数学六年级《分数除法》的说课稿(精选5篇)
作为一位无私奉献的人民教师,时常要开展说课稿准备工作,编写说课稿是提高业务素质的有效途径。我们该怎么去写说课稿呢?下面是小编整理的关于数学六年级《分数除法》的说课稿(精选5篇),希望能够帮助到大家。
《分数除法》的说课稿1
一、教材分析
本节课的教学设计力图体现尊重学生,注重发展,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与分数乘法中求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。
二、学情分析
在学习了分数乘法的基础上,孩子们对分数的运算有了一定的'掌握,计算能力的日益提高,也使得孩子们有更深一步探求的欲望,因此,利用孩子们学习的积极性,开展本节课,培养学生发现问题、提出问题、分析问题和解决问题的能力,从而培养学生的基本技能。
三、教学目标
根据上述对教材内容和学生实际情况的分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
基础知识目标:使学生学会掌握简单分数除法应用题的解法,能熟练地列方程解答这类应用题。
基本技能目标:进一步培养学生解决问题的能力,增强学生的应用意识。
基本思想目标:在充分利用教材情境引导学生学习分数除法的同时,渗透数形结合、建模、迁移等数学思想。
基本活动经验目标:激发学生学习数学的兴趣,让学生树立能够学好数学的信心。
四、教学重点与难点
根据教材内容和本班学生的实际情况我把弄清单位1的量,会分析题中的数量关系确定为本节的教学重点;把掌握分数除法应用题的解题方法确定为本节的教学难点。
五、教学方法
通过以下的方法让学生亲身体验合作的成功和愉悦。
1.观察发现法,通过观察电脑课件中国王的故事的演示,突出单位1这一重要知识点。
2.尝试发现法,让学生通过小组讨论的方式,互相讲解自己的方法和见解,自己去列式,在尝试的过程中发现问题。
《分数除法》的说课稿2
撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套五年级下册《分数除法》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的`年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。
教学内容(课题):倒数
教学目标和要求:
1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
教学重点:
会求一个数的倒数。
教学难点
理解“倒数”是不能孤立存在的。
教学准备:
教学时数:1课时
教学过程:
一、教学过程
师:请同学们结合语文的学习,猜几个字,中国的汉字结构优美,有上下结构,左右结构,假如把“杏”上下颠倒,变成什么字了?(呆)把“吴”字颠倒呢?(吞) 那数是不是也有这样的特性呢?
师:事实上,一个数也可以倒过来变成另一个数,比方3/4倒过来变成了4/3,1/7倒过来变成7/1。
师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)
师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察考虑,看你有什么发现。
组织同学交流自身的发现,引导同学总结几组算式的一起特点(乘积都是1),以和算式左边的两个乘数的关系(分子和分母互相颠倒),从而引出倒数的概念。
师:你怎样描述上面算式中两个乘数的关系呢?(根据同学的回答,教师板书)
乘积是1乘积是1
2/3*3/2=12*1/2=1
8/11*11/8=11/10*10=1`
7/9*9/7=17*1/7=1
6/5*5/6=11/5*5=1
分子和分母颠倒分子和分母颠倒
师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(同学举例,教师板书:2/3和3/2互为倒数 )
师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(同学举例,如互为朋友是指互相是朋友 )
二、试一试
主要是让同学理解整数可以看作是分母为1的分数,1的倒数还是1。
三、想一想
教师借助分数中分母不能为0,说明0没有倒数。
四、练一练
同学独立完成P24。
《分数除法》的说课稿3
一、说教材:
本课是新世纪版《义务教育课程标准实验教科书》五年级下册第25页-26页的内容。这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把4/7平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是4/7 ÷2,被除数4/7的分子式能被除数整除的,而第(2)题的算式是4/7 ÷3,被除数4/7的分子是不能被3整除的。无论哪一种方法,目的都是就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的.分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
二、说教学目标:
通过分析,我认为这节课应该达到以下的教学目标:
1、在具体情境中,借助操作活动,探索并理解分数除以整数的意义。
2、探索分数除以整数的计算方法,并能正确计算。
3、在分数除法算理探究中,渗透转化思想。
三、教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
四、教学难点:分数除以整数计算法则……
五、教学过程:
一、旧知复习,蕴伏铺垫
(1)求下列各组数的倒数。
(2)把2张长方形的纸平均分成2份,每份是多少?把1张长方形的纸平均分成2份,每份是多少?学生理解题意列出算式,并说出每个算式表示的意义。
二、感知分数除法的意义
课件出示:把一张长方形纸的4/7平均分成2份,每份是这张纸的几分之几?
