最新方程的根与函数零点的说课稿

时间:2025-06-26 09:36:37 晶敏 说课稿 我要投稿
  • 相关推荐

最新方程的根与函数零点的说课稿范文(精选15篇)

  作为一位无私奉献的人民教师,总不可避免地需要编写说课稿,通过说课稿可以很好地改正讲课缺点。我们应该怎么写说课稿呢?以下是小编为大家整理的最新方程的根与函数零点的说课稿范文,欢迎大家分享。

最新方程的根与函数零点的说课稿范文(精选15篇)

  最新方程的根与函数零点的说课稿 1

  一、说教材:

  1、教材分析:

  本节课对“方程的根与函数零点”的认识,是从初中一次、二次函数与其相应的方程关系的具体学习,过渡到了高中一般方程与其相应函数关系的抽象研究,其学习平台是学生已经掌握了函数的概念、函数的性质以及基本初等函数等相关知识。对本节课的研究,不仅为“用二分法求方程的近似解”这一“函数的应用”做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要的思想方法之一——“函数与方程思想”的理论基础,起到了承前起后的作用。

  2、教学目标:

  ⑴知识与技能目标:

  ①了解函数零点的概念:能够结合具体方程(如二次方程),说明方程的根、函数的零点、函数图象与x轴的交点三者的关系;

  ②理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点可能不止一个;

  ③能利用函数图象和性质判断某些函数的零点个数。

  ⑵过程与方法目标:

  ①经历“类比—归纳—应用”的过程,感悟由具体到抽象的研究方法,培养归纳概括能力。

  ②初步体会函数方程思想,能将方程求解问题转化为函数零点问题。

  ⑶情感、态度和价值观目标:

  体会函数与方程的“形”与“数”、“动”与“静”、“整体”与“局部”的内在联系。

  3、教学重点与教学难点:

  ⑴教学重点:了解函数零点概念,掌握函数零点存在性定理。

  ⑵教学难点:对零点存在性定理的准确理解。

  二、说教法:

  新课标倡导积极主动、勇于探索的学习方式,本节课在概念的形成和深化、定理的概括和应用方面,都给予自主探究、辨析实践、动手画图及交流讨论的机会。教师主要起引导作用,充分信任学生、依靠学生。只有充分激活了学生的思维,这节课的各环节才能顺利推进,内容才会丰富充实,方法才会异彩纷呈。所以这节课总的设计理念是以学生为主体。

  三、说学法:

  方程是初中数学的重要内容,用所学的`函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,不过,高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任。具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位。

  四、说教学程序:

  (一)创设情境

  1、实例引入

  解方程:

  (1)2—x=4;

  (2)2—x=x。

  意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情。

  2、一元二次方程的根与二次函数图象之间的关系。

  通过问题的设置,学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标。

  意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备。

  3、推广:一般函数的图象与方程根的关系。

  通过学生讨论,得出结论:方程f(x)=0有几个根,y=f(x)的图象与x轴就有几个交点,且方程的根就是交点的横坐标。

  意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫。

  (二)探索发现。

  4、函数零点。

  概念:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点。

  注:

  ①函数零点不是一个点,而是具体的自变量的取值。

  ②求函数零点就是求方程f(x)=0的根。

  5、归纳函数的零点与方程的根的关系。

  提出问题:函数的零点与方程的根有什么共同点和区别?

  (1)联系:

  ①数值上相等:求函数的零点可以转化成求对应方程的根;

  ②存在性一致:方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。

  (2)区别:零点对于函数而言,根对于方程而言。

  以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础。

  6、由教材第102页的“探究“探索得出零点存在性定理。

  如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点。即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

  注:定理中的“连续不断”是必不可少的条件;不满足定理条件时依然可能有零点。

  (三)学用结合。

  7、例题讲解(P102/例题1)

  例1:求函数f(x)=lnx+2x-6的零点的个数。

  8、练习:

  P103/练习1、2

  (四)总结归纳。

  (1)一个关系:函数零点与方程根的关系:

  (2)两种思想:函数方程思想;数形结合思想。

  (五)布置作业。

  P108/习题2

  最新方程的根与函数零点的说课稿 2

  各位尊敬的老师,下午好。今天我说课的题目是《方程的根与函数的零点》。下面我将从教材的地位与作用、学情分析,教学目标与重难点分析,教法和学法指导、教学过程设计五个方面来阐述我对本节课的构思。

  【教材的地位与作用】

  本节课是选自人教版《高中课程标准实验教科书》A版必修1第三章第一节。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

  本节是函数应用的第一课,学生在系统地掌握了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个去件上存在零点的判定方法。为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要。

  对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

  【教材目标】

  根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:

  (一)认知目标:

  1.理解并掌握方程的根与相应函数零点的关系,学会将求方程的根的`问题转化为求相应函数零点的问题;

  2.理解零点存在条件,并能确定具体函数存在零点的区间.

  (二)能力目标:

  培养学生自主发现、探究实践的能力.

  (三)情感目标:

  在函数与方程的联系中体验数学转化思想的意义和价值

  【教材重难点】

  本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:

  教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件及应用.

  教学难点:探究发现函数零点的存在性。

  【教法分析】

  充分发挥教师的主导作用和学生的主体作用。指导学生比较对照区别方程的根与函数图象与X轴的交点的方法,指导学生按顺序有重点地观察函数零点附近的函数值之间的关系的方法,并比较采用“启发—探究—讨论”式教学模式。这样的教法有利于突出重点——函数的零点与方程的根之间的联系与零点存在的判定条件及应用

  【学法分析】

  1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。

  【教学过程】

  (一)创设情景,提出问题

  由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。培养学生的归纳能力。理解零点是连接函数与方程的结点。

  (二)启发引导,形成概念

  利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点。

  引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键。

  (三)初步运用,示例练习

  巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系。

  (四)讨论探究,揭示定理

  通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法。这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程。函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。

  (四)讨论辨析,形成概念

  引导学生理解函数零点存在定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解定理的本质.定理不需证明,关键在于让学生通过感知体验并加以确认,有些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。定理的逆命题不成立。

