学生就跳一下。如果是等式,学生就蹲下。两样都不是,则不用做动作。

  (4)"列方程",即教材62页第2题:根据天平列出方程。

  (5)根据文字列方程,即教材62页第3题。例如:小明x岁,爸爸40岁,爸爸和小明相差28岁。通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。

  (五)总结提升 ,评价自我

  组织学生说说收获,可以让学生再次体会成功的喜悦。说说存在的不足,同时又再一次的反思了自我。

  (六)作业布置, 回归生活

  生活中还有许许多多的实际问题可用方程表示其数量关系,请同学们列举出来。

  布置这题作业,目的是让学生自主设计练习使学生充分感受数学与自然和人类社会的密切联系,增强数学的应用意识。

  (七)板书

  方程的意义

  50+50=100 100+x=250

  250+250=500 2y=50 方

  等式 a+2=17 程

  x+y=50

  含有未知数的等式叫做方程。

  反思:通过文字形式来设计说课稿,比较单一,不能吸引评委。那么在设计里面放入辅助性说明的图片,比长窜的文字更清晰,更能让人明白。

  《方程的意义》说课稿 篇9

  《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。

  根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:

  1、了解方程的意义,弄清方程与等式的联系与区别。

  2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

  3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的`合作探究能力。

  教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

  下面我就将本节课的教学过程及设计意图向大家做以汇报。

  一、谈话导入:

  同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

  对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

  其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

  跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象

  二、认识并使用天平

  教师介绍天平:

  这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

  教师示范:

  下面我们就一起来进行实际应用天平来测量一下。

  首先我们来应用一下,检查一下砝码的质量是否准确。

  在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

  看到天平,你会用等式表示天平两边物体的质量关系吗?

  20+30=50

  这有一个空的水杯,我们先来测量一下它的重量。

  请你估计一下它的重量。我们来试一试。

  通过测量,我们得知,水杯的重量是100克。

  现在我们缓缓向水杯里倒水,你发现天平怎么样了?

  你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

  100+X>100

  我们继续测量水的质量,同理得出:

  100+X>200

  100+X<300

  100+X=250

  这几个算式都以板书形式呈现。

  在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。

  三、认识方程

  1、根据天平写算式并分类

  刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

  《2011年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

  在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。

  2、交流汇报:

  学生边说,教师边板书:

  等式   不等式

  含有未知数  3x=180    50+2x>180

  100+x=50x3  80<2x

  不含未知数 50x2=100  100+20<100+30

  根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

  反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

  通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。

  四、应用概念

  同学们,根据你对方程的理解,你能自己写出几个方程吗?

  判断,他们写得都对吗?

  黑板上刚才我们写得这些算式,有方程吗?

  通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。

  五、方程产生的文化背景

  早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

  数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。

  六、拓展延伸

  在拓展延伸中,我设计了这样几个题目:

  1、    根据线段图写方程

  2、    根据数量关系写方程

  3、    判断是否是方程

  4、    方程与等式的关系

  七、作业:

  利用课余小组时间用天平测量物体的重量。

  再想,天平两边可以如何添加,能使天平继续保持平衡呢?

  课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。

【《方程的意义》说课稿】相关文章:

方程的意义说课稿11-16

方程的意义说课稿12-04

方程的意义说课稿03-08

《方程的意义》说课稿09-27

方程的意义说课稿01-20

方程的意义说课稿15篇12-21

方程的意义教学说课稿07-21

方程的意义说课稿(精选11篇)08-19

方程的意义教学说课稿4篇12-16

《方程》说课稿01-03