1、提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)
2、把4/7平均分成2份,也就是把图上的哪一个部分平均分成2份?得多少呢?
3、谁来说说你是怎样想的?
学生可能会回答:
1)把这4份平均分成2份,每份是2,占这张纸的2/7。
2)4/7里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。
4、怎样列式计算呢?(板书:4/7÷2=)到底应该怎样计算分数除法呢?下面请同学们和老师一齐来探索分数除法的计算方法。(板书课题:分数除法(一))
三、大胆猜想,举例验证K12教育空间
1、提问:想一想,如果不看图,你会计算4/7÷2=2/7吗?你能提出你的大胆猜想吗?
学生可能会得到“分母不变,被除数的分子除以整数得到商的分子”的结论,举例验证。
师:大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。
2、课件出示:把一张长方形纸的4/7平均分成3份,每份是这张纸的几分之几?
师:可以列出算式吗?
四、激发矛盾,再次探究
1、提问: 4/7÷3这道题与刚才那几道有什么不同?(分数的分子不能被除数整除)
如果要算4/7÷3刚才的方法还能用吗?
师:看来我们要换一个思维方式探索能普遍运用的方法。
2、提问:把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们用课前准备的图形分一分、涂一涂。涂好后在四人小组内交流一下怎样分。
3、你是怎样分的?
(把4/7平均分成3份,每一份就是这张纸的4/21。)
4、把4/7平均分成3份,这其中的一份实际上就是4/7的几分之几?求4/7的1/3我们可以用什么方法来计算?(板书)
5、对照这两道算式,你有什么想法吗?
师:把4/7平均分成3份,就相当于求4/7的1/3,结果都是4/21。因此,中间我们可以用等号连起来。你们看,这样,原来的除法算式就转化成了什么算式的?什么变了?什么没变?这样有什么作用?
师:分数除以整数,就等于分数乘以整数的倒数。
6、小结:同学们真能干!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。
小结:这就是分数除以整数的常用的方法,谁来说一说这种算法是怎样的?那么0能不能作除数呢?所以,这里还要补上一个条件(0除外)。
7、在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受什么条件限制,它的应用更普遍。当然,分数的分子如果正好能被整数整除时,我们也可以应用第一种算法计算,具体问题具体分析,做题时要合理灵活地选择计算方法。
五、巩固提升
1、引导学生完成填一填,想一想。(学生独立完成,全班交流。)
2、引导学生完成试一试。
六:课堂总结:谈一谈这一节课你有哪些收获?
《分数除法》的说课稿4
一、说教材
1、教学内容
本课是《义务教育课程标准实验教科书》(北师大版)数学五年级下册第25页到26页的内容。
2、教材分析
这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把 平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是 ÷2,被除数 的分子是能被除数整除的,而第(2)题的算式是 ÷3,被除数 的分子是不能被3整除的。无论哪一种方法,目的都是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
过程与方法目标:通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。情感、态度与价值观目标:通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
定位为理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
定位为分数除以整数计算法则的推导过程。
3、教学准备
为了更好地对本节课进行教学,课前我准备了多媒体课件、长方形纸等。
二、说教法与学法
根据新课标的要求和本节教学实际,在设计本课教学时我主要突出以下几点:
1、在注重算理和算法教学的同时,体现估算。
《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生今后继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。
2、以探索为主线,鼓励学生算法多样化。
学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
3、让学生充分评价和反思。
在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。
为了达成上述目标,在本节课中我将贯彻“以学生为主体,教师为主导,训练思维为主线”的教学原则:
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除以整数的意义和计算方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教学过程
根据以上的教学理念,结合本课的特点,我把本课的教学程序设计为以下三个层次进行教学:
第一层次:教学分数除法的意义。
通过多媒体课件创设情境涂一涂,得出分数除以整数的算式 ,让学生理解分数除法的意义和整数除法的意义相同。
第二层次:大胆猜想分数除法的计算方法。
这个算式的特殊性在于分子能够整除整数,学生容易理解分数除法的意义并找到特殊的计算方法,因此放手让学生大胆猜想分数除法的计算方法,再利用多媒体课件操作探究,使学生理解分数的分子能被整数整除时,可直接去除;并举例操作验证这一算法。
第三层次:激发矛盾,再次探究。
让学生用探索到的方法来计算 。此时学生发现分子除以整数除不尽,分子除以整数的方法不适用。知识矛盾的冲突引发学生进一步观察和思考,并再次利用多媒体课件操作探究,从特殊到一般,探索新的计算方法。
具体教学环节设计如下:
(一) 旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
【设计意图】本节课的内容是以倒数为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数的相关知识是很有必要的。
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
【设计意图】本环节设置了一个“买白糖”的具体情境,并展示了三个层层递进的问题,在帮助学生复习整数除法的同时,引出了本节课的主要内容——分数除以整数。由于设置了三个递进的问题,学生不会觉得问题3的提出很突然,并且,由于有了问题2的铺垫,列出问题3的算式也较为容易。
(二) 创设情境,理解意义
展示多媒体:
把一张纸的 平均分成2份,每份是这张纸的几分之几?