  (五)观察感知,例题学习

  引导学生思考如何应用定理来解决相关的具体问题,接着让学生利用计算器完成对应值表,然后利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识。

  (六)知识应用,尝试练习

  对新知识的理解需要一个不断深化完善的过程,通过练习,进行数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,同时反映教学效果,便于教师进行查漏补缺。

  (七)课后作业,自主学习

  巩固学生所学的新知识,将学生的思维向外延伸,激发学生的发散思维

  最新方程的根与函数零点的说课稿 3

  “方程的根与函数的零点”说课稿各位老师,你们好! 我说课的课题是 “方程的根与函数的零点” 说课内容分为六个部分, 首先对教材进行简要分析

  一、教材分析

  方程的根与函数的零点是普通高中课程标准实验教科书必修数学 1 数学(A 版)第三章第一节 第一课时的内容,学生学习了基本初等函数的图象和性质以及一元二次方程根的求解方法为本节奠 定了基础,本节课有着承上启下的作用,且承载建立函数与方程数学思想的任务;同时本课的内容 将为下一节用二分法求方程的近似解提供了理论依据。方程的根与函数的零点在高考中一般以选择 题或填空题的形式出现,且一般与其他知识点结合起来进行考查,像 20xx年全国及各省高考考查函 数与导数的题目中大约有 5%涉及到函数的零点,所以本节是函数的应用内容中的基础及重点之一。

  二、教学目标

  根据上述教材分析,结合课程标准的要求,本节课的教学目标为以下三个方面: 1.知识与技能目标 理解函数零点的概念;领会函数零点与相应方程的关系,掌握零点的存在条件;掌握函数在某 个区间上存在零点的判定方法。

  2.过程与方法目标 让学生经历探究函数零点与方程根的联系和函数在某区间存在零点的判别方法,使学生领悟方 程与函数的区别与联系,进一步体会数形结合方法。

  3.情感态度与价值观目标 通过探究过程逐步形成用函数处理问题的意识。

  三、教学重点、难点

  为了实现上述教学目标,根据上述教材分析,结合内容特点,本节课的.教学重点是函数的零点 与方程的根之间的联系,函数零点在某区间存在性的判定方法 重点 函数的零点与方程的根之间的联系,函数零点在某区间存在性的判定方法 由于高中生年龄特点及现阶段的认知能力,通过函数图象的直观认识得到其中所蕴含的某种性 质具有一定的难度,所以本课的教学难点是函数在某区间存在零点的判别方法。

  难点 函数在某区间存在零点的判别方法。

  四 、教法与学法

  针对教学内容的特点结合高中生具有探究原理心理愿望和有一定逻辑推理能力的特点,我采用 探究式的教学模式。在教学过程中通过数形结合的方法,并按照由特殊到一般的认知过程,突出教 学重点;运用实例的探究分析来突破教学难点。

  根据以上的分析,我的教学过程是:

  五、教学过程

  1.导入 首先,我将一同与学生回顾以前所学习的一元二次方程根个数的判定方法。即根的判别式 ? , 以此来引起学生的求知欲。

  接下来我将向学生提出问题:一元二次方程根与相应二次函数图象之间有什么关系,先让学生 思考一下。2.新课教学 为了解决这个问题我将利用三个具体实例: ① ② ③x2 ? 2x ? 3 ? 0x2 ? 2x ?1 ? 0x2 ? 2x ? 3 ? 0 且它们的 ? 值分别是大于零、等于零、小于零的情况。为了突出重点,我将一同与学生对第一个方程 x ? 2 x ? 3 ? 0 进行探讨。结和函数图象。通过与学生一同对方程根的求解和二次函数的观察得到当 ? ? 0 时一元二次方程的根就是 相应二次函数与 x 轴交点的横坐标。

  然后利用这种方法类比分析第二个和第三个方程,总结归纳以上三个方程得到一元二次方 程的根就是相应二次函数与 x 轴交点的横坐标。

  2 接下来再与学生继续来分析第一个方程,通过函数 y ? x ? 2 x ? 3 当 y ? 0 时即得到了其对应的方程 x ? 2 x ? 3 ? 0 ,与学生共同进行探讨,并且将函数对应方程的根叫做函数的零点,即引出本节课所要学习的函数零点的概念——函数零点为其对应方程的根。

  进一步与学生对函数零点进行分析,结合之上的三个具体的实例以及函数零点的概念得到 函数零点的存在条件,即假设方程 f ( x) ? 0 有实数根可以得到其对应的函数 y ? f (x) 的图象 与 x 轴有交点,同时等价于函数 y ? f (x) 有零点。

  为了加深学生对函数零点概念的理解和掌握,我将让学生求解上一章所学习的指数函数y ? a x 和对数函数 y ? loga x (其中 0 ? a ? 1或a ? 1)的零点,通过这个课堂练习,使学生进一步回顾上一章所学习的指数函数和对数函数的相关性质,体会了知识之间的联系。

  为了使学生对函数零点进行进一步的认识,我将假设函数 y ? f (x) 的图象在区间 ?a, b? 是 一条连续不断的曲线,且区间端点的函数分居以 x 轴的两侧,形如:引导学生分析,区间端点的函数分居以 x 轴的两侧,即说明 f (a ) 、 f (b) 的函数值异号, 从而得到 f (a) ? f (b) ? 0 ,同时结合函数图象的分析可以得到函数图象在区间 ?a, b? 内一定得穿过 x 轴,由函数零点的概念得函数在区间 ?a, b? 内一定存在零点,引导学生总结得到函数在某 区间存在零点的判定方法。即函数 y ? f (x) 的图象在区间 ?a, b? 是一条连续不断的曲线,且有f (a) ? f (b) ? 0 ,则有函数在区间 ?a, b ? 内一定存在零点。为了加深学生对判定条件的理解, 我将利用学生所熟知的二次函数 y ? x 2 ? 2 x ? 3 在区间?? 2,1? 和 ?2,4?进行探究,同时提出疑问:对于函数 y ? f (x) 的图象在区间 ?a, b? 是一条连续不 断的曲线,若函数在区间 ?a, b ? 内存在零点,是否一定有 f (a) ? f (b) ? 0 呢?带着疑问我将与学生共同探究二次函数 y ? x 2 ? 2 x ? 1 ,得到判定条件的一个注意事项, 即对于函数 y ? f (x) 的图象在区间 ?a, b? 是一条连续不断的曲线,若函数在区间 ?a, b ? 内存在 零点,不一定有 f (a) ? f (b) ? 0 。

