《绝对值》说课稿

时间:2023-11-09 11:20:40 晓丽 说课稿 我要投稿

《绝对值》说课稿(通用10篇)

  作为一位优秀的人民教师,可能需要进行说课稿编写工作,说课稿有助于教学取得成功、提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的《绝对值》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

《绝对值》说课稿(通用10篇)

  《绝对值》说课稿 1

  教学目标

  1、知识与技能。

  ①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值。

  ②通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2、过程与方法

  经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

  3、情感、态度与价值观

  ①通过解释绝对值的几何意义,渗透数形结合的思想。

  ②体验运用直观知识解决数学问题的成功。

  教学重点难点

  重点:给出一个数,会求它的绝对值。

  难点:绝对值的几何意义、代数定义的导出。

  教与学互动设计

  (一)创设情境,导入新课

  活动:请两同学到讲台前,分别向左、向右行3米。

  交流:

  ①他们所走的路线相同吗?

  ②若向右为正,分别可怎样表示他们的位置?

  ③他们所走的路程的远近是多少?

  (二)合作交流,解读探究

  观察出示一组数6与—6,3。5与—3。5,1和—1,它们是一对互为________,它们的__________不同,__________相同。

  总结:例如6和—6两个数在数轴上的'两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和—6的绝对值。

  绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。

  想一想—3的绝对值是什么?

  《绝对值》说课稿 2

  教学目标

  1、知识与技能

  会利用绝对值比较两个负数的大小

  2、过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力

  3、情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心

  教学重点难点

  重点:利用绝对值比较两个负数的大小

  难点:利用绝对值比较两个异分母负分数的大小

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│

  (2)4与-5

  (3)0与3

  (4)-7和0

  (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数

  思考 若任取两个负数,该如何比较它的大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的.反而小,或说,两个负数绝对值小的反而大

  注意

  ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小,即:利用数轴来比较有理数的大小。

  《绝对值》说课稿 3

  教学目标

  1、了解绝对值的概念,会求有理数的绝对值;

  2、会利用绝对值比较两个负数的大小;

  3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

  教学建议

  一、重点、难点分析

  绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

  教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  绝对值的定义;

  绝对值的表示方法;

  用绝对值比较有理数的大小。

  三、教法建议

  用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。可以把利用数轴给出的定义作为绝对值的一种直观解释。

  此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。

  四、有关绝对值的一些内容

  1、绝对值的代数定义

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  2、绝对值的`几何定义

  在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

  3、绝对值的主要性质

  (1)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。

  (2)两个相反数的绝对值相等。

  五、运用绝对值比较有理数的大小

  1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的绝对值;

  (2)比较这两个绝对值的大小;

  (3)根据“两个负数,绝对值大的反而小”作出正确的判断。

  2、两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。

  《绝对值》说课稿 4

  教学目标

  1.知识与技能

  ①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值.

  ②通过应用绝对值解决实际问题,体会绝对值的意义和作用.

  2.过程与方法

  经历绝对值的代数定义转化成数学式子的'过程中,培养学生运用数学转化思想指导思维活动的能力.

  3.情感、态度与价值观

  ①通过解释绝对值的几何意义,渗透数形结合的思想.

  ②体验运用直观知识解决数学问题的成功.

  教学重点难点

  重点:给出一个数,会求它的绝对值.

  难点:绝对值的几何意义、代数定义的导出.

  教与学互动设计

  (一)创设情境,导入新课

  活动

  请两同学到讲台前,分别向左、向右行3米.

  交流

  ①他们所走的路线相同吗?

  ②若向右为正,分别可怎样表示他们的位置?

  ③他们所走的路程的远近是多少?

  (二)合作交流,解读探究

  观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同.

  总结: 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.

  绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.

  想一想 -3的绝对值是什么?

  《绝对值》说课稿 5

  一、教学目标:

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0.

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的`几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

  用字母a表示数,则绝对值的代数意义可以表示为:

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1.求8,-8,,-的绝对值。

  按教材方法讲解。

  例2.计算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一个数的绝对值等于2,求这个数。

  解:∵|2|=2,|-2|=2

  ∴这个数是2或-2.

  五、巩固练习

  练习一:教材P641、2,P66习题2.4A组1、2.

  练习二:

  1.绝对值小于4的整数是____.

  2.绝对值最小的数是____.

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业

  教材P66习题2.4A组3、4、5.

  《绝对值》说课稿 6

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (四)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (五)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的`直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

  《绝对值》说课稿 7

  一、知识与技能

  (1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

  (2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  二、过程与方法

  通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。

  三、情感态度与价值观

  培养学生积极参与探索活动,体会数形结合的方法。

  四、教学重、难点与关键

  1.重点:正确理解绝对值的概念,能求一个数的绝对值。

  2.难点:正确理解绝对值的几何意义和代数意义。

  3.关键:借助数轴理解绝对值的.几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义。

  五、教学过程

  1.复习提问,新课引入

  2.什么叫互为相反数?