让学生自主思考解决这个问题。学生利用事先准备好的纸,先把纸平均分成7份,再涂出其中的4 份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作学生达成共识: 里有4个 ,平均分成2份,每份就是2个 ,是 。接着让学生列出算式 ÷2= ,在探究过程中,学生同时理解了分数除法的'意义。
(三) 大胆猜想,举例验证
学生通过操作,明白 是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。
【设计意图】大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。科学的验证可不仅仅是一两道题就能得出结论,数十名同学会举例出数十道不同类型的分数除法算式。而其中有些算式是分子除以整数除不尽的。
(四) 激发矛盾,再次探究
学生很快发现有些算式是无法用以上结论计算出来的,如 ÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如 ÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。
【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。
根据学生的小组讨论,学生发现把 平均分成3份,每一份就是这张纸的 。得到的算式是 ÷3= 。此时我还引导学生发现:把 平均分成3份,这其中的一份实际上就是 的 ,而求一个数的几分之几可以用乘法来计算,算式是 × = 。比较两个算式,学生很快发现它们是相等的。由此,学生再一次得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
【设计意图】这一环节,我引导学生根据乘法的意义来解决分数除法的计算方法,即将新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。这一环节主要也是学生自己发现,学生的主体地位得到尊重,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。
(五)再次验证,分层练习
多媒体出示:
1、 3/5÷3 =; 3/4÷4= ;4/11 ÷5=; 8/9÷6=; 6/7÷8=; 4/15÷12=;
2、 ( )×9=1/3 ;8×( )=; 5×( )= 4/3;( )×5= 1/2;( )×2= 4/5;4×( )= 1/4;
3、找规律填数: 8/9,4/9,( ),1/9 ,1/18,( )。
【设计意图】一个新的计算结论必须反复验证。让学生通过实际运算再次验证一个分数除以整数的意义和计算方法,学生在不断地思考与验证中,发现了第二种计算方法的普遍性,也深刻理解了分数除法的计算算理。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,也是新理念的挑战,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
四、说板书设计
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
把一张纸的 平均分成3份,每份是这张纸的几分之几?
除以一个整数(零除外)等于乘这个整数的倒数。
【设计意图】这样的板书设计集条理性、科学性、整体性和概括性为一体,有利于学生将教材的知识结构转化为学生头脑中的认知结构,能够体现出新旧知识的密切联系。
《分数除法》的说课稿5
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生学习的难点。
教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
根据教材特点和学生实际我确定本节课的教学目标是:
(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答稍复杂分数除法应用题。教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法
1.自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2.设计教法体现主体
课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。
四、说过程
1.复习铺垫(分两个内容)
现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9
让学生来说说等量关系,找一找单位“1”
合唱队有女生30人,男生比女生多1/3,女生有多少人?
意图:解决问题中关键是找出题目中关键句的等量关系,所以安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2.教学新知
改例题为男生比女生多1/3,女生有多少人?
(补充)男生比女生少1/3,女生有多少人?
比较的目的`:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,所以我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。
例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。
【《分数除法》的说课稿】相关文章:
《分数除法》说课稿08-01
分数与除法说课稿08-17
《分数除法》说课稿05-16
《分数除法》说课稿12-22
《分数与除法》说课稿02-21
《分数与除法》说课稿10-06
《分数与除法》说课稿06-22
分数与除法说课稿课件01-22
《分数与除法》说课稿范文03-03