  3.例题 为了加深学生对本节课知识的掌握,我将共同与学生对教材中的例题一进行探讨,例一为 了求函数零点的个数。通过例题一的探究,加深了学生对函数零点概念和存在条件的理解,引 导学生得出要求函数零点的个数可以通过函数图象与 x 轴的交点个数得到,并且让学生体会函 数在某区间存在零点的判定条件。

  4.小结 为了使学生对本节课的知识形成一个系统的知识,我将带领学生对本节课进行小结,与学 生一同回顾本节课所学习的函数零点的概念及其存在条件,以及函数在某区间存在零点的判定 条件。

  5.作业 为了巩固本节课的知识, 加深学生对函数零点的理解, 我将教材 P88、 2 布置为课外作业。

  六、板书设计

  最后根据本节课的教学内容,按照中学黑板结构,将板书设计如下: 3.1.1 方程的很与函数的零点y=ax y=logax2.零点的存在条件 方程根与函数图象的分 3. 判定方法 小结 作业: 我说课的内容到此为止,请各位老师批评指正,谢谢! 析分享到: 分享到: 使用一键分享,轻松赚取财富值, 嵌入播放器:普通尺寸(450*500pix)较大尺寸(630*500pix)

  最新方程的根与函数零点的说课稿 4

  尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《方程的根与函数的零点》。对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标,教学方法,教学过程等几个方面加以说明。

  一、教材分析

  本节课选自人教版高中数学必修一第三章第一节。是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。为后面学习“用二分法求方程的近似解”奠定基础。

  二、学情分析

  高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  体会方程的根与函数零点之间的.关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

  (二)过程与方法

  通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

  (三)情感态度与价值观

  通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。教学难点是:探究并发现零点存在性定理及其应用。

  五、教学方法

  新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

  在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的一部分。

  六、教学过程

  (一)引入新课

  首先我会带领学生复习一元二次方程的根及判别式,一元二次函数的图象。

  通过提问:一元二次方程的根与二次函数的图象有什么关系?

  引发学生思考,引出课题。

  复习旧知的目的是唤起学生已有的知识经验,把握好教学的起点,抓住方程的根和函数零点间的关系,引起学生学习新知的欲望。

  (二)探索新知

  接下来是最重要的探索新知环节。在这一部分,我会做好教师的引导者的角色,启发引导学生自主思考、探索、交流,形成知识,从而锻炼学生发现问题、提出问题、分析问题、解决问题的能力。

  (四)小结作业

  学生总结本节课收获,主要是知识、方法两方面。知识上主要是函数零点的判定定理,而方法主要是数形结合,和化归思想。这样可以进一步优化认知结构,从而较快的转化为学生的素质,也更进一步培养学生的归纳概括能力。

  作业:设置课后练习1,2。

  七、板书设计

  为体现教材中的知识点,以便于学生能够理解掌握。我的板书比较注重直观、系统的设计,这就是我的板书设计。

  最新方程的根与函数零点的说课稿 5

  我是今天的X号考生,今天我说课的题目是《方程的根与函数的零点》。

  教学理论认为,学生是学习的主体,教师是学习的组织者和引导者。依据这一教学理念,本节课我将从教材分析、学情分析、教学过程等几个方面来加以说明。

  一、说教材

  首先说说我对教材的理解。

  本节课选自人教A版高中数学必修1第三章第1节。结合学生之前所学基本初等函数的图象及性质,引入本节课的学习,不仅能让学生感受到知识之间的联系,同时也为后面学习“用二分法求方程的近似解”奠定基础。

  二、说学情

  下面谈谈学生的情况。

  之前函数与方程的大量学习为本节课打下了良好的基础,但学生并未考虑过如何判断任意一个方程是否有解。因此在教学过程中,我会注重对学生的启发引导,引导学生从具体到抽象,从特殊到一般,一步步得出结果。

  三、说教学目标

  根据以上对教材和学情的分析,我设计了如下教学目标:

  (一)知识与技能

  理解方程的`根与函数零点之间的关系,掌握函数零点存在的判定方法,会判断函数零点的个数。

  (二)过程与方法

  经历观察、思考、分析、猜想、验证的过程,提升抽象和概括能力;体验从特殊到一般的认知过程,发展函数与方程思想。

  (三)情感、态度与价值观

  感受数学知识前后间的联系,并逐步养成善于探索的思维品质。

  四、说教学重难点

  结合教学目标的确立,我设置本节课教学重点为:函数零点与方程的根之间的联系,利用函数性质判定零点存在。教学难点为:利用函数性质判定零点存在的探索及应用。

  五、说教法和学法

  为了实现教学目标,突破教学重难点,本节课我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。

  六、说教学过程

  下面我将重点谈谈我的教学过程。

  (一)引入新课

  首先是导入环节。我会带领学生复习到目前为止所学过的函数都有哪些。根据学生的举例我会提问:若将函数改写成方程,是否都可以求解?如若不能,能否判断出该方程是否有解?学生很容易发现,对于复杂方程或未接触过的方程,是没有办法求解的,由此引发认知冲突,进而进入本节课的学习。

  通过这样的导入,由已知到未知,学生能够感受到前后知识之间的联系以及知识的螺旋上升,有效激发学生的好奇心,为新课的展开做好铺垫。

  (二)讲解新知

  最新方程的根与函数零点的说课稿 6

  教学目标:

  1、 能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

  2、 理解函数的零点与方程的联系。

  3、 渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

  教学重点、难点:

  1、 重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

  2、 难点:函数零点存在的条件。

  教学过程:

  1、 问题引入

  探究一元二次方程与相应二次函数的关系。

  出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

  一元二次方程

  方程的根

  二次函数

  图像与x轴的交点

  x2-2x-3=0

  x1=-1,x2=3

  y=x2-2x-3

  (-1,0),(3,0)

  x2-2x+1=0

  x1= x2=1

  y=x2-2x+1

  (1,0)

  x2-2x+3=0

  无实数根

  y=x2-2x+3

  无交点

  (图1-1)函数y=x2-2x-3的`图像

  (图1-2)函数y=x2-2x+1的图像

  (图1-3)函数y=x2-2x+3的图像

  归纳:

  (1) 如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;

  (2) 如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

  反之,二次函数图像与x轴没有交点,相应的一元二次方程没有实数根;

  二次函数图像与x轴有交点,则交点的横坐标就是相应一元二次方程的实数根。

  2、 函数的零点

  (1) 概念

  对于函数y=f(x)(x∈d),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈d)的零点。

  (2) 意义

  方程f(x)=0有实数根

  函数y=f(x)的图像与x轴有交点

  函数y=f(x)有零点

  (3) 求函数的零点

  ① 代数法:求方程f(x)=0的实数根

  ② 几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。

  3、 函数零点的存在性

  (1) 二次函数的零点

  △=b2-4ac

  ax2+bx+c=0的实数根

  y=ax2+bx+c的零点数

  △﹥0

  有两个不等的实数根x1、x2

  两个零点x1、 x2

  △=0

  有两个相等的实数根x1= x2

  一个零点x1(或x2)

  最新方程的根与函数零点的说课稿 7

  知识与技能

  1.结合方程根的几何意义,理解函数零点的定义;

  2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所 在区间的方法.

  过程与方法

  1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

  2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;

  3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

  4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的'能力.

  情感、态度与价值观

  1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3.使学生感受学习、探索发现的乐趣与成功感.

  教学重点与难点

  教学重点:零点的概念及零点存在性的判定.

  教学难点:探究判断函数的零点个数和所在区间的方法.

  教学的方法与手段

  授课类型新授课教学方法启发式教学、探究式学习.

  最新方程的根与函数零点的说课稿 8

  一、教学内容解析

  本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

  函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

  函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。

  对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

  函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。

  本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。

  二、教学目标解析

  1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

  2.结合函数图象,通过观察分析特殊函数的零点存在的特点,通过问题,理解连续函数在某个区间上存在零点的判定方法,并能由此方法判定函数在某个区间上存在零点。了解定理应用的前提条件,应用的局限性,及定理的准确结论。

  3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。

  4.在学习过程中,体验函数与方程思想及数形结合思想。

  三、教学问题诊断分析

  1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。

  2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的.问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。

  3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

  四、教学过程设计

  (一)创设情景,揭示课题

  函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。

  案例1:周长为定值的矩形

  不妨取l=12

  问题1:求其面积的值:

  显然面积是一个关于x的一个二次多项式

  ,用几何画板演示矩形的变化:

  问题2:求矩形面积的最大值?

  当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?

  问题3:能否使得矩形的面积为8?你是如何分析的?

  (1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;

  (2)解方程:x(6-x)=8

  (3)方程x(6-x)=8能否从函数的角度来进行描述?

  问题4:

  一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?

  结论:

  代数式的值就是相应的函数值;

  方程的根就是使相应函数值为0的x的值。

  更一般地

  方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。

  设计意图:本节课是函数应用的第一课,有必要让学生对函数的应用有所了解。从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体的二次函数,推广到一般的二次函数,再进一步推广到一般的函数。

  (二) 互动交流 研讨新知

  1.函数零点的概念:

  对于函数

  ,把使

  成立的实数

  叫做函数

  的零点.

  2.对零点概念的理解

  案例2:观察图象

  问题1:此图象是否能表示函数?

  问题2:你能从中分析函数有哪些零点吗?

  问题3:从函数图象的角度,你能对函数的零点换一种说法吗?

  结论:函数

  的零点就是方程

  实数根,亦即函数

  的图象与

  轴交点的横坐标.即:

  方程

  有实数根

  函数

  的图象与

  轴有交点

  函数

  有零点.

  设计意图:进一步掌握函数的核心概念,同时通过图象进行一步完善对函数零点的全面理解,为下面借助图象探究零点存在性定理作好一定的铺垫。

  2.零点存在定理的探究

  案例3:下表是三次函数

  的部分对应值表:

  问题1:你能从表中找出函数的零点吗?

  问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?

  生:两边的函数值异号!

  问题3:如果一个函数f(x)满足f(a)f(b)<0,在区间(a,b)上是否一定存在着函数的零点?

  注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.

  问题4: 有位同学画了一个图,认为定理不一定成立,你的看法呢?

  问题5:你能改变定理的条件或结论,得到一些新的命题吗?

  如1:加强定理的结论:若在区间[a,b]上连续函数f(x)满足f(a)f(b)<0,是否意味着函数f(x)在[a,b]上恰有一个零点?

  如2.将定理反过来:若连续函数f(x)在[a,b]上有一个零点,是否一定有f(a)f(b)<0?

  如3:一般化:一个函数的零点是否都可由上述的定理进行判断?(反例:同号零点,如案例2中的零点-2)

  设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。

  (三)巩固深化,发展思维

  例1、求函数f(x)=㏑x+2x -6的零点个数。

  设计问题:

  (1)你可以想到什么方法来判断函数零点?

  (2)你是如何来确定零点所在的区间的?请各自选择。

  (3)零点是唯一的吗?为什么?

  设计意图:对所学内容巩固,可以借助<几何画板>画出函数f(x)的图象观察,也可借助列出函数值表观察。

  本题可以使学生意识对零点的区间是不唯一的,为下一节二分法求方程的近似解奠定基础。

  让学生进一步领悟,零点的唯一性需要借助函数的单调性。

  (四)归纳整理,整体认识

  请回顾本节课所学知识内容有哪些?

  所涉及到的主要数学思想又有哪些?

  你还获得了什么?

  (五)作业(略)

  最新方程的根与函数零点的说课稿 9

  学习目标

  1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;

  2. 掌握零点存在的判定定理.

  学习过程

  一、课前准备

  (预习教材P86~ P88,找出疑惑之处)

  复习1:一元二次方程 +bx+c=0 (a 0)的解法.

  判别式 = .

  当 0,方程有两根,为 ;

  当 0,方程有一根,为 ;

  当 0,方程无实根.