  3.在数轴上表示互为相反数的两个点和原点的位置关系怎样?

  六、新授

  在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。

  观察课本第11页图1.2-5,回答:

  (1)两辆汽车行驶的路线相同吗?

  (2)它们行驶路程的远近相同吗?

   这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.

  课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。

  这里的数a可以是正数、负数和0

  《绝对值》说课稿 8

  一、学习与导学目标:

  知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

  过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

  情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

  二、学程与导程活动:

  A、创设情境(幻灯片或挂图)

  1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

  再如测量误差问题、排球重量谁更接近标准问题

  2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

  B、学习概念:

  1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

  如在数轴上表示数-6的点和表示数6的点与原点的`距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

  2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

  (2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

  (3)︱0︱= 。(幻灯片)

  思考:你能从中发现什么规律?引导学生得出:(幻灯片)

  性质:一个正数的绝对值是它本身;

  一个负数的绝对值是它的相反数;

  零的绝对值是零。

  如果用字母a表示有理数,上述性质可表述为:

  当a是正数时,︱a︱=a;

  当a是负数时,︱a︱=-a;

  当a=0时,︱a︱=0。

  解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

  在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

  3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

  显然,结合问题的实际意义不难得到:-4-202。

  因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

  再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

  通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

  两个负数,绝对值大的反而小。

  4、师生活动比较下列各对数的大小:P17例,P18练习。

  5、师生小结归纳(幻灯片)

  三、笔记与板书提纲:

  1、 幻灯片

  2、 师生板演练习P15/1

  四、练习与拓展选题:

  P19/4,5,9,10

  《绝对值》说课稿 9

各位评委,领导:

  下午好!

  我叫xxx,来自四川师范大学。今天我说课的课题是《绝对值》。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  (一)教材的地位和作用

  《绝对值》是七年级上第二章的内容。《绝对值》是在引入有理数和数轴等基本概念后又一重要内容,在教材编排中起承上启下的作用,是学习有理数加减法、乘除法的基础,在今后学习二次根式化简时,也是一个必不可少的工具,它也是我们所认识的第一个非负数。

  本节课要求从代数与几何两个角度初步理解绝对值的概念,能求一个数的绝对值。通过应用绝对值解决实际问题,使学生体会绝对值的意义,感受数学在生活中的价值。对于从没有学习过类似知识的七年级学生来说,接受起来有点难和慢,尤其在绝对值的意义方面有一定的难度。但七年级学生有思维活跃,富有激情的特点,我在教学时充分把握和利用了这一特点。

  (二)学情分析

  通过前一阶段的教学,学生对数轴和有理数的认识已有了一定的认知结构,主要体现在三个层面:

  知识层面:学生在已初步掌握了数轴和相反数,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

  能力层面:学生在初中已经初步具备了数形结合的思想。

  情感层面:学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡.

  (三)教学内容

  本节内容分1课时学习。(本课时,品味数学中的和谐美,体验成功的喜悦。)

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和七年级学生的认知规律,本节课的教学目标确定为:

  知识与技能目标:

  ⑴借助数轴,初步理解绝对值的概念,会求一个数的绝对值

  ⑵通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用。

  过程与方法:

  ⑴使学生形成从一般到特殊的解题思想,养成严密的思维习惯。

  ⑵培养学生主动探索,敢于发现,合作交流的精神。

  情感态度与价值观:

  ⑴通过对形式不同的问题的`解答,激发学生学习的积极性和兴趣,使全体学生积极参与,体验成功的喜悦。

  ⑵对学生进行“实践——认识——实践”的辩证唯物主义教育。

  三、重难点分析

  重点:理解绝对值的概念,绝对值的简化和计算,两个负数大小的比较。   难点:绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

  四、教法与学法分析

  (一)学法指导

  在学生的学法上我贯彻的指导思想是“把学习的主动权交还给学生”,倡导“自主、合作、探究的”的学习方式,采用了(“导—思—点拨—练”)的学习方法,让学生自主参加知识的发生、发展、形成过程。具体采用了领悟式指导法、迁移式指导法、点拨式指导法、反馈式指导法等方法。

  (二)教法分析

  数学是一门培养人的思维、发展人的思维的重要学科,因此,在教学中,对学生不仅要“授之以语”更要“授之以渔”;不仅要“知其然”更要“知其所以然”,因此基于本节课的特点我着重采用情景教学与问题教学相结合的教学方法,充分发挥七年级学生思维活跃、富有激情的特点,组织学生合作交流,体验学校的全过程,让学生在活动中增长知识、锻炼思维。

  五、说教学过程

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  环节一 创设情景,导入主题

  首先,我演示课件:甲、乙两辆车从长途汽车站开出,甲车向东行驶5千米到达一候车亭,乙向西行驶5千米到达另一候车亭。

  提问:

  ⑴如何利用有理数表示它们的行驶情况?