  复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?

  判别式 一元二次方程 二次函数图象

  二、新课导学

  ※ 学习探究

  探究任务一:函数零点与方程的根的关系

  问题:

  ① 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .

  ② 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .

  ③ 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .

  根据以上结论,可以得到:

  一元二次方程 的根就是相应二次函数 的图象与x轴交点的 .

  你能将结论进一步推广到 吗?

  新知:对于函数 ,我们把使 的实数x叫做函数 的零点(zero point).

  反思:

  函数 的零点、方程 的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?

  试试:

  (1)函数 的零点为 ; (2)函数 的零点为 .

  小结:方程 有实数根 函数 的图象与x轴有交点 函数 有零点.

  探究任务二:零点存在性定理

  问题:

  ① 作出 的`图象,求 的值,观察 和 的符号

  ② 观察下面函数 的图象,

  在区间 上 零点; 0;

  在区间 上 零点; 0;

  在区间 上 零点; 0.

  新知:如果函数 在区间 上的图象是连续不断的一条曲线,并且有 0,那么,函数 在区间 内有零点,即存在 ,使得 ,这个c也就是方程 的根.

  讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.

  ※ 典型例题

  例1求函数 的零点的个数.

  变式:求函数 的零点所在区间.

  小结:函数零点的求法.

  ① 代数法:求方程 的实数根;

  ② 几何法:对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

  ※ 动手试试

  练1. 求下列函数的零点:

  (1) ;

  (2) .

  练2. 求函数 的零点所在的大致区间.

  三、总结提升

  ※ 学习小结

  ①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理

  ※ 知识拓展

  图象连续的函数的零点的性质:

  (1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.

  推论:函数在区间 上的图象是连续的,且 ,那么函数 在区间 上至少有一个零点.

  (2)相邻两个零点之间的函数值保持同号.

  学习评价

  ※ 自我评价 你完成本节导学案的情况为( ).

  A. 很好 B. 较好 C. 一般 D. 较差

  ※ 当堂检测(时量:5分钟 满分:10分)计分:

  1. 函数 的零点个数为( ).

  A. 1 B. 2 C. 3 D. 4

  2.若函数 在 上连续,且有 .则函数 在 上( ).

  A. 一定没有零点 B. 至少有一个零点

  C. 只有一个零点 D. 零点情况不确定

  3. 函数 的零点所在区间为( ).

  A. B. C. D.

  4. 函数 的零点为 .

  5. 若函数 为定义域是R的奇函数,且 在 上有一个零点.则 的零点个数为 .

  课后作业

  1. 求函数 的零点所在的大致区间,并画出它的大致图象.

  2. 已知函数 .

  (1) 为何值时,函数的图象与 轴有两个零点;

  (2)若函数至少有一个零点在原点右侧,求 值.

  最新方程的根与函数零点的说课稿 10

  一、教学目标

  (1)知识与技能:

  结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。

  (2)过程与方法:

  培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。

  (3)情感态度与价值观:

  在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。

  二、教学重难点

  重点:体会函数零点与方程根之间的联系,掌握零点的概念

  难点:函数零点与方程根之间的联系

  三、教法学法

  以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台

  四、教学过程

  1.创设问题情境,引入新课

  问题1求下列方程的根

  师生互动:问题1让学生通过自主解前3小题,复习一元二次方程根三种情形。

  问题2填写下表,探究一元二次方程的根与相应二次函数与x轴的交点的关系?

  师生互动:让学生自主完成表格,观察并总结数学规律

  问题3完成表格,并观察一元二次方程的根与相应二函数图象与x轴交点的关系?

  师生互动:让学生通过探究,归纳概括所发现结论,并能用相对准确的数学语言表达。

  2.建构函数零点概念

  函数零点的概念:对于函数y=f(x),我们把使f(x)=0的`实数x叫做函数y=f(x)的零点。

  思考:

  (1)零点是一个点吗?

  (2)零点跟方程的根的关系?

  (3)请你说出问题2中3个函数的零点及个数?(投影问题2的表格)

  师生互动:教师逐一给出3个问题,让学生思考回答,教师对回答正确学生给予表扬,不正确学生给予提示与鼓励。

  3.知识的延伸,得出等价关系

  (1)方程f(x)=0有实数根(2)函数y=f(x)有零点

  (3)函数y=f(x)的图象与x轴有交点

  最新方程的根与函数零点的说课稿 11

  教学目标:

  1、 能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

  2、 理解函数的零点与方程的联系。

  3、 渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

  教学重点、难点:

  1、 重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

  2、 难点:函数零点存在的条件。

  教学过程:

  1、 问题引入

  探究一元二次方程与相应二次函数的关系。

  出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

  一元二次方程

  f(1)=12 -2*1-3=1-2-3=-4

  f(2)* f(1)=-4*5=-20﹤0

  问题2:在区间[2,4]呢?

  解:f(2)=(2)2-2*2-3=-3

  f(4)=42-2*4-3=5

  f(4)*f(2)=(-3)* 5=-15﹤0

  归纳:

  f(2)* f(1)﹤0,函数=x2-2x-3在[-2,1]内有零点x=-1;f(2)* f(4)﹤0,函数=x2-2x-3在[2,4]内有零点x=3,它们分别是方程=x2-2x-3的两个根。

  结论:

  如果函数 在区间 上的图像是连续不断的一条曲线并且有 ,那么,函数 在区间 内有零点,即存在 ,使得 ,这个 也就是方程 的根。

  ① 图像在 上的'图像是连续不断的

  ②

  ③ 函数 在区间 内至少有一个零点

  4、 习题演练

  利用函数图像判断下列二次函数有几个零点

  ① =-x2+3x+5 , ②=2x(x-2)+3

  解:①令f(x)=-x2+3x+5,

  做出函数f(x)的图像,如下

  ②=2x(x-2)+3可化为

  做出函数f(x)的图像,如下:

  (图4-2)

  它与x轴没有交点,所以方程2x(x-2)=-3无实数根,则函数=2x(x-2)+3没有零点。

  最新方程的根与函数零点的说课稿 12

  第一课时: 3.1.1

  教学要求:结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.

  教学重点:体会函数的零点与方程根之间的联系,掌握零点存在的判定条件.

  教学难点:恰当的使用信息工具,探讨函数零点个数.

  教学过程:

  一、复习准备:

  思考:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?

  .二、讲授新课:

  1、探讨函数零点与方程的根的关系:

  ① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?

  方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?

  方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?

  ② 根据以上探讨,让学生自己归纳并发现得出结论: → 推广到y=f(x)呢?

  一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.

  ③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.

  ④ 讨论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x轴交点的横坐标的关系?

  结论:方程f(x)=0有实数根 函数y=f(x) 的图象与x轴有交点 函数y=f(x)有零点

  ⑤ 练习:求下列函数的零点 ; → 小结:二次函数零点情况

  2、教学零点存在性定理及应用:

  ① 探究:作出 的图象,让同学们求出f(2),f(1)和f(0)的值, 观察f(2)和f(0)的符号

  ②观察下面函数 的图象,在区间 上______(有/无)零点; _____0(<或>). 在区间 上______(有/无)零点; _____0(<或>). 在区间 上______(有/无)零点; _____0(<或>).

  ③定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

  ④ 应用:求函数f(x)=lnx+2x-6的.零点的个数. (试讨论一些函数值→分别用代数法、几何法)

  ⑤小结:函数零点的求法

  代数法:求方程 的实数根;

  几何法:对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

  ⑥ 练习:求函数 的零点所在区间.

  3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理

  三、巩固练习:1. p97, 1,题 2,题 (教师计算机演示,学生回答)

  2. 求函数 的零点所在区间,并画出它的大致图象.

  3. 求下列函数的零点: ; ; ;

  4.已知 :(1) 为何值时,函数的图象与 轴有两个零点;

  (2)如果函数至少有一个零点在原点右侧,求 的值.

  5. 作业:p102, 2题;p125 1题

  第二课时: 3.1.2用二分法求方程的近似解

  教学要求:根据具体函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

  教学重点:用二分法求方程的近似解.

  教学重点:恰当的使用信息工具.

  教学过程:

  一、复习准备:

  1. 提问:什么叫零点?零点的等价性? 零点存在性定理?

  最新方程的根与函数零点的说课稿 13

  教学目标:

  1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

  2、理解函数的零点与方程的联系。

  3、渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

  教学重点、难点:

  1、重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

  2、难点:函数零点存在的条件。

  教学过程:

  1、问题引入

  探究一元二次方程与相应二次函数的关系。

  出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

  一元二次方程

  方程的根

  二次函数

  图像与X轴的交点

  x2-2x-3=0

  x1=-1,x2=3

  y=x2-2x-3

  (-1,0),(3,0)

  x2-2x+1=0

  x1=x2=1

  y=x2-2x+1

  (1,0)

  x2-2x+3=0

  无实数根

  y=x2-2x+3

  无交点

  (图1-1)函数y=x2-2x-3的图像

  (图1-2)函数y=x2-2x+1的图像

  (图1-3)函数y=x2-2x+3的图像

  归纳:

  (1)如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;

  (2)如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

  反之,二次函数图像与x轴没有交点,相应的一元二次方程没有实数根;

  二次函数图像与x轴有交点,则交点的横坐标就是相应一元二次方程的实数根。

  2、函数的零点

  (1)概念

  对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。

  (2)意义

  方程f(x)=0有实数根

  函数y=f(x)的`图像与x轴有交点

  函数y=f(x)有零点

  (3)求函数的零点

  ①代数法:求方程f(x)=0的实数根

  ②几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。

  3、函数零点的存在性

  (1)二次函数的零点

  △=b2-4ac

  ax2+bx+c=0的实数根

  y=ax2+bx+c的零点数

  △﹥0

  有两个不等的实数根x1、x2

  两个零点x1、x2

  △=0

  有两个相等的实数根x1=x2

  一个零点x1(或x2)

  △﹤0

  没有实数根

  没有零点

  (图2-1)方程ax2+bx+c=0的判别式△﹥0时,函数y=ax2+bx+c(a≠0)的图像

  (图2-2)方程ax2+bx+c=0的判别式△=0时,函数y=ax2+bx+c(a≠0)的图像

  (图2-3)方程ax2+bx+c=0的判别式△﹤0时,函数y=ax2+bx+c(a≠0)的图像

  (2)探究发现

  问题1:二次函数y=x2-2x-3在区间[-2,1]上有零点。试计算f(-2)与f(1)的乘积有什么特点?

  解:f(-2)=(-2)2-2*(-2)-3=4+4-3=5

  f(1)=12-2*1-3=1-2-3=-4

  f(2)*f(1)=-4*5=-20﹤0

  问题2:在区间[2,4]呢?

  解:f(2)=(2)2-2*2-3=-3

  f(4)=42-2*4-3=5

  f(4)*f(2)=(-3)*5=-15﹤0

  归纳:

  f(2)*f(1)﹤0,函数y=x2-2x-3在[-2,1]内有零点x=-1;f(2)*f(4)﹤0,函数y=x2-2x-3在[2,4]内有零点x=3,它们分别是方程y=x2-2x-3的两个根。

  结论:

  如果函数在区间上的图像是连续不断的一条曲线并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根。

  ①图像在上的图像是连续不断的

  ②

  ③函数在区间内至少有一个零点

  4、习题演练

  利用函数图像判断下列二次函数有几个零点

  ①y=-x2+3x+5,②y=2x(x-2)+3

  解:①令f(x)=-x2+3x+5,

  做出函数f(x)的图像,如下

  (图4-1)

  它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根,则函数y=-x2+3x+5有两个零点。

  ②y=2x(x-2)+3可化为

  做出函数f(x)的图像,如下:

  (图4-2)

  它与x轴没有交点,所以方程2x(x-2)=-3无实数根,则函数y=2x(x-2)+3没有零点。

  最新方程的根与函数零点的说课稿 14

  一、教学内容解析

  本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

  函数f(x)零点是中学数学中的重要概念之一。从函数值与自变量之间的关系来看,零点就是使函数值为0的实数x。从方程的角度来看,零点即为方程f(x)=0的实数根。而从函数的图形表示来看,零点则是函数与x轴交点的横坐标。函数作为中学数学的核心概念之一,其重要性之一在于函数能够与其他知识产生广泛的联系。而函数的零点就成为了这种联系的一个关键点,它将数与形、函数与方程有机地联系在了一起。