  ⑵这两个有理数有什么关系?

  ⑶在数轴上把这两个有理数表示出来。

  ⑷若每辆车行驶没千米耗油0.2升,则甲乙各耗多少升油?

  ⑸计算计算机耗油的过程中,只与什么有关,与什么无关?

  设计意图:首先通过创设问题情境,引出课题,出示教学目标,激发学生的探求欲望。其次,通过前三个问题,起到复习有理数概念和数轴、相反数等知识的目的,通过后两个问题让学生联系实际生活,在学生感觉亲近、熟悉的基础上使学生充分相信日常生活中确实有一些量与方向无关,也是学生产生疑问:“到底什么是绝对值?和上面的例子有什么关系?”此时引出课题——绝对值,从而为学习新知识打下基础。

  环节二 得出定义,揭示内涵

  我继续提问:在刚才的问题中,两辆车行驶的路程都是相等的,我们可以说+5和-5的绝对值相等(指数轴上)都是5。同学们,就我们刚才所讲的内容,你们猜一猜:什么事绝对值呢?大家可以自由讨论2分钟,然后举手回答。

  设计意图:对学生提问让他们自由讨论然后回答问题,这样可以培养学生的合作能力和竞争意识,让学生自己概括感知的知识内容,有利于学生在实践中感悟知识的生成过程,也培养了学生的语言表达能力。

  等学生回答完后,我表扬同学然后及时给出定义。由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用在幻灯片里数轴直接给出绝对值的几何定义:一般地,数轴上表示数的点与原点的距离叫做这个数的绝对值,(absolute value)这个定义学生接受起来比较容易。

  设计意图:用幻灯片中的数轴配合给出绝对值的定义,突出了本节课的重点,同时有层次的分化了难点,从数形结合的角度去分析解决问题,让学生充分体会数与形之间紧密的联系,也渗透了数形结合的思想。

  环节三 比旧悟新

  在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。

  接着为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。老师就学生的回答情况给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。

  设计意图:我和学生通过上面的共同交流,让学生尝试应用所学的知识来解决一些简单的习题,使学生在做题过程中体会成功的喜悦。

  环节四 反馈矫正,夯实基础

  为巩固本节的教学重点我再次给出几道问题:

  1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?

  2)绝对值是0的数有几个?各是什么?

  3)绝对值小于3的整数一共有多少个?

  4)判断:如果一个数的绝对值是它本身,那么这个数是整数。

  设计意图:通过以上练习,学生可以进一步巩固有理数的绝对值的特点,在掌握知识的基础上达到灵活运用,形成一定的能力。同时我也可以检验这节课的教学效果,为后面的教学做好准备。

  环节五 归纳小结,强化思想

  师生共同总结本节课嗦学习的内容,使学生理清本节课的知识结构,巩固所学知识,提炼应用到的教学方法,培养学生的归纳概括能力。

  环节六 布置作业

  课后习题3,4,5,10

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢!

  《绝对值》说课稿 10

  一、说教材

  教材的地位和作用

  《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。

  教学目标

  根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:

  (一)知识与技能

  理解、掌握绝对值的含义,并且会比较有理数之间的大小。

  (二)过程与方法

  运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。

  (三)情感态度与价值观

  体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。

  教学重难点

  通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:

  重点:绝对值的理解以及有理数的比较

  难点:负数的绝对值的理解及比较

  二、说学情

  以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。

  初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。

  三、说教材

  基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。

  四、说教法

  新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。

  五、说教学程序

  为了更好的.实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:

  (一)情境导入

  出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。

  数轴的两个数值是相反数,是上节课的内容,0到-15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?

  (二)新授

  1.从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。

  2.使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。

  3.和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0.得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。

  4.在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a.这三种情况的分析后,学生就充分理解了绝对值的含义。

  5.回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。

  (三)巩固练习

  在PPT上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。

  (四)小结

  引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。

  (五)布置作业

  布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。

  (六)说板书设计

  为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。

  以上就是我说课的全部内容,谢谢!

【《绝对值》说课稿】相关文章:

绝对值教案11-10

绝对值的教案05-18

绝对值教学反思03-14

绝对值教案优秀02-13

绝对值教学反思04-22

数学绝对值教案05-14

《绝对值》的教学反思05-20

《绝对值的定义》教学设计09-28

初中数学绝对值教案12-30

绝对值的平方等于什么06-05