  函数零点存在性判定定理的目的是为了通过寻找函数的零点来研究方程的根。这进一步突显了函数思想的应用,并为二分法求解方程的近似解提供了知识和思想上的准备。这个定理无需证明,关键在于让学生通过自己的感知体验加以确认。为了加强对定理的全面理解,需要结合具体的例子来进行讲解,比如定理应用的局限性。即定理的前提是函数的图像必须是连续的,而且定理只能判定函数的“变号”零点。此外,在定理的结论中零点存在但不一定唯一,需要进一步结合函数的图像和性质来作出判断。

  对于函数与方程的关系,我们可以通过逐步认识来深入理解。教材通常采用由浅入深、循序渐进的原则进行讲解。首先,从学生认为较简单的一元二次方程和相应的二次函数入手,通过具体的例子引导他们建立一元二次方程的根与相应二次函数的零点之间的联系。然后,逐步推广到一般方程和相应函数的情况。

  函数和方程是数学中两个重要的概念。函数代表着一个动态的过程,而方程则代表着一个静态的结果。函数所描述的是整体性质,而方程则更注重局部问题。通过函数的角度来研究方程,实质上是将局部问题置于整体之中进行研究,将静态的结果纳入动态的过程中分析。这为今后进一步学习函数与不等式等其他知识提供了坚实的基础。

  本节课是函数应用的第一讲,所以在教学时应站在函数应用的角度上,通过与其他知识的联系来引入。

  二、教学目标解析

  1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

  2.通过观察函数的图像,我们可以发现一些特殊函数的零点存在的特点。例如,对于一个单调递增的函数,如果其在某个区间上有正值和负值出现,那么根据介值定理,可以判定该函数在这个区间上存在至少一个零点。类似地,对于一个单调递减的函数,在某个区间上有负值和正值出现时,也可以判定其存在至少一个零点。当然,判定函数在某个区间上存在零点的方法不仅限于单调性的分析。比如,我们可以通过观察函数的图像上的交点来判断是否存在零点。如果函数的图像与x轴相交,那么就意味着存在一个或多个零点。此外,我们还可以使用微积分中的牛顿法、割线法等方法来寻找函数在某个区间上的零点。需要注意的是,判定函数在某个区间上存在零点的方法并非适用于所有函数。有些函数可能具有特殊的性质或者图像特征,使得上述方法无法准确确定函数在某个区间上是否存在零点。因此,在应用这些方法之前,我们需要了解定理的前提条件,并考虑其局限性。总结起来,通过观察函数的图像、分析函数的单调性以及应用微积分中的方法,我们可以判定函数在某个区间上是否存在零点。然而,需要注意不同函数可能具有不同的特点和性质,判定方法的准确性和适用性也会有所不同。因此,在使用这些方法时需要谨慎,并考虑定理的前提条件和准确结论。

  3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。

  4.在学习过程中,体验函数与方程思想及数形结合思想。

  三、教学问题诊断分析

  1.通过前面的学习,学生已经了解了一些基本初等函数的模型,并且掌握了函数图象的一般画法,以及一定的看图识图能力。这为本节课利用函数图象来判断方程根的存在性提供了一定的知识基础。然而,学生在理解函数零点的概念本质时存在一些问题,主要是缺乏对函数的观点和函数应用的意识,导致对函数与方程之间的联系缺乏了解。因此,在作为函数应用的第一课时中,有必要明确函数的核心地位,即说明函数与其他知识的联系以及它在生活中的应用,从而初步树立起函数应用的意识。并且,从这个基础上出发,通过问题的设定引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,突破学生对这一认识层面的困惑。

  2.教材通常不要求对于零点存在的判定定理进行证明,因此教师可以通过提供一些具体案例让学生进行操作和感知,同时鼓励他们举例来验证,并最终自主地获得并确认该定理的`结论。学生在考虑定理的条件和结论时往往不够深入,所以教师可以通过提出具体问题,引导他们从不同角度如正面、反面、侧面等重新审视对于定理的理解。

  3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

  四、教学过程设计

  (一)创设情景,揭示课题

  函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。

  案例1:周长为定值的矩形

  不妨取l=12

  问题1:求其面积的值:

  显然面积是一个关于x的一个二次多项式,用几何画板演示矩形的变化:

  问题2:求矩形面积的最大值?

  当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?

  问题3:能否使得矩形的面积为8?你是如何分析的?

  (1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;

  (2)解方程:x(6-x)=8

  (3)方程x(6-x)=8能否从函数的角度来进行描述?

  问题4:

  一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?

  结论:

  代数式的值就是相应的函数值;方程的根就是使相应函数值为0的x的值。

  更一般地方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。

  设计意图:本节课是函数应用的第一堂课,旨在让学生对函数应用有所了解。通过具体问题的引导,我们将揭示函数与代数式、方程之间的内在联系。我们以学生熟悉的二次函数为起点,推广到一般的二次函数,并进一步推广到一般的函数的应用。

  (二)互动交流研讨新知

  1.函数零点的概念:

  对于函数,把使成立的实数叫做函数的零点.

  2.对零点概念的理解

  案例2:观察图象

  问题1:此图象是否能表示函数?

  问题2:你能从中分析函数有哪些零点吗?

  问题3:从函数图象的角度,你能对函数的零点换一种说法吗?

  结论:函数的零点是指使得函数取值为0的横坐标,也就是方程的实数根。换句话说,函数的图像与x轴相交的点就是函数的零点。即:如果一个方程有实数根,那么函数的图像与x轴有交点,这个交点就是函数的零点。

  设计意图:进一步深入了解函数的核心概念,同时通过图像更全面地理解函数零点,并为下一步使用图像探索零点存在性定理做好必要准备。

  2.零点存在定理的探究

  案例3:下表是三次函数的部分对应值表:

  问题1:你能从表中找出函数的零点吗?

  问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?

  生:两边的函数值异号!

  问题3:如果一个函数f(x)满足f(a)f(b)0,在区间(a,b)上是否一定存在着函数的零点?

  注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.

  问题4:有位同学画了一个图,认为定理不一定成立,你的看法呢?

  问题5:你能改变定理的条件或结论,得到一些新的命题吗?

  如1:加强定理的结论:若在区间[a,b]上连续函数f(x)满足f(a)f(b)0,是否意味着函数f(x)在[a,b]上恰有一个零点?

  如2.将定理反过来:若连续函数f(x)在[a,b]上有一个零点,是否一定有f(a)f(b)0?

  如3:通常情况下,一个函数的零点可以通过上述定理来判断。然而,存在一种特殊情况,即同号零点。这意味着函数在某个点上取得零值,但是其导数并不改变符号。因此,这种情况不能通过定理来判断零点的存在与否。一个例子是函数f(x) = x^2 - 4x + 4。此函数在x = 2处有一个同号零点,即f(2) = 0,但是该函数的导数f(x) = 2x - 4在x = 2处也为0,并且保持负号。因此,尽管满足了定理中的条件,我们无法使用定理来判断零点的存在。

  设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。

  (三)巩固深化,发展思维

  例1、求函数f(x)=㏑x+2x -6的零点个数。

  设计问题:

  (1)你可以想到什么方法来判断函数零点?

  (2)你是如何来确定零点所在的区间的?请各自选择。

  (3)零点是唯一的吗?为什么?

  设计意图:巩固所学内容的方法有很多种,其中一种方法是利用几何画板绘制函数f(x)的图像并进行观察。另外,我们还可以列出函数值表来更好地观察函数的性质。希望以上回答能够满足您的要求,如有需要请随时告诉我。

  本题可以帮助学生认识到对于某个零点,存在多个不同的区间,并为下一节学习二分法求方程近似解提供基础。

  让学生进一步领悟,零点的唯一性需要借助函数的单调性。

  (四)归纳整理,整体认识

  请回顾本节课所学知识内容有哪些?

  所涉及到的主要数学思想又有哪些?

  你还获得了什么?

  (五)作业(略)

  最新方程的根与函数零点的说课稿 15

  一、背景分析

  1、学习任务分析

  函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在新课程教学中有着不可替代的重要位置.为什么要引进函数的零点?原因是要用函数的观点统帅中学数学,把解方程问题纳入到函数问题中.引入函数的零点,解方程的问题就变成了求函数的零点问题.

  就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.即体现了函数与方程的思想,又渗透了数形结合的思想.总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  2、学生情况分析

  学生在学习本节内容之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,尤其熟悉二次函数,并且已经具有一定的数形结合思想,这为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持;学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据.但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程,发现函数零点的存在性事造成了一定的难度。又加上函数零点存在性的判定方法表述较为抽象难以概括。因此教学中尽可能提供学生动手实践的机会,让学生亲身体验中掌握知识与方法,充分利用学生熟悉的'二次函数图象和一元二次方程通过直观感受发现并归纳出函数零点的概念;在函数零点存在性的判定方法的教学时

  应该为学生创设适当的问题情境,激发学生的思维引导学生通过观察、计算、作图、思考理解问题的本质。

  二、教学目标设计

  1、结合《课程标准》对本节的要求,制定本节课的教学目标为:

  (1)、以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系.

  (2)、掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。

  (3)、让学生在探究过程中体验发现的乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及分析问题解决问题的能力。

  2、教学重点难点设计

  重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

  三、教学媒体设计

  根据本节课的教学任务以及学生学习的需要,教学媒体设计如下:

  1、多媒体辅助教学

  在对某区间上图象连续的函数存在零点的判定方法的探究过程中,利用小马过河的形象实例把抽象的判定定理还原到具体的可观察可操作的层面上来,弱化纯粹的逻辑推理,把“数”转化到了“形”.

  多媒体使用也为学生提供了更广阔的思维空间,提高了探究活动的质量。同时,为有效的指导学生活动,在教学中也使用了实物投影仪,展示学生所做的练习,并在此过程中队学生进行针对性的评价。

  2、设计合理的板书

  为对本课有一个整体的认识,教学时将重要内容进行板书,如:

  四、教学过程设计

  (一)设问激疑--创设情境问题1:求下列方程的根.(1)(2)(3)

  设计意图:从学生较为熟悉的方程(一元一次、一元二次方程)出发,再提出稍微难一点的方程符合学生的认知规律,进而使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲。

  (二)启发引导,初步探究问题2:作出下列二次函数的图象

  (1)y=x2+2x-3 (2)y=x2+2x+1 (3)y=x2+2x+3以上各函数图象与相应方程的根有何关系?

  设计意图:与问题1联系起来结合一次、二次函数图象,判断方程根的存在性及根的个数,为理解函数的零点,了解函数的零点与方程根的联系作准备,充分发挥学生的主观能动性。问题3:二次函数y=ax2+bx+c (a≠0)的图象与x轴交点和相应一元二次方程ax2+bx+c=0(a≠0)的根有何关系?

  设计意图:把具体的结论推广到一般情况,向学生渗透“从最简单、最熟悉的问题入手解决较复杂问题”的思维方法,培养学生的归纳能力.

  由此的出结论:二次函数图象与x轴交点的横坐标就是相应方程的实数根。

  (三)形成概念

  归纳:方程f(x)=0的实数根就是函数y=f(x)图象与x轴交点的横坐标。定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。由此引出课题:等价关系

  设计意图:让学生从熟悉的环境中发现新知识,并与原有的知识形成联系,利用方程与函数的联系,培养学生观察、归纳的能力,并渗透数形结合的数学思想。

【最新方程的根与函数零点的说课稿】相关文章:

《方程的根与函数的零点》说课稿10-11

高一数学《方程根与函数零点》说课稿11-14

方程的根与函数的零点的教学反思10-30

《方程根与函数零点》高中数学必修说课稿08-21

关于《方程的根与函数的零点》的教学反思08-04

方程根与函数零点教学设计(通用6篇)04-26

方程的根与函数的零点评课稿范文12-05

《方程》说课稿06-09

关于函数与方程的解题方法及总结